#[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; use crate::allocator::Allocator; use crate::base::{DefaultAllocator, MatrixN, VectorN, U1}; use crate::dimension::Dim; use crate::storage::Storage; use simba::scalar::ComplexField; /// UDU factorization #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", serde(bound(serialize = "VectorN: Serialize, MatrixN: Serialize")) )] #[cfg_attr( feature = "serde-serialize", serde(bound( deserialize = "VectorN: Deserialize<'de>, MatrixN: Deserialize<'de>" )) )] #[derive(Clone, Debug)] pub struct UDU where DefaultAllocator: Allocator + Allocator, { /// The upper triangular matrix resulting from the factorization pub u: MatrixN, /// The diagonal matrix resulting from the factorization pub d: VectorN, } impl Copy for UDU where DefaultAllocator: Allocator + Allocator, VectorN: Copy, MatrixN: Copy, { } impl UDU where DefaultAllocator: Allocator + Allocator, { /// Computes the UDU^T factorization /// The input matrix `p` is assumed to be symmetric and this decomposition will only read the upper-triangular part of `p`. /// Ref.: "Optimal control and estimation-Dover Publications", Robert F. Stengel, (1994) page 360 pub fn new(p: MatrixN) -> Self { let n = p.ncols(); let n_dim = p.data.shape().1; let mut d = VectorN::zeros_generic(n_dim, U1); let mut u = MatrixN::zeros_generic(n_dim, n_dim); d[n - 1] = p[(n - 1, n - 1)]; u.column_mut(n - 1) .axpy(N::one() / d[n - 1], &p.column(n - 1), N::zero()); for j in (0..n - 1).rev() { let mut d_j = d[j]; for k in j + 1..n { d_j += d[k] * u[(j, k)].powi(2); } d[j] = p[(j, j)] - d_j; for i in (0..=j).rev() { let mut u_ij = u[(i, j)]; for k in j + 1..n { u_ij += d[k] * u[(j, k)] * u[(i, k)]; } u[(i, j)] = (p[(i, j)] - u_ij) / d[j]; } u[(j, j)] = N::one(); } Self { u, d } } /// Returns the diagonal elements as a matrix pub fn d_matrix(&self) -> MatrixN { MatrixN::from_diagonal(&self.d) } }