#![cfg(feature = "arbitrary")] #![allow(non_snake_case)] use na::{ Isometry2, Isometry3, Point2, Point3, Rotation2, Rotation3, Translation2, Translation3, UnitComplex, UnitQuaternion, Vector2, Vector3, }; quickcheck!( fn append_rotation_wrt_point_to_id(r: UnitQuaternion<f64>, p: Point3<f64>) -> bool { let mut iso = Isometry3::identity(); iso.append_rotation_wrt_point_mut(&r, &p); iso == Isometry3::rotation_wrt_point(r, p) } fn rotation_wrt_point_invariance(r: UnitQuaternion<f64>, p: Point3<f64>) -> bool { let iso = Isometry3::rotation_wrt_point(r, p); relative_eq!(iso * p, p, epsilon = 1.0e-7) } fn look_at_rh_3(eye: Point3<f64>, target: Point3<f64>, up: Vector3<f64>) -> bool { let viewmatrix = Isometry3::look_at_rh(&eye, &target, &up); let origin = Point3::origin(); relative_eq!(viewmatrix * eye, origin, epsilon = 1.0e-7) && relative_eq!( (viewmatrix * (target - eye)).normalize(), -Vector3::z(), epsilon = 1.0e-7 ) } fn observer_frame_3(eye: Point3<f64>, target: Point3<f64>, up: Vector3<f64>) -> bool { let observer = Isometry3::face_towards(&eye, &target, &up); let origin = Point3::origin(); relative_eq!(observer * origin, eye, epsilon = 1.0e-7) && relative_eq!( observer * Vector3::z(), (target - eye).normalize(), epsilon = 1.0e-7 ) } fn inverse_is_identity(i: Isometry3<f64>, p: Point3<f64>, v: Vector3<f64>) -> bool { let ii = i.inverse(); relative_eq!(i * ii, Isometry3::identity(), epsilon = 1.0e-7) && relative_eq!(ii * i, Isometry3::identity(), epsilon = 1.0e-7) && relative_eq!((i * ii) * p, p, epsilon = 1.0e-7) && relative_eq!((ii * i) * p, p, epsilon = 1.0e-7) && relative_eq!((i * ii) * v, v, epsilon = 1.0e-7) && relative_eq!((ii * i) * v, v, epsilon = 1.0e-7) } fn inverse_is_parts_inversion(t: Translation3<f64>, r: UnitQuaternion<f64>) -> bool { let i = t * r; i.inverse() == r.inverse() * t.inverse() } fn multiply_equals_alga_transform(i: Isometry3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool { i * v == i.transform_vector(&v) && i * p == i.transform_point(&p) && relative_eq!( i.inverse() * v, i.inverse_transform_vector(&v), epsilon = 1.0e-7 ) && relative_eq!( i.inverse() * p, i.inverse_transform_point(&p), epsilon = 1.0e-7 ) } fn composition2( i: Isometry2<f64>, uc: UnitComplex<f64>, r: Rotation2<f64>, t: Translation2<f64>, v: Vector2<f64>, p: Point2<f64> ) -> bool { // (rotation × translation) * point = rotation × (translation * point) relative_eq!((uc * t) * v, uc * v, epsilon = 1.0e-7) && relative_eq!((r * t) * v, r * v, epsilon = 1.0e-7) && relative_eq!((uc * t) * p, uc * (t * p), epsilon = 1.0e-7) && relative_eq!((r * t) * p, r * (t * p), epsilon = 1.0e-7) && // (translation × rotation) * point = translation × (rotation * point) (t * uc) * v == uc * v && (t * r) * v == r * v && (t * uc) * p == t * (uc * p) && (t * r) * p == t * (r * p) && // (rotation × isometry) * point = rotation × (isometry * point) relative_eq!((uc * i) * v, uc * (i * v), epsilon = 1.0e-7) && relative_eq!((uc * i) * p, uc * (i * p), epsilon = 1.0e-7) && // (isometry × rotation) * point = isometry × (rotation * point) relative_eq!((i * uc) * v, i * (uc * v), epsilon = 1.0e-7) && relative_eq!((i * uc) * p, i * (uc * p), epsilon = 1.0e-7) && // (translation × isometry) * point = translation × (isometry * point) relative_eq!((t * i) * v, (i * v), epsilon = 1.0e-7) && relative_eq!((t * i) * p, t * (i * p), epsilon = 1.0e-7) && // (isometry × translation) * point = isometry × (translation * point) relative_eq!((i * t) * v, i * v, epsilon = 1.0e-7) && relative_eq!((i * t) * p, i * (t * p), epsilon = 1.0e-7) } fn composition3( i: Isometry3<f64>, uq: UnitQuaternion<f64>, r: Rotation3<f64>, t: Translation3<f64>, v: Vector3<f64>, p: Point3<f64> ) -> bool { // (rotation × translation) * point = rotation × (translation * point) relative_eq!((uq * t) * v, uq * v, epsilon = 1.0e-7) && relative_eq!((r * t) * v, r * v, epsilon = 1.0e-7) && relative_eq!((uq * t) * p, uq * (t * p), epsilon = 1.0e-7) && relative_eq!((r * t) * p, r * (t * p), epsilon = 1.0e-7) && // (translation × rotation) * point = translation × (rotation * point) (t * uq) * v == uq * v && (t * r) * v == r * v && (t * uq) * p == t * (uq * p) && (t * r) * p == t * (r * p) && // (rotation × isometry) * point = rotation × (isometry * point) relative_eq!((uq * i) * v, uq * (i * v), epsilon = 1.0e-7) && relative_eq!((uq * i) * p, uq * (i * p), epsilon = 1.0e-7) && // (isometry × rotation) * point = isometry × (rotation * point) relative_eq!((i * uq) * v, i * (uq * v), epsilon = 1.0e-7) && relative_eq!((i * uq) * p, i * (uq * p), epsilon = 1.0e-7) && // (translation × isometry) * point = translation × (isometry * point) relative_eq!((t * i) * v, (i * v), epsilon = 1.0e-7) && relative_eq!((t * i) * p, t * (i * p), epsilon = 1.0e-7) && // (isometry × translation) * point = isometry × (translation * point) relative_eq!((i * t) * v, i * v, epsilon = 1.0e-7) && relative_eq!((i * t) * p, i * (t * p), epsilon = 1.0e-7) } fn all_op_exist( i: Isometry3<f64>, uq: UnitQuaternion<f64>, t: Translation3<f64>, v: Vector3<f64>, p: Point3<f64>, r: Rotation3<f64> ) -> bool { let iMi = i * i; let iMuq = i * uq; let iDi = i / i; let iDuq = i / uq; let iMp = i * p; let iMv = i * v; let iMt = i * t; let tMi = t * i; let tMr = t * r; let tMuq = t * uq; let uqMi = uq * i; let uqDi = uq / i; let rMt = r * t; let uqMt = uq * t; let mut iMt1 = i; let mut iMt2 = i; let mut iMi1 = i; let mut iMi2 = i; let mut iMuq1 = i; let mut iMuq2 = i; let mut iDi1 = i; let mut iDi2 = i; let mut iDuq1 = i; let mut iDuq2 = i; iMt1 *= t; iMt2 *= &t; iMi1 *= i; iMi2 *= &i; iMuq1 *= uq; iMuq2 *= &uq; iDi1 /= i; iDi2 /= &i; iDuq1 /= uq; iDuq2 /= &uq; iMt == iMt1 && iMt == iMt2 && iMi == iMi1 && iMi == iMi2 && iMuq == iMuq1 && iMuq == iMuq2 && iDi == iDi1 && iDi == iDi2 && iDuq == iDuq1 && iDuq == iDuq2 && iMi == &i * &i && iMi == i * &i && iMi == &i * i && iMuq == &i * &uq && iMuq == i * &uq && iMuq == &i * uq && iDi == &i / &i && iDi == i / &i && iDi == &i / i && iDuq == &i / &uq && iDuq == i / &uq && iDuq == &i / uq && iMp == &i * &p && iMp == i * &p && iMp == &i * p && iMv == &i * &v && iMv == i * &v && iMv == &i * v && iMt == &i * &t && iMt == i * &t && iMt == &i * t && tMi == &t * &i && tMi == t * &i && tMi == &t * i && tMr == &t * &r && tMr == t * &r && tMr == &t * r && tMuq == &t * &uq && tMuq == t * &uq && tMuq == &t * uq && uqMi == &uq * &i && uqMi == uq * &i && uqMi == &uq * i && uqDi == &uq / &i && uqDi == uq / &i && uqDi == &uq / i && rMt == &r * &t && rMt == r * &t && rMt == &r * t && uqMt == &uq * &t && uqMt == uq * &t && uqMt == &uq * t } );