//! An implementation of the CSC sparse matrix format. use crate::{SparseFormatError, SparseFormatErrorKind}; use crate::pattern::{SparsityPattern, SparsityPatternFormatError, SparsityPatternIter}; use std::sync::Arc; use std::slice::{IterMut, Iter}; use std::ops::Range; use num_traits::Zero; use std::ptr::slice_from_raw_parts_mut; /// A CSC representation of a sparse matrix. /// /// The Compressed Sparse Column (CSC) format is well-suited as a general-purpose storage format /// for many sparse matrix applications. /// /// TODO: Storage explanation and examples /// #[derive(Debug, Clone, PartialEq, Eq)] pub struct CscMatrix { // Cols are major, rows are minor in the sparsity pattern sparsity_pattern: Arc, values: Vec, } impl CscMatrix { /// Create a zero CSC matrix with no explicitly stored entries. pub fn new(nrows: usize, ncols: usize) -> Self { Self { sparsity_pattern: Arc::new(SparsityPattern::new(ncols, nrows)), values: vec![], } } /// The number of rows in the matrix. #[inline] pub fn nrows(&self) -> usize { self.sparsity_pattern.minor_dim() } /// The number of columns in the matrix. #[inline] pub fn ncols(&self) -> usize { self.sparsity_pattern.major_dim() } /// The number of non-zeros in the matrix. /// /// Note that this corresponds to the number of explicitly stored entries, *not* the actual /// number of algebraically zero entries in the matrix. Explicitly stored entries can still /// be zero. Corresponds to the number of entries in the sparsity pattern. #[inline] pub fn nnz(&self) -> usize { self.sparsity_pattern.nnz() } /// The column offsets defining part of the CSC format. #[inline] pub fn col_offsets(&self) -> &[usize] { self.sparsity_pattern.major_offsets() } /// The row indices defining part of the CSC format. #[inline] pub fn row_indices(&self) -> &[usize] { self.sparsity_pattern.minor_indices() } /// The non-zero values defining part of the CSC format. #[inline] pub fn values(&self) -> &[T] { &self.values } /// Mutable access to the non-zero values. #[inline] pub fn values_mut(&mut self) -> &mut [T] { &mut self.values } /// Try to construct a CSC matrix from raw CSC data. /// /// It is assumed that each column contains unique and sorted row indices that are in /// bounds with respect to the number of rows in the matrix. If this is not the case, /// an error is returned to indicate the failure. /// /// An error is returned if the data given does not conform to the CSC storage format. /// See the documentation for [CscMatrix](struct.CscMatrix.html) for more information. pub fn try_from_csc_data( num_rows: usize, num_cols: usize, col_offsets: Vec, row_indices: Vec, values: Vec, ) -> Result { let pattern = SparsityPattern::try_from_offsets_and_indices( num_cols, num_rows, col_offsets, row_indices) .map_err(pattern_format_error_to_csc_error)?; Self::try_from_pattern_and_values(Arc::new(pattern), values) } /// Try to construct a CSC matrix from a sparsity pattern and associated non-zero values. /// /// Returns an error if the number of values does not match the number of minor indices /// in the pattern. pub fn try_from_pattern_and_values(pattern: Arc, values: Vec) -> Result { if pattern.nnz() == values.len() { Ok(Self { sparsity_pattern: pattern, values, }) } else { Err(SparseFormatError::from_kind_and_msg( SparseFormatErrorKind::InvalidStructure, "Number of values and row indices must be the same")) } } /// An iterator over non-zero triplets (i, j, v). /// /// The iteration happens in column-major fashion, meaning that j increases monotonically, /// and i increases monotonically within each row. /// /// Examples /// -------- /// ``` /// # use nalgebra_sparse::csc::CscMatrix; /// let col_offsets = vec![0, 2, 3, 4]; /// let row_indices = vec![0, 2, 1, 0]; /// let values = vec![1, 3, 2, 4]; /// let mut csc = CscMatrix::try_from_csc_data(4, 3, col_offsets, row_indices, values) /// .unwrap(); /// /// let triplets: Vec<_> = csc.triplet_iter().map(|(i, j, v)| (i, j, *v)).collect(); /// assert_eq!(triplets, vec![(0, 0, 1), (2, 0, 3), (1, 1, 2), (0, 2, 4)]); /// ``` pub fn triplet_iter(&self) -> CscTripletIter { CscTripletIter { pattern_iter: self.sparsity_pattern.entries(), values_iter: self.values.iter() } } /// A mutable iterator over non-zero triplets (i, j, v). /// /// Iteration happens in the same order as for [triplet_iter](#method.triplet_iter). /// /// Examples /// -------- /// ``` /// # use nalgebra_sparse::csc::CscMatrix; /// let col_offsets = vec![0, 2, 3, 4]; /// let row_indices = vec![0, 2, 1, 0]; /// let values = vec![1, 3, 2, 4]; /// // Using the same data as in the `triplet_iter` example /// let mut csc = CscMatrix::try_from_csc_data(4, 3, col_offsets, row_indices, values) /// .unwrap(); /// /// // Zero out lower-triangular terms /// csc.triplet_iter_mut() /// .filter(|(i, j, _)| j < i) /// .for_each(|(_, _, v)| *v = 0); /// /// let triplets: Vec<_> = csc.triplet_iter().map(|(i, j, v)| (i, j, *v)).collect(); /// assert_eq!(triplets, vec![(0, 0, 1), (2, 0, 0), (1, 1, 2), (0, 2, 4)]); /// ``` pub fn triplet_iter_mut(&mut self) -> CscTripletIterMut { CscTripletIterMut { pattern_iter: self.sparsity_pattern.entries(), values_mut_iter: self.values.iter_mut() } } /// Return the column at the given column index. /// /// Panics /// ------ /// Panics if column index is out of bounds. #[inline] pub fn col(&self, index: usize) -> CscCol { self.get_col(index) .expect("Row index must be in bounds") } /// Mutable column access for the given column index. /// /// Panics /// ------ /// Panics if column index is out of bounds. #[inline] pub fn col_mut(&mut self, index: usize) -> CscColMut { self.get_col_mut(index) .expect("Row index must be in bounds") } /// Return the column at the given column index, or `None` if out of bounds. #[inline] pub fn get_col(&self, index: usize) -> Option> { let range = self.get_index_range(index)?; Some(CscCol { row_indices: &self.sparsity_pattern.minor_indices()[range.clone()], values: &self.values[range], nrows: self.nrows() }) } /// Mutable column access for the given column index, or `None` if out of bounds. #[inline] pub fn get_col_mut(&mut self, index: usize) -> Option> { let range = self.get_index_range(index)?; Some(CscColMut { nrows: self.nrows(), row_indices: &self.sparsity_pattern.minor_indices()[range.clone()], values: &mut self.values[range] }) } /// Internal method for simplifying access to a column's data. fn get_index_range(&self, col_index: usize) -> Option> { let col_begin = *self.sparsity_pattern.major_offsets().get(col_index)?; let col_end = *self.sparsity_pattern.major_offsets().get(col_index + 1)?; Some(col_begin .. col_end) } /// An iterator over columns in the matrix. pub fn col_iter(&self) -> CscColIter { CscColIter { current_col_idx: 0, matrix: self } } /// A mutable iterator over columns in the matrix. pub fn col_iter_mut(&mut self) -> CscColIterMut { CscColIterMut { current_col_idx: 0, pattern: &self.sparsity_pattern, remaining_values: self.values.as_mut_ptr() } } /// Returns the underlying vector containing the values for the explicitly stored entries. pub fn take_values(self) -> Vec { self.values } /// Disassembles the CSC matrix into its underlying offset, index and value arrays. /// /// If the matrix contains the sole reference to the sparsity pattern, /// then the data is returned as-is. Otherwise, the sparsity pattern is cloned. /// /// Examples /// -------- /// /// ``` /// # use nalgebra_sparse::csc::CscMatrix; /// let col_offsets = vec![0, 2, 3, 4]; /// let row_indices = vec![0, 2, 1, 0]; /// let values = vec![1, 3, 2, 4]; /// let mut csc = CscMatrix::try_from_csc_data( /// 4, /// 3, /// col_offsets.clone(), /// row_indices.clone(), /// values.clone()) /// .unwrap(); /// let (col_offsets2, row_indices2, values2) = csc.disassemble(); /// assert_eq!(col_offsets2, col_offsets); /// assert_eq!(row_indices2, row_indices); /// assert_eq!(values2, values); /// ``` pub fn disassemble(self) -> (Vec, Vec, Vec) { // Take an Arc to the pattern, which might be the sole reference to the data after // taking the values. This is important, because it might let us avoid cloning the data // further below. let pattern = self.pattern(); let values = self.take_values(); // Try to take the pattern out of the `Arc` if possible, // otherwise clone the pattern. let owned_pattern = Arc::try_unwrap(pattern) .unwrap_or_else(|arc| SparsityPattern::clone(&*arc)); let (offsets, indices) = owned_pattern.disassemble(); (offsets, indices, values) } /// Returns the underlying sparsity pattern. /// /// The sparsity pattern is stored internally inside an `Arc`. This allows users to re-use /// the same sparsity pattern for multiple matrices without storing the same pattern multiple /// times in memory. pub fn pattern(&self) -> Arc { Arc::clone(&self.sparsity_pattern) } } impl CscMatrix { /// Return the value in the matrix at the given global row/col indices, or `None` if out of /// bounds. /// /// If the indices are in bounds, but no explicitly stored entry is associated with it, /// `T::zero()` is returned. Note that this method offers no way of distinguishing /// explicitly stored zero entries from zero values that are only implicitly represented. /// /// Each call to this function incurs the cost of a binary search among the explicitly /// stored column entries for the given row. #[inline] pub fn get(&self, row_index: usize, col_index: usize) -> Option { self.get_col(row_index)?.get(col_index) } /// Same as `get`, but panics if indices are out of bounds. /// /// Panics /// ------ /// Panics if either index is out of bounds. #[inline] pub fn index(&self, row_index: usize, col_index: usize) -> T { self.get(row_index, col_index).unwrap() } } /// Convert pattern format errors into more meaningful CSC-specific errors. /// /// This ensures that the terminology is consistent: we are talking about rows and columns, /// not lanes, major and minor dimensions. fn pattern_format_error_to_csc_error(err: SparsityPatternFormatError) -> SparseFormatError { use SparsityPatternFormatError::*; use SparsityPatternFormatError::DuplicateEntry as PatternDuplicateEntry; use SparseFormatError as E; use SparseFormatErrorKind as K; match err { InvalidOffsetArrayLength => E::from_kind_and_msg( K::InvalidStructure, "Length of col offset array is not equal to ncols + 1."), InvalidOffsetFirstLast => E::from_kind_and_msg( K::InvalidStructure, "First or last col offset is inconsistent with format specification."), NonmonotonicOffsets => E::from_kind_and_msg( K::InvalidStructure, "Col offsets are not monotonically increasing."), NonmonotonicMinorIndices => E::from_kind_and_msg( K::InvalidStructure, "Row indices are not monotonically increasing (sorted) within each column."), MinorIndexOutOfBounds => E::from_kind_and_msg( K::IndexOutOfBounds, "Row indices are out of bounds."), PatternDuplicateEntry => E::from_kind_and_msg( K::DuplicateEntry, "Matrix data contains duplicate entries."), } } /// Iterator type for iterating over triplets in a CSC matrix. #[derive(Debug)] pub struct CscTripletIter<'a, T> { pattern_iter: SparsityPatternIter<'a>, values_iter: Iter<'a, T> } impl<'a, T> Iterator for CscTripletIter<'a, T> { type Item = (usize, usize, &'a T); fn next(&mut self) -> Option { let next_entry = self.pattern_iter.next(); let next_value = self.values_iter.next(); match (next_entry, next_value) { (Some((i, j)), Some(v)) => Some((j, i, v)), _ => None } } } /// Iterator type for mutably iterating over triplets in a CSC matrix. #[derive(Debug)] pub struct CscTripletIterMut<'a, T> { pattern_iter: SparsityPatternIter<'a>, values_mut_iter: IterMut<'a, T> } impl<'a, T> Iterator for CscTripletIterMut<'a, T> { type Item = (usize, usize, &'a mut T); #[inline] fn next(&mut self) -> Option { let next_entry = self.pattern_iter.next(); let next_value = self.values_mut_iter.next(); match (next_entry, next_value) { (Some((i, j)), Some(v)) => Some((j, i, v)), _ => None } } } /// An immutable representation of a column in a CSC matrix. #[derive(Debug, Clone, PartialEq, Eq)] pub struct CscCol<'a, T> { nrows: usize, row_indices: &'a [usize], values: &'a [T], } /// A mutable representation of a column in a CSC matrix. /// /// Note that only explicitly stored entries can be mutated. The sparsity pattern belonging /// to the column cannot be modified. #[derive(Debug, PartialEq, Eq)] pub struct CscColMut<'a, T> { nrows: usize, row_indices: &'a [usize], values: &'a mut [T] } /// Implement the methods common to both CscCol and CscColMut macro_rules! impl_csc_col_common_methods { ($name:ty) => { impl<'a, T> $name { /// The number of global rows in the column. #[inline] pub fn nrows(&self) -> usize { self.nrows } /// The number of non-zeros in this column. #[inline] pub fn nnz(&self) -> usize { self.row_indices.len() } /// The row indices corresponding to explicitly stored entries in this column. #[inline] pub fn row_indices(&self) -> &[usize] { self.row_indices } /// The values corresponding to explicitly stored entries in this column. #[inline] pub fn values(&self) -> &[T] { self.values } } impl<'a, T: Clone + Zero> $name { /// Return the value in the matrix at the given global row index, or `None` if out of /// bounds. /// /// If the index is in bounds, but no explicitly stored entry is associated with it, /// `T::zero()` is returned. Note that this method offers no way of distinguishing /// explicitly stored zero entries from zero values that are only implicitly represented. /// /// Each call to this function incurs the cost of a binary search among the explicitly /// stored row entries for the current column. pub fn get(&self, global_row_index: usize) -> Option { let local_index = self.row_indices().binary_search(&global_row_index); if let Ok(local_index) = local_index { Some(self.values[local_index].clone()) } else if global_row_index < self.nrows { Some(T::zero()) } else { None } } } } } impl_csc_col_common_methods!(CscCol<'a, T>); impl_csc_col_common_methods!(CscColMut<'a, T>); impl<'a, T> CscColMut<'a, T> { /// Mutable access to the values corresponding to explicitly stored entries in this column. pub fn values_mut(&mut self) -> &mut [T] { self.values } /// Provides simultaneous access to row indices and mutable values corresponding to the /// explicitly stored entries in this column. /// /// This method primarily facilitates low-level access for methods that process data stored /// in CSC format directly. pub fn rows_and_values_mut(&mut self) -> (&[usize], &mut [T]) { (self.row_indices, self.values) } } /// Column iterator for [CscMatrix](struct.CscMatrix.html). pub struct CscColIter<'a, T> { // The index of the row that will be returned on the next current_col_idx: usize, matrix: &'a CscMatrix } impl<'a, T> Iterator for CscColIter<'a, T> { type Item = CscCol<'a, T>; fn next(&mut self) -> Option { let col = self.matrix.get_col(self.current_col_idx); self.current_col_idx += 1; col } } /// Mutable column iterator for [CscMatrix](struct.CscMatrix.html). pub struct CscColIterMut<'a, T> { current_col_idx: usize, pattern: &'a SparsityPattern, remaining_values: *mut T, } impl<'a, T> Iterator for CscColIterMut<'a, T> where T: 'a { type Item = CscColMut<'a, T>; fn next(&mut self) -> Option { let lane = self.pattern.get_lane(self.current_col_idx); let nrows = self.pattern.minor_dim(); if let Some(row_indices) = lane { let count = row_indices.len(); // Note: I can't think of any way to construct this iterator without unsafe. let values_in_row; unsafe { values_in_row = &mut *slice_from_raw_parts_mut(self.remaining_values, count); self.remaining_values = self.remaining_values.add(count); } self.current_col_idx += 1; Some(CscColMut { nrows, row_indices, values: values_in_row }) } else { None } } }