use nalgebra_sparse::coo::CooMatrix; use nalgebra_sparse::ops::serial::{spmv_coo, spmm_csr_dense, spadd_build_pattern, spadd_csr}; use nalgebra_sparse::ops::{Transpose}; use nalgebra_sparse::csr::CsrMatrix; use nalgebra_sparse::proptest::{csr, sparsity_pattern}; use nalgebra_sparse::pattern::SparsityPattern; use nalgebra::{DVector, DMatrix, Scalar, DMatrixSliceMut, DMatrixSlice}; use nalgebra::proptest::matrix; use proptest::prelude::*; use std::panic::catch_unwind; use std::sync::Arc; use crate::common::csr_strategy; /// Represents the sparsity pattern of a CSR matrix as a dense matrix with 0/1 fn dense_csr_pattern(pattern: &SparsityPattern) -> DMatrix { let boolean_csr = CsrMatrix::try_from_pattern_and_values( Arc::new(pattern.clone()), vec![1; pattern.nnz()]) .unwrap(); DMatrix::from(&boolean_csr) } #[test] fn spmv_coo_agrees_with_dense_gemv() { let x = DVector::from_column_slice(&[2, 3, 4, 5]); let i = vec![0, 0, 1, 1, 2, 2]; let j = vec![0, 3, 0, 1, 1, 3]; let v = vec![3, 2, 1, 2, 3, 1]; let a = CooMatrix::try_from_triplets(3, 4, i, j, v).unwrap(); let betas = [0, 1, 2]; let alphas = [0, 1, 2]; for &beta in &betas { for &alpha in &alphas { let mut y = DVector::from_column_slice(&[2, 5, 3]); let mut y_dense = y.clone(); spmv_coo(beta, &mut y, alpha, &a, &x); y_dense.gemv(alpha, &DMatrix::from(&a), &x, beta); assert_eq!(y, y_dense); } } } #[derive(Debug)] struct SpmmCsrDenseArgs { c: DMatrix, beta: T, alpha: T, trans_a: Transpose, a: CsrMatrix, trans_b: Transpose, b: DMatrix, } /// Returns matrices C, A and B with compatible dimensions such that it can be used /// in an `spmm` operation `C = beta * C + alpha * trans(A) * trans(B)`. fn spmm_csr_dense_args_strategy() -> impl Strategy> { let max_nnz = 40; let value_strategy = -5 ..= 5; let c_rows = 0 ..= 6usize; let c_cols = 0 ..= 6usize; let common_dim = 0 ..= 6usize; let trans_strategy = trans_strategy(); let c_matrix_strategy = matrix(value_strategy.clone(), c_rows, c_cols); (c_matrix_strategy, common_dim, trans_strategy.clone(), trans_strategy.clone()) .prop_flat_map(move |(c, common_dim, trans_a, trans_b)| { let a_shape = if trans_a.to_bool() { (common_dim, c.nrows()) } else { (c.nrows(), common_dim) }; let b_shape = if trans_b.to_bool() { (c.ncols(), common_dim) } else { (common_dim, c.ncols()) }; let a = csr(value_strategy.clone(), Just(a_shape.0), Just(a_shape.1), max_nnz); let b = matrix(value_strategy.clone(), b_shape.0, b_shape.1); // We use the same values for alpha, beta parameters as for matrix elements let alpha = value_strategy.clone(); let beta = value_strategy.clone(); (Just(c), beta, alpha, Just(trans_a), a, Just(trans_b), b) }).prop_map(|(c, beta, alpha, trans_a, a, trans_b, b)| { SpmmCsrDenseArgs { c, beta, alpha, trans_a, a, trans_b, b, } }) } #[derive(Debug)] struct SpaddCsrArgs { c: CsrMatrix, beta: T, alpha: T, trans_a: Transpose, a: CsrMatrix, } fn spadd_csr_args_strategy() -> impl Strategy> { let value_strategy = -5 ..= 5; // TODO :Support transposition spadd_build_pattern_strategy() .prop_flat_map(move |(a_pattern, b_pattern)| { let mut c_pattern = SparsityPattern::new(a_pattern.major_dim(), b_pattern.major_dim()); spadd_build_pattern(&mut c_pattern, &a_pattern, &b_pattern); let a_values = vec![value_strategy.clone(); a_pattern.nnz()]; let c_values = vec![value_strategy.clone(); c_pattern.nnz()]; let alpha = value_strategy.clone(); let beta = value_strategy.clone(); (Just(c_pattern), Just(a_pattern), c_values, a_values, alpha, beta, trans_strategy()) }).prop_map(|(c_pattern, a_pattern, c_values, a_values, alpha, beta, trans_a)| { let c = CsrMatrix::try_from_pattern_and_values(Arc::new(c_pattern), c_values).unwrap(); let a = CsrMatrix::try_from_pattern_and_values(Arc::new(a_pattern), a_values).unwrap(); let a = if trans_a.to_bool() { a.transpose() } else { a }; SpaddCsrArgs { c, beta, alpha, trans_a, a } }) } fn dense_strategy() -> impl Strategy> { matrix(-5 ..= 5, 0 ..= 6, 0 ..= 6) } fn trans_strategy() -> impl Strategy + Clone { proptest::bool::ANY.prop_map(Transpose) } fn pattern_strategy() -> impl Strategy { sparsity_pattern(0 ..= 6usize, 0..= 6usize, 40) } /// Constructs pairs (a, b) where a and b have the same dimensions fn spadd_build_pattern_strategy() -> impl Strategy { pattern_strategy() .prop_flat_map(|a| { let b = sparsity_pattern(Just(a.major_dim()), Just(a.minor_dim()), 40); (Just(a), b) }) } /// Helper function to help us call dense GEMM with our transposition parameters fn dense_gemm<'a>(c: impl Into>, beta: i32, alpha: i32, trans_a: Transpose, a: impl Into>, trans_b: Transpose, b: impl Into>) { let mut c = c.into(); let a = a.into(); let b = b.into(); match (trans_a, trans_b) { (Transpose(false), Transpose(false)) => c.gemm(alpha, &a, &b, beta), (Transpose(true), Transpose(false)) => c.gemm(alpha, &a.transpose(), &b, beta), (Transpose(false), Transpose(true)) => c.gemm(alpha, &a, &b.transpose(), beta), (Transpose(true), Transpose(true)) => c.gemm(alpha, &a.transpose(), &b.transpose(), beta) }; } proptest! { #[test] fn spmm_csr_dense_agrees_with_dense_result( SpmmCsrDenseArgs { c, beta, alpha, trans_a, a, trans_b, b } in spmm_csr_dense_args_strategy() ) { let mut spmm_result = c.clone(); spmm_csr_dense(&mut spmm_result, beta, alpha, trans_a, &a, trans_b, &b); let mut gemm_result = c.clone(); dense_gemm(&mut gemm_result, beta, alpha, trans_a, &DMatrix::from(&a), trans_b, &b); prop_assert_eq!(spmm_result, gemm_result); } #[test] fn spmm_csr_dense_panics_on_dim_mismatch( (alpha, beta, c, a, b, trans_a, trans_b) in (-5 ..= 5, -5 ..= 5, dense_strategy(), csr_strategy(), dense_strategy(), trans_strategy(), trans_strategy()) ) { // We refer to `A * B` as the "product" let product_rows = if trans_a.to_bool() { a.ncols() } else { a.nrows() }; let product_cols = if trans_b.to_bool() { b.nrows() } else { b.ncols() }; // Determine the common dimension in the product // from the perspective of a and b, respectively let product_a_common = if trans_a.to_bool() { a.nrows() } else { a.ncols() }; let product_b_common = if trans_b.to_bool() { b.ncols() } else { b.nrows() }; let dims_are_compatible = product_rows == c.nrows() && product_cols == c.ncols() && product_a_common == product_b_common; // If the dimensions randomly happen to be compatible, then of course we need to // skip the test, so we assume that they are not. prop_assume!(!dims_are_compatible); let result = catch_unwind(|| { let mut spmm_result = c.clone(); spmm_csr_dense(&mut spmm_result, beta, alpha, trans_a, &a, trans_b, &b); }); prop_assert!(result.is_err(), "The SPMM kernel executed successfully despite mismatch dimensions"); } #[test] fn spadd_build_pattern_test((c, (a, b)) in (pattern_strategy(), spadd_build_pattern_strategy())) { // (a, b) are dimensionally compatible patterns, whereas c is an *arbitrary* pattern let mut pattern_result = c.clone(); spadd_build_pattern(&mut pattern_result, &a, &b); // To verify the pattern, we construct CSR matrices with positive integer entries // corresponding to a and b, and convert them to dense matrices. // The sum of these dense matrices will then have non-zeros in exactly the same locations // as the result of "adding" the sparsity patterns let a_csr = CsrMatrix::try_from_pattern_and_values(Arc::new(a.clone()), vec![1; a.nnz()]) .unwrap(); let a_dense = DMatrix::from(&a_csr); let b_csr = CsrMatrix::try_from_pattern_and_values(Arc::new(b.clone()), vec![1; b.nnz()]) .unwrap(); let b_dense = DMatrix::from(&b_csr); let c_dense = a_dense + b_dense; let c_csr = CsrMatrix::from(&c_dense); prop_assert_eq!(&pattern_result, c_csr.pattern().as_ref()); } #[test] fn spadd_csr_test(SpaddCsrArgs { c, beta, alpha, trans_a, a } in spadd_csr_args_strategy()) { // Test that we get the expected result by comparing to an equivalent dense operation // (here we give in the C matrix, so the sparsity pattern is essentially fixed) let mut c_sparse = c.clone(); spadd_csr(&mut c_sparse, beta, alpha, trans_a, &a).unwrap(); let mut c_dense = DMatrix::from(&c); let op_a_dense = DMatrix::from(&a); let op_a_dense = if trans_a.to_bool() { op_a_dense.transpose() } else { op_a_dense }; c_dense = beta * c_dense + alpha * &op_a_dense; prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense); } #[test] fn csr_add_csr( // a and b have the same dimensions (a, b) in csr_strategy() .prop_flat_map(|a| { let b = csr(-5 ..= 5, Just(a.nrows()), Just(a.ncols()), 40); (Just(a), b) })) { // We use the dense result as the ground truth for the arithmetic result let c_dense = DMatrix::from(&a) + DMatrix::from(&b); // However, it's not enough only to cover the dense result, we also need to verify the // sparsity pattern. We can determine the exact sparsity pattern by using // dense arithmetic with positive integer values and extracting positive entries. let c_dense_pattern = dense_csr_pattern(a.pattern()) + dense_csr_pattern(b.pattern()); let c_pattern = CsrMatrix::from(&c_dense_pattern).pattern().clone(); // Check each combination of owned matrices and references let c_owned_owned = a.clone() + b.clone(); prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense); prop_assert_eq!(c_owned_owned.pattern(), &c_pattern); let c_owned_ref = a.clone() + &b; prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense); prop_assert_eq!(c_owned_ref.pattern(), &c_pattern); let c_ref_owned = &a + b.clone(); prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense); prop_assert_eq!(c_ref_owned.pattern(), &c_pattern); let c_ref_ref = &a + &b; prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense); prop_assert_eq!(c_ref_ref.pattern(), &c_pattern); } }