use num::{Signed, Zero}; use std::cmp::PartialOrd; use allocator::Allocator; use ::{Real, Scalar}; use storage::{Storage, StorageMut}; use base::{DefaultAllocator, Matrix, Dim, MatrixMN}; use constraint::{SameNumberOfRows, SameNumberOfColumns, ShapeConstraint}; // FIXME: this should be be a trait on alga? pub trait Norm { fn norm(&self, m: &Matrix) -> N where R: Dim, C: Dim, S: Storage; fn metric_distance(&self, m1: &Matrix, m2: &Matrix) -> N where R1: Dim, C1: Dim, S1: Storage, R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns; } /// Euclidean norm. pub struct EuclideanNorm; /// Lp norm. pub struct LpNorm(pub i32); /// L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm. pub struct UniformNorm; impl Norm for EuclideanNorm { #[inline] fn norm(&self, m: &Matrix) -> N where R: Dim, C: Dim, S: Storage { m.norm_squared().sqrt() } #[inline] fn metric_distance(&self, m1: &Matrix, m2: &Matrix) -> N where R1: Dim, C1: Dim, S1: Storage, R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns { m1.zip_fold(m2, N::zero(), |acc, a, b| { let diff = a - b; acc + diff * diff }).sqrt() } } impl Norm for LpNorm { #[inline] fn norm(&self, m: &Matrix) -> N where R: Dim, C: Dim, S: Storage { m.fold(N::zero(), |a, b| { a + b.abs().powi(self.0) }).powf(::convert(1.0 / (self.0 as f64))) } #[inline] fn metric_distance(&self, m1: &Matrix, m2: &Matrix) -> N where R1: Dim, C1: Dim, S1: Storage, R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns { m1.zip_fold(m2, N::zero(), |acc, a, b| { let diff = a - b; acc + diff.abs().powi(self.0) }).powf(::convert(1.0 / (self.0 as f64))) } } impl Norm for UniformNorm { #[inline] fn norm(&self, m: &Matrix) -> N where R: Dim, C: Dim, S: Storage { m.amax() } #[inline] fn metric_distance(&self, m1: &Matrix, m2: &Matrix) -> N where R1: Dim, C1: Dim, S1: Storage, R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns { m1.zip_fold(m2, N::zero(), |acc, a, b| { let val = (a - b).abs(); if val > acc { val } else { acc } }) } } impl> Matrix { /// The squared L2 norm of this vector. #[inline] pub fn norm_squared(&self) -> N { let mut res = N::zero(); for i in 0..self.ncols() { let col = self.column(i); res += col.dot(&col) } res } /// The L2 norm of this matrix. #[inline] pub fn norm(&self) -> N { self.norm_squared().sqrt() } /// Computes the metric distance between `self` and `rhs` using the Euclidean metric. #[inline] pub fn metric_distance(&self, rhs: &Matrix) -> N where R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns { self.apply_metric_distance(rhs, &EuclideanNorm) } #[inline] pub fn apply_norm(&self, norm: &impl Norm) -> N { norm.norm(self) } #[inline] pub fn apply_metric_distance(&self, rhs: &Matrix, norm: &impl Norm) -> N where R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns { norm.metric_distance(self,rhs) } /// The Lp norm of this matrix. #[inline] pub fn lp_norm(&self, p: i32) -> N { self.apply_norm(&LpNorm(p)) } /// A synonym for the norm of this matrix. /// /// Aka the length. /// /// This function is simply implemented as a call to `norm()` #[inline] pub fn magnitude(&self) -> N { self.norm() } /// A synonym for the squared norm of this matrix. /// /// Aka the squared length. /// /// This function is simply implemented as a call to `norm_squared()` #[inline] pub fn magnitude_squared(&self) -> N { self.norm_squared() } /// Returns a normalized version of this matrix. #[inline] pub fn normalize(&self) -> MatrixMN where DefaultAllocator: Allocator { self / self.norm() } /// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`. #[inline] pub fn try_normalize(&self, min_norm: N) -> Option> where DefaultAllocator: Allocator { let n = self.norm(); if n <= min_norm { None } else { Some(self / n) } } } impl> Matrix { /// Normalizes this matrix in-place and returns its norm. #[inline] pub fn normalize_mut(&mut self) -> N { let n = self.norm(); *self /= n; n } /// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`. /// /// If the normalization succeeded, returns the old normal of this matrix. #[inline] pub fn try_normalize_mut(&mut self, min_norm: N) -> Option { let n = self.norm(); if n <= min_norm { None } else { *self /= n; Some(n) } } }