use num::{One, Zero}; use num_complex::Complex; #[cfg(feature = "abomonation-serialize")] use std::io::{Result as IOResult, Write}; use approx::{AbsDiffEq, RelativeEq, UlpsEq}; use std::any::TypeId; use std::cmp::Ordering; use std::fmt; use std::marker::PhantomData; use std::mem; #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Deserializer, Serialize, Serializer}; #[cfg(feature = "abomonation-serialize")] use abomonation::Abomonation; use alga::general::{ClosedAdd, ClosedMul, ClosedSub, Real, Ring}; use base::allocator::{Allocator, SameShapeAllocator, SameShapeC, SameShapeR}; use base::constraint::{DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint}; use base::dimension::{Dim, DimNameAdd, DimAdd, DimNameSum, DimSum, IsNotStaticOne, U1, U2, U3}; use base::iter::{MatrixIter, MatrixIterMut}; use base::storage::{ ContiguousStorage, ContiguousStorageMut, Owned, SameShapeStorage, Storage, StorageMut, }; use base::{DefaultAllocator, MatrixMN, MatrixN, Scalar, Unit, VectorN}; /// A square matrix. pub type SquareMatrix = Matrix; /// A matrix with one column and `D` rows. pub type Vector = Matrix; /// A matrix with one row and `D` columns . pub type RowVector = Matrix; /// The type of the result of a matrix sum. pub type MatrixSum = Matrix, SameShapeC, SameShapeStorage>; /// The type of the result of a matrix sum. pub type VectorSum = Matrix, U1, SameShapeStorage>; /// The type of the result of a matrix cross product. pub type MatrixCross = Matrix, SameShapeC, SameShapeStorage>; /// The most generic column-major matrix (and vector) type. /// /// It combines four type parameters: /// - `N`: for the matrix components scalar type. /// - `R`: for the matrix number of rows. /// - `C`: for the matrix number of columns. /// - `S`: for the matrix data storage, i.e., the buffer that actually contains the matrix /// components. /// /// The matrix dimensions parameters `R` and `C` can either be: /// - type-level unsigned integer constants (e.g. `U1`, `U124`) from the `nalgebra::` root module. /// All numbers from 0 to 127 are defined that way. /// - type-level unsigned integer constants (e.g. `U1024`, `U10000`) from the `typenum::` crate. /// Using those, you will not get error messages as nice as for numbers smaller than 128 defined on /// the `nalgebra::` module. /// - the special value `Dynamic` from the `nalgebra::` root module. This indicates that the /// specified dimension is not known at compile-time. Note that this will generally imply that the /// matrix data storage `S` performs a dynamic allocation and contains extra metadata for the /// matrix shape. /// /// Note that mixing `Dynamic` with type-level unsigned integers is allowed. Actually, a /// dynamically-sized column vector should be represented as a `Matrix` (given /// some concrete types for `N` and a compatible data storage type `S`). #[repr(C)] #[derive(Hash, Clone, Copy)] pub struct Matrix { /// The data storage that contains all the matrix components and informations about its number /// of rows and column (if needed). pub data: S, _phantoms: PhantomData<(N, R, C)>, } impl fmt::Debug for Matrix { fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> { formatter .debug_struct("Matrix") .field("data", &self.data) .finish() } } #[cfg(feature = "serde-serialize")] impl Serialize for Matrix where N: Scalar, R: Dim, C: Dim, S: Serialize, { fn serialize(&self, serializer: T) -> Result where T: Serializer { self.data.serialize(serializer) } } #[cfg(feature = "serde-serialize")] impl<'de, N, R, C, S> Deserialize<'de> for Matrix where N: Scalar, R: Dim, C: Dim, S: Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de> { S::deserialize(deserializer).map(|x| Matrix { data: x, _phantoms: PhantomData, }) } } #[cfg(feature = "abomonation-serialize")] impl Abomonation for Matrix { unsafe fn entomb(&self, writer: &mut W) -> IOResult<()> { self.data.entomb(writer) } unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> { self.data.exhume(bytes) } fn extent(&self) -> usize { self.data.extent() } } impl Matrix { /// Creates a new matrix with the given data without statically checking that the matrix /// dimension matches the storage dimension. #[inline] pub unsafe fn from_data_statically_unchecked(data: S) -> Matrix { Matrix { data: data, _phantoms: PhantomData, } } } impl> Matrix { /// Creates a new matrix with the given data. #[inline] pub fn from_data(data: S) -> Matrix { unsafe { Self::from_data_statically_unchecked(data) } } /// The total number of elements of this matrix. /// /// # Examples: /// /// ``` /// # use nalgebra::Matrix3x4; /// let mat = Matrix3x4::::zeros(); /// assert_eq!(mat.len(), 12); #[inline] pub fn len(&self) -> usize { let (nrows, ncols) = self.shape(); nrows * ncols } /// The shape of this matrix returned as the tuple (number of rows, number of columns). /// /// # Examples: /// /// ``` /// # use nalgebra::Matrix3x4; /// let mat = Matrix3x4::::zeros(); /// assert_eq!(mat.shape(), (3, 4)); #[inline] pub fn shape(&self) -> (usize, usize) { let (nrows, ncols) = self.data.shape(); (nrows.value(), ncols.value()) } /// The number of rows of this matrix. /// /// # Examples: /// /// ``` /// # use nalgebra::Matrix3x4; /// let mat = Matrix3x4::::zeros(); /// assert_eq!(mat.nrows(), 3); #[inline] pub fn nrows(&self) -> usize { self.shape().0 } /// The number of columns of this matrix. /// /// # Examples: /// /// ``` /// # use nalgebra::Matrix3x4; /// let mat = Matrix3x4::::zeros(); /// assert_eq!(mat.ncols(), 4); #[inline] pub fn ncols(&self) -> usize { self.shape().1 } /// The strides (row stride, column stride) of this matrix. /// /// # Examples: /// /// ``` /// # use nalgebra::DMatrix; /// let mat = DMatrix::::zeros(10, 10); /// let slice = mat.slice_with_steps((0, 0), (5, 3), (1, 2)); /// // The column strides is the number of steps (here 2) multiplied by the corresponding dimension. /// assert_eq!(mat.strides(), (1, 10)); #[inline] pub fn strides(&self) -> (usize, usize) { let (srows, scols) = self.data.strides(); (srows.value(), scols.value()) } /// Iterates through this matrix coordinates in column-major order. /// /// # Examples: /// /// ``` /// # use nalgebra::Matrix2x3; /// let mat = Matrix2x3::new(11, 12, 13, /// 21, 22, 23); /// let mut it = mat.iter(); /// assert_eq!(*it.next().unwrap(), 11); /// assert_eq!(*it.next().unwrap(), 21); /// assert_eq!(*it.next().unwrap(), 12); /// assert_eq!(*it.next().unwrap(), 22); /// assert_eq!(*it.next().unwrap(), 13); /// assert_eq!(*it.next().unwrap(), 23); /// assert!(it.next().is_none()); #[inline] pub fn iter(&self) -> MatrixIter { MatrixIter::new(&self.data) } /// Computes the row and column coordinates of the i-th element of this matrix seen as a /// vector. #[inline] pub fn vector_to_matrix_index(&self, i: usize) -> (usize, usize) { let (nrows, ncols) = self.shape(); // Two most common uses that should be optimized by the compiler for statically-sized // matrices. if nrows == 1 { (0, i) } else if ncols == 1 { (i, 0) } else { (i % nrows, i / nrows) } } /// Gets a reference to the element of this matrix at row `irow` and column `icol` without /// bound-checking. #[inline] pub unsafe fn get_unchecked(&self, irow: usize, icol: usize) -> &N { debug_assert!( irow < self.nrows() && icol < self.ncols(), "Matrix index out of bounds." ); self.data.get_unchecked(irow, icol) } /// Tests whether `self` and `rhs` are equal up to a given epsilon. /// /// See `relative_eq` from the `RelativeEq` trait for more details. #[inline] pub fn relative_eq( &self, other: &Matrix, eps: N::Epsilon, max_relative: N::Epsilon, ) -> bool where N: RelativeEq, R2: Dim, C2: Dim, SB: Storage, N::Epsilon: Copy, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { assert!(self.shape() == other.shape()); self.iter() .zip(other.iter()) .all(|(a, b)| a.relative_eq(b, eps, max_relative)) } /// Tests whether `self` and `rhs` are exactly equal. #[inline] pub fn eq(&self, other: &Matrix) -> bool where N: PartialEq, R2: Dim, C2: Dim, SB: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { assert!(self.shape() == other.shape()); self.iter().zip(other.iter()).all(|(a, b)| *a == *b) } /// Moves this matrix into one that owns its data. #[inline] pub fn into_owned(self) -> MatrixMN where DefaultAllocator: Allocator { Matrix::from_data(self.data.into_owned()) } // FIXME: this could probably benefit from specialization. // XXX: bad name. /// Moves this matrix into one that owns its data. The actual type of the result depends on /// matrix storage combination rules for addition. #[inline] pub fn into_owned_sum(self) -> MatrixSum where R2: Dim, C2: Dim, DefaultAllocator: SameShapeAllocator, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { if TypeId::of::>() == TypeId::of::>() { // We can just return `self.into_owned()`. unsafe { // FIXME: check that those copies are optimized away by the compiler. let owned = self.into_owned(); let res = mem::transmute_copy(&owned); mem::forget(owned); res } } else { self.clone_owned_sum() } } /// Clones this matrix to one that owns its data. #[inline] pub fn clone_owned(&self) -> MatrixMN where DefaultAllocator: Allocator { Matrix::from_data(self.data.clone_owned()) } /// Clones this matrix into one that owns its data. The actual type of the result depends on /// matrix storage combination rules for addition. #[inline] pub fn clone_owned_sum(&self) -> MatrixSum where R2: Dim, C2: Dim, DefaultAllocator: SameShapeAllocator, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { let (nrows, ncols) = self.shape(); let nrows: SameShapeR = Dim::from_usize(nrows); let ncols: SameShapeC = Dim::from_usize(ncols); let mut res: MatrixSum = unsafe { Matrix::new_uninitialized_generic(nrows, ncols) }; // FIXME: use copy_from for j in 0..res.ncols() { for i in 0..res.nrows() { unsafe { *res.get_unchecked_mut(i, j) = *self.get_unchecked(i, j); } } } res } /// Returns a matrix containing the result of `f` applied to each of its entries. #[inline] pub fn map N2>(&self, mut f: F) -> MatrixMN where DefaultAllocator: Allocator { let (nrows, ncols) = self.data.shape(); let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) }; for j in 0..ncols.value() { for i in 0..nrows.value() { unsafe { let a = *self.data.get_unchecked(i, j); *res.data.get_unchecked_mut(i, j) = f(a) } } } res } /// Returns a matrix containing the result of `f` applied to each of its entries. Unlike `map`, /// `f` also gets passed the row and column index, i.e. `f(value, row, col)`. #[inline] pub fn map_with_location N2>( &self, mut f: F, ) -> MatrixMN where DefaultAllocator: Allocator, { let (nrows, ncols) = self.data.shape(); let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) }; for j in 0..ncols.value() { for i in 0..nrows.value() { unsafe { let a = *self.data.get_unchecked(i, j); *res.data.get_unchecked_mut(i, j) = f(i, j, a) } } } res } /// Returns a matrix containing the result of `f` applied to each entries of `self` and /// `rhs`. #[inline] pub fn zip_map(&self, rhs: &Matrix, mut f: F) -> MatrixMN where N2: Scalar, N3: Scalar, S2: Storage, F: FnMut(N, N2) -> N3, DefaultAllocator: Allocator, { let (nrows, ncols) = self.data.shape(); let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) }; assert!( (nrows.value(), ncols.value()) == rhs.shape(), "Matrix simultaneous traversal error: dimension mismatch." ); for j in 0..ncols.value() { for i in 0..nrows.value() { unsafe { let a = *self.data.get_unchecked(i, j); let b = *rhs.data.get_unchecked(i, j); *res.data.get_unchecked_mut(i, j) = f(a, b) } } } res } /// Returns a matrix containing the result of `f` applied to each entries of `self` and /// `b`, and `c`. #[inline] pub fn zip_zip_map( &self, b: &Matrix, c: &Matrix, mut f: F, ) -> MatrixMN where N2: Scalar, N3: Scalar, N4: Scalar, S2: Storage, S3: Storage, F: FnMut(N, N2, N3) -> N4, DefaultAllocator: Allocator, { let (nrows, ncols) = self.data.shape(); let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) }; assert!( (nrows.value(), ncols.value()) == b.shape() && (nrows.value(), ncols.value()) == c.shape(), "Matrix simultaneous traversal error: dimension mismatch." ); for j in 0..ncols.value() { for i in 0..nrows.value() { unsafe { let a = *self.data.get_unchecked(i, j); let b = *b.data.get_unchecked(i, j); let c = *c.data.get_unchecked(i, j); *res.data.get_unchecked_mut(i, j) = f(a, b, c) } } } res } /// Transposes `self` and store the result into `out`. #[inline] pub fn transpose_to(&self, out: &mut Matrix) where R2: Dim, C2: Dim, SB: StorageMut, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { let (nrows, ncols) = self.shape(); assert!( (ncols, nrows) == out.shape(), "Incompatible shape for transpose-copy." ); // FIXME: optimize that. for i in 0..nrows { for j in 0..ncols { unsafe { *out.get_unchecked_mut(j, i) = *self.get_unchecked(i, j); } } } } /// Transposes `self`. #[inline] pub fn transpose(&self) -> MatrixMN where DefaultAllocator: Allocator { let (nrows, ncols) = self.data.shape(); unsafe { let mut res = Matrix::new_uninitialized_generic(ncols, nrows); self.transpose_to(&mut res); res } } } impl> Matrix { /// Mutably iterates through this matrix coordinates. #[inline] pub fn iter_mut(&mut self) -> MatrixIterMut { MatrixIterMut::new(&mut self.data) } /// Gets a mutable reference to the i-th element of this matrix. #[inline] pub unsafe fn get_unchecked_mut(&mut self, irow: usize, icol: usize) -> &mut N { debug_assert!( irow < self.nrows() && icol < self.ncols(), "Matrix index out of bounds." ); self.data.get_unchecked_mut(irow, icol) } /// Swaps two entries without bound-checking. #[inline] pub unsafe fn swap_unchecked(&mut self, row_cols1: (usize, usize), row_cols2: (usize, usize)) { debug_assert!(row_cols1.0 < self.nrows() && row_cols1.1 < self.ncols()); debug_assert!(row_cols2.0 < self.nrows() && row_cols2.1 < self.ncols()); self.data.swap_unchecked(row_cols1, row_cols2) } /// Swaps two entries. #[inline] pub fn swap(&mut self, row_cols1: (usize, usize), row_cols2: (usize, usize)) { let (nrows, ncols) = self.shape(); assert!( row_cols1.0 < nrows && row_cols1.1 < ncols, "Matrix elements swap index out of bounds." ); assert!( row_cols2.0 < nrows && row_cols2.1 < ncols, "Matrix elements swap index out of bounds." ); unsafe { self.swap_unchecked(row_cols1, row_cols2) } } /// Fills this matrix with the content of a slice. Both must hold the same number of elements. /// /// The components of the slice are assumed to be ordered in column-major order. #[inline] pub fn copy_from_slice(&mut self, slice: &[N]) { let (nrows, ncols) = self.shape(); assert!( nrows * ncols == slice.len(), "The slice must contain the same number of elements as the matrix." ); for j in 0..ncols { for i in 0..nrows { unsafe { *self.get_unchecked_mut(i, j) = *slice.get_unchecked(i + j * nrows); } } } } /// Fills this matrix with the content of another one. Both must have the same shape. #[inline] pub fn copy_from(&mut self, other: &Matrix) where R2: Dim, C2: Dim, SB: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { assert!( self.shape() == other.shape(), "Unable to copy from a matrix with a different shape." ); for j in 0..self.ncols() { for i in 0..self.nrows() { unsafe { *self.get_unchecked_mut(i, j) = *other.get_unchecked(i, j); } } } } /// Fills this matrix with the content of the transpose another one. #[inline] pub fn tr_copy_from(&mut self, other: &Matrix) where R2: Dim, C2: Dim, SB: Storage, ShapeConstraint: DimEq + SameNumberOfColumns, { let (nrows, ncols) = self.shape(); assert!( (ncols, nrows) == other.shape(), "Unable to copy from a matrix with incompatible shape." ); for j in 0..ncols { for i in 0..nrows { unsafe { *self.get_unchecked_mut(i, j) = *other.get_unchecked(j, i); } } } } /// Replaces each component of `self` by the result of a closure `f` applied on it. #[inline] pub fn apply N>(&mut self, mut f: F) where DefaultAllocator: Allocator { let (nrows, ncols) = self.shape(); for j in 0..ncols { for i in 0..nrows { unsafe { let e = self.data.get_unchecked_mut(i, j); *e = f(*e) } } } } } impl> Vector { /// Gets a reference to the i-th element of this column vector without bound checking. #[inline] pub unsafe fn vget_unchecked(&self, i: usize) -> &N { debug_assert!(i < self.nrows(), "Vector index out of bounds."); let i = i * self.strides().0; self.data.get_unchecked_linear(i) } } impl> Vector { /// Gets a mutable reference to the i-th element of this column vector without bound checking. #[inline] pub unsafe fn vget_unchecked_mut(&mut self, i: usize) -> &mut N { debug_assert!(i < self.nrows(), "Vector index out of bounds."); let i = i * self.strides().0; self.data.get_unchecked_linear_mut(i) } } impl> Matrix { /// Extracts a slice containing the entire matrix entries ordered column-by-columns. #[inline] pub fn as_slice(&self) -> &[N] { self.data.as_slice() } } impl> Matrix { /// Extracts a mutable slice containing the entire matrix entries ordered column-by-columns. #[inline] pub fn as_mut_slice(&mut self) -> &mut [N] { self.data.as_mut_slice() } } impl> Matrix { /// Transposes the square matrix `self` in-place. pub fn transpose_mut(&mut self) { assert!( self.is_square(), "Unable to transpose a non-square matrix in-place." ); let dim = self.shape().0; for i in 1..dim { for j in 0..i { unsafe { self.swap_unchecked((i, j), (j, i)) } } } } } impl, R, C>> Matrix, R, C, S> { /// Takes the conjugate and transposes `self` and store the result into `out`. #[inline] pub fn conjugate_transpose_to(&self, out: &mut Matrix, R2, C2, SB>) where R2: Dim, C2: Dim, SB: StorageMut, R2, C2>, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { let (nrows, ncols) = self.shape(); assert!( (ncols, nrows) == out.shape(), "Incompatible shape for transpose-copy." ); // FIXME: optimize that. for i in 0..nrows { for j in 0..ncols { unsafe { *out.get_unchecked_mut(j, i) = self.get_unchecked(i, j).conj(); } } } } /// The conjugate transposition of `self`. #[inline] pub fn conjugate_transpose(&self) -> MatrixMN, C, R> where DefaultAllocator: Allocator, C, R> { let (nrows, ncols) = self.data.shape(); unsafe { let mut res: MatrixMN<_, C, R> = Matrix::new_uninitialized_generic(ncols, nrows); self.conjugate_transpose_to(&mut res); res } } } impl, D, D>> Matrix, D, D, S> { /// Sets `self` to its conjugate transpose. pub fn conjugate_transpose_mut(&mut self) { assert!( self.is_square(), "Unable to transpose a non-square matrix in-place." ); let dim = self.shape().0; for i in 1..dim { for j in 0..i { unsafe { let ref_ij = self.get_unchecked_mut(i, j) as *mut Complex; let ref_ji = self.get_unchecked_mut(j, i) as *mut Complex; let conj_ij = (*ref_ij).conj(); let conj_ji = (*ref_ji).conj(); *ref_ij = conj_ji; *ref_ji = conj_ij; } } } } } impl> SquareMatrix { /// Creates a square matrix with its diagonal set to `diag` and all other entries set to 0. #[inline] pub fn diagonal(&self) -> VectorN where DefaultAllocator: Allocator { assert!( self.is_square(), "Unable to get the diagonal of a non-square matrix." ); let dim = self.data.shape().0; let mut res = unsafe { VectorN::new_uninitialized_generic(dim, U1) }; for i in 0..dim.value() { unsafe { *res.vget_unchecked_mut(i) = *self.get_unchecked(i, i); } } res } /// Computes a trace of a square matrix, i.e., the sum of its diagonal elements. #[inline] pub fn trace(&self) -> N where N: Ring { assert!( self.is_square(), "Cannot compute the trace of non-square matrix." ); let dim = self.data.shape().0; let mut res = N::zero(); for i in 0..dim.value() { res += unsafe { *self.get_unchecked(i, i) }; } res } } impl + IsNotStaticOne> MatrixN { /// Yields the homogeneous matrix for this matrix, i.e., appending an additional dimension and /// and setting the diagonal element to `1`. #[inline] pub fn to_homogeneous(&self) -> MatrixN> where DefaultAllocator: Allocator, DimNameSum> { let mut res = MatrixN::>::identity(); res.fixed_slice_mut::(0, 0).copy_from(&self); res } } impl, S: Storage> Vector { /// Computes the coordinates in projective space of this vector, i.e., appends a `0` to its /// coordinates. #[inline] pub fn to_homogeneous(&self) -> VectorN> where DefaultAllocator: Allocator> { let len = self.len(); let hnrows = DimSum::::from_usize(len + 1); let mut res = unsafe { VectorN::::new_uninitialized_generic(hnrows, U1) }; res.generic_slice_mut((0, 0), self.data.shape()) .copy_from(self); res[(len, 0)] = N::zero(); res } /// Constructs a vector from coordinates in projective space, i.e., removes a `0` at the end of /// `self`. Returns `None` if this last component is not zero. #[inline] pub fn from_homogeneous(v: Vector, SB>) -> Option> where SB: Storage>, DefaultAllocator: Allocator, { if v[v.len() - 1].is_zero() { let nrows = D::from_usize(v.len() - 1); Some(v.generic_slice((0, 0), (nrows, U1)).into_owned()) } else { None } } } impl AbsDiffEq for Matrix where N: Scalar + AbsDiffEq, S: Storage, N::Epsilon: Copy, { type Epsilon = N::Epsilon; #[inline] fn default_epsilon() -> Self::Epsilon { N::default_epsilon() } #[inline] fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool { self.iter() .zip(other.iter()) .all(|(a, b)| a.abs_diff_eq(b, epsilon)) } } impl RelativeEq for Matrix where N: Scalar + RelativeEq, S: Storage, N::Epsilon: Copy, { #[inline] fn default_max_relative() -> Self::Epsilon { N::default_max_relative() } #[inline] fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool { self.relative_eq(other, epsilon, max_relative) } } impl UlpsEq for Matrix where N: Scalar + UlpsEq, S: Storage, N::Epsilon: Copy, { #[inline] fn default_max_ulps() -> u32 { N::default_max_ulps() } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { assert!(self.shape() == other.shape()); self.iter() .zip(other.iter()) .all(|(a, b)| a.ulps_eq(b, epsilon, max_ulps)) } } impl PartialOrd for Matrix where N: Scalar + PartialOrd, S: Storage, { #[inline] fn partial_cmp(&self, other: &Self) -> Option { if self.shape() != other.shape() { return None; } if self.nrows() == 0 || self.ncols() == 0 { return Some(Ordering::Equal); } let mut first_ord = unsafe { self.data .get_unchecked_linear(0) .partial_cmp(other.data.get_unchecked_linear(0)) }; if let Some(first_ord) = first_ord.as_mut() { let mut it = self.iter().zip(other.iter()); let _ = it.next(); // Drop the first elements (we already tested it). for (left, right) in it { if let Some(ord) = left.partial_cmp(right) { match ord { Ordering::Equal => { /* Does not change anything. */ } Ordering::Less => { if *first_ord == Ordering::Greater { return None; } *first_ord = ord } Ordering::Greater => { if *first_ord == Ordering::Less { return None; } *first_ord = ord } } } else { return None; } } } first_ord } #[inline] fn lt(&self, right: &Self) -> bool { assert!( self.shape() == right.shape(), "Matrix comparison error: dimensions mismatch." ); self.iter().zip(right.iter()).all(|(a, b)| a.lt(b)) } #[inline] fn le(&self, right: &Self) -> bool { assert!( self.shape() == right.shape(), "Matrix comparison error: dimensions mismatch." ); self.iter().zip(right.iter()).all(|(a, b)| a.le(b)) } #[inline] fn gt(&self, right: &Self) -> bool { assert!( self.shape() == right.shape(), "Matrix comparison error: dimensions mismatch." ); self.iter().zip(right.iter()).all(|(a, b)| a.gt(b)) } #[inline] fn ge(&self, right: &Self) -> bool { assert!( self.shape() == right.shape(), "Matrix comparison error: dimensions mismatch." ); self.iter().zip(right.iter()).all(|(a, b)| a.ge(b)) } } impl Eq for Matrix where N: Scalar + Eq, S: Storage, {} impl PartialEq for Matrix where N: Scalar, S: Storage, { #[inline] fn eq(&self, right: &Matrix) -> bool { assert!( self.shape() == right.shape(), "Matrix equality test dimension mismatch." ); self.iter().zip(right.iter()).all(|(l, r)| l == r) } } impl fmt::Display for Matrix where N: Scalar + fmt::Display, S: Storage, DefaultAllocator: Allocator, { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { #[cfg(feature = "std")] fn val_width(val: N, f: &mut fmt::Formatter) -> usize { match f.precision() { Some(precision) => format!("{:.1$}", val, precision).chars().count(), None => format!("{}", val).chars().count(), } } #[cfg(not(feature = "std"))] fn val_width(_: N, _: &mut fmt::Formatter) -> usize { 4 } let (nrows, ncols) = self.data.shape(); if nrows.value() == 0 || ncols.value() == 0 { return write!(f, "[ ]"); } let mut max_length = 0; let mut lengths: MatrixMN = Matrix::zeros_generic(nrows, ncols); let (nrows, ncols) = self.shape(); for i in 0..nrows { for j in 0..ncols { lengths[(i, j)] = val_width(self[(i, j)], f); max_length = ::max(max_length, lengths[(i, j)]); } } let max_length_with_space = max_length + 1; try!(writeln!(f)); try!(writeln!( f, " ┌ {:>width$} ┐", "", width = max_length_with_space * ncols - 1 )); for i in 0..nrows { try!(write!(f, " │")); for j in 0..ncols { let number_length = lengths[(i, j)] + 1; let pad = max_length_with_space - number_length; try!(write!(f, " {:>thepad$}", "", thepad = pad)); match f.precision() { Some(precision) => try!(write!(f, "{:.1$}", (*self)[(i, j)], precision)), None => try!(write!(f, "{}", (*self)[(i, j)])), } } try!(writeln!(f, " │")); } try!(writeln!( f, " └ {:>width$} ┘", "", width = max_length_with_space * ncols - 1 )); writeln!(f) } } impl> Matrix { /// The perpendicular product between two 2D column vectors, i.e. `a.x * b.y - a.y * b.x`. #[inline] pub fn perp(&self, b: &Matrix) -> N where R2: Dim, C2: Dim, SB: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns + SameNumberOfRows + SameNumberOfColumns, { assert!(self.shape() == (2, 1), "2D perpendicular product "); unsafe { *self.get_unchecked(0, 0) * *b.get_unchecked(1, 0) - *self.get_unchecked(1, 0) * *b.get_unchecked(0, 0) } } // FIXME: use specialization instead of an assertion. /// The 3D cross product between two vectors. /// /// Panics if the shape is not 3D vector. In the future, this will be implemented only for /// dynamically-sized matrices and statically-sized 3D matrices. #[inline] pub fn cross(&self, b: &Matrix) -> MatrixCross where R2: Dim, C2: Dim, SB: Storage, DefaultAllocator: SameShapeAllocator, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { let shape = self.shape(); assert!( shape == b.shape(), "Vector cross product dimension mismatch." ); assert!( (shape.0 == 3 && shape.1 == 1) || (shape.0 == 1 && shape.1 == 3), "Vector cross product dimension mismatch." ); if shape.0 == 3 { unsafe { // FIXME: soooo ugly! let nrows = SameShapeR::::from_usize(3); let ncols = SameShapeC::::from_usize(1); let mut res = Matrix::new_uninitialized_generic(nrows, ncols); let ax = *self.get_unchecked(0, 0); let ay = *self.get_unchecked(1, 0); let az = *self.get_unchecked(2, 0); let bx = *b.get_unchecked(0, 0); let by = *b.get_unchecked(1, 0); let bz = *b.get_unchecked(2, 0); *res.get_unchecked_mut(0, 0) = ay * bz - az * by; *res.get_unchecked_mut(1, 0) = az * bx - ax * bz; *res.get_unchecked_mut(2, 0) = ax * by - ay * bx; res } } else { unsafe { // FIXME: ugly! let nrows = SameShapeR::::from_usize(1); let ncols = SameShapeC::::from_usize(3); let mut res = Matrix::new_uninitialized_generic(nrows, ncols); let ax = *self.get_unchecked(0, 0); let ay = *self.get_unchecked(0, 1); let az = *self.get_unchecked(0, 2); let bx = *b.get_unchecked(0, 0); let by = *b.get_unchecked(0, 1); let bz = *b.get_unchecked(0, 2); *res.get_unchecked_mut(0, 0) = ay * bz - az * by; *res.get_unchecked_mut(0, 1) = az * bx - ax * bz; *res.get_unchecked_mut(0, 2) = ax * by - ay * bx; res } } } } impl> Vector where DefaultAllocator: Allocator { /// Computes the matrix `M` such that for all vector `v` we have `M * v == self.cross(&v)`. #[inline] pub fn cross_matrix(&self) -> MatrixN { MatrixN::::new( N::zero(), -self[2], self[1], self[2], N::zero(), -self[0], -self[1], self[0], N::zero(), ) } } impl> Matrix { /// The smallest angle between two vectors. #[inline] pub fn angle(&self, other: &Matrix) -> N where SB: Storage, ShapeConstraint: DimEq + DimEq, { let prod = self.dot(other); let n1 = self.norm(); let n2 = other.norm(); if n1.is_zero() || n2.is_zero() { N::zero() } else { let cang = prod / (n1 * n2); if cang > N::one() { N::zero() } else if cang < -N::one() { N::pi() } else { cang.acos() } } } } impl> Matrix { /// The squared L2 norm of this vector. #[inline] pub fn norm_squared(&self) -> N { let mut res = N::zero(); for i in 0..self.ncols() { let col = self.column(i); res += col.dot(&col) } res } /// The L2 norm of this matrix. #[inline] pub fn norm(&self) -> N { self.norm_squared().sqrt() } /// A synonym for the norm of this matrix. /// /// Aka the length. /// /// This function is simply implemented as a call to `norm()` #[inline] pub fn magnitude(&self) -> N { self.norm() } /// A synonym for the squared norm of this matrix. /// /// Aka the squared length. /// /// This function is simply implemented as a call to `norm_squared()` #[inline] pub fn magnitude_squared(&self) -> N { self.norm_squared() } /// Returns a normalized version of this matrix. #[inline] pub fn normalize(&self) -> MatrixMN where DefaultAllocator: Allocator { self / self.norm() } /// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`. #[inline] pub fn try_normalize(&self, min_norm: N) -> Option> where DefaultAllocator: Allocator { let n = self.norm(); if n <= min_norm { None } else { Some(self / n) } } } impl> Vector { /// Returns `self * (1.0 - t) + rhs * t`, i.e., the linear blend of the vectors x and y using the scalar value a. /// /// The value for a is not restricted to the range `[0, 1]`. /// /// # Examples: /// /// ``` /// # use nalgebra::Vector3; /// let x = Vector3::new(1.0, 2.0, 3.0); /// let y = Vector3::new(10.0, 20.0, 30.0); /// assert_eq!(x.lerp(&y, 0.1), Vector3::new(1.9, 3.8, 5.7)); /// ``` pub fn lerp>(&self, rhs: &Vector, t: N) -> VectorN where DefaultAllocator: Allocator { let mut res = self.clone_owned(); res.axpy(t, rhs, N::one() - t); res } } impl> Unit> { /// Computes the spherical linear interpolation between two unit vectors. pub fn slerp>( &self, rhs: &Unit>, t: N, ) -> Unit> where DefaultAllocator: Allocator, { // FIXME: the result is wrong when self and rhs are collinear with opposite direction. self.try_slerp(rhs, t, N::default_epsilon()) .unwrap_or(Unit::new_unchecked(self.clone_owned())) } /// Computes the spherical linear interpolation between two unit vectors. /// /// Returns `None` if the two vectors are almost collinear and with opposite direction /// (in this case, there is an infinity of possible results). pub fn try_slerp>( &self, rhs: &Unit>, t: N, epsilon: N, ) -> Option>> where DefaultAllocator: Allocator, { let c_hang = self.dot(rhs); // self == other if c_hang.abs() >= N::one() { return Some(Unit::new_unchecked(self.clone_owned())); } let hang = c_hang.acos(); let s_hang = (N::one() - c_hang * c_hang).sqrt(); // FIXME: what if s_hang is 0.0 ? The result is not well-defined. if relative_eq!(s_hang, N::zero(), epsilon = epsilon) { None } else { let ta = ((N::one() - t) * hang).sin() / s_hang; let tb = (t * hang).sin() / s_hang; let res = &**self * ta + &**rhs * tb; Some(Unit::new_unchecked(res)) } } } impl> Matrix { /// Normalizes this matrix in-place and returns its norm. #[inline] pub fn normalize_mut(&mut self) -> N { let n = self.norm(); *self /= n; n } /// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`. /// /// If the normalization succeeded, returns the old normal of this matrix. #[inline] pub fn try_normalize_mut(&mut self, min_norm: N) -> Option { let n = self.norm(); if n <= min_norm { None } else { *self /= n; Some(n) } } } impl AbsDiffEq for Unit> where N: Scalar + AbsDiffEq, S: Storage, N::Epsilon: Copy, { type Epsilon = N::Epsilon; #[inline] fn default_epsilon() -> Self::Epsilon { N::default_epsilon() } #[inline] fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool { self.as_ref().abs_diff_eq(other.as_ref(), epsilon) } } impl RelativeEq for Unit> where N: Scalar + RelativeEq, S: Storage, N::Epsilon: Copy, { #[inline] fn default_max_relative() -> Self::Epsilon { N::default_max_relative() } #[inline] fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool { self.as_ref() .relative_eq(other.as_ref(), epsilon, max_relative) } } impl UlpsEq for Unit> where N: Scalar + UlpsEq, S: Storage, N::Epsilon: Copy, { #[inline] fn default_max_ulps() -> u32 { N::default_max_ulps() } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps) } }