use crate::csc::CscMatrix; use crate::ops::serial::spsolve_csc_lower_triangular; use crate::ops::Op; use crate::pattern::SparsityPattern; use core::{iter, mem}; use nalgebra::{DMatrix, DMatrixSlice, DMatrixSliceMut, RealField, Scalar}; use std::fmt::{Display, Formatter}; /// A symbolic sparse Cholesky factorization of a CSC matrix. /// /// The symbolic factorization computes the sparsity pattern of `L`, the Cholesky factor. #[derive(Debug, Clone, PartialEq, Eq)] pub struct CscSymbolicCholesky { // Pattern of the original matrix that was decomposed m_pattern: SparsityPattern, l_pattern: SparsityPattern, // u in this context is L^T, so that M = L L^T u_pattern: SparsityPattern, } impl CscSymbolicCholesky { /// Compute the symbolic factorization for a sparsity pattern belonging to a CSC matrix. /// /// The sparsity pattern must be symmetric. However, this is not enforced, and it is the /// responsibility of the user to ensure that this property holds. /// /// # Panics /// /// Panics if the sparsity pattern is not square. pub fn factor(pattern: SparsityPattern) -> Self { assert_eq!( pattern.major_dim(), pattern.minor_dim(), "Major and minor dimensions must be the same (square matrix)." ); let (l_pattern, u_pattern) = nonzero_pattern(&pattern); Self { m_pattern: pattern, l_pattern, u_pattern, } } /// The pattern of the Cholesky factor `L`. pub fn l_pattern(&self) -> &SparsityPattern { &self.l_pattern } } /// A sparse Cholesky factorization `A = L L^T` of a [`CscMatrix`]. /// /// The factor `L` is a sparse, lower-triangular matrix. See the article on [Wikipedia] for /// more information. /// /// The implementation is a port of the `CsCholesky` implementation in `nalgebra`. It is similar /// to Tim Davis' [`CSparse`]. The current implementation performs no fill-in reduction, and can /// therefore be expected to produce much too dense Cholesky factors for many matrices. /// It is therefore not currently recommended to use this implementation for serious projects. /// /// [`CSparse`]: https://epubs.siam.org/doi/book/10.1137/1.9780898718881 /// [Wikipedia]: https://en.wikipedia.org/wiki/Cholesky_decomposition // TODO: We should probably implement PartialEq/Eq, but in that case we'd probably need a // custom implementation, due to the need to exclude the workspace arrays #[derive(Debug, Clone)] pub struct CscCholesky { // Pattern of the original matrix m_pattern: SparsityPattern, l_factor: CscMatrix, u_pattern: SparsityPattern, work_x: Vec, work_c: Vec, } #[derive(Debug, PartialEq, Eq, Clone)] #[non_exhaustive] /// Possible errors produced by the Cholesky factorization. pub enum CholeskyError { /// The matrix is not positive definite. NotPositiveDefinite, } impl Display for CholeskyError { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "Matrix is not positive definite") } } impl std::error::Error for CholeskyError {} impl CscCholesky { /// Computes the numerical Cholesky factorization associated with the given /// symbolic factorization and the provided values. /// /// The values correspond to the non-zero values of the CSC matrix for which the /// symbolic factorization was computed. /// /// # Errors /// /// Returns an error if the numerical factorization fails. This can occur if the matrix is not /// symmetric positive definite. /// /// # Panics /// /// Panics if the number of values differ from the number of non-zeros of the sparsity pattern /// of the matrix that was symbolically factored. pub fn factor_numerical( symbolic: CscSymbolicCholesky, values: &[T], ) -> Result { assert_eq!( symbolic.l_pattern.nnz(), symbolic.u_pattern.nnz(), "u is just the transpose of l, so should have the same nnz" ); let l_nnz = symbolic.l_pattern.nnz(); let l_values = vec![T::zero(); l_nnz]; let l_factor = CscMatrix::try_from_pattern_and_values(symbolic.l_pattern, l_values).unwrap(); let (nrows, ncols) = (l_factor.nrows(), l_factor.ncols()); let mut factorization = CscCholesky { m_pattern: symbolic.m_pattern, l_factor, u_pattern: symbolic.u_pattern, work_x: vec![T::zero(); nrows], // Fill with MAX so that things hopefully totally fail if values are not // overwritten. Might be easier to debug this way work_c: vec![usize::MAX, ncols], }; factorization.refactor(values)?; Ok(factorization) } /// Computes the Cholesky factorization of the provided matrix. /// /// The matrix must be symmetric positive definite. Symmetry is not checked, and it is up /// to the user to enforce this property. /// /// # Errors /// /// Returns an error if the numerical factorization fails. This can occur if the matrix is not /// symmetric positive definite. /// /// # Panics /// /// Panics if the matrix is not square. pub fn factor(matrix: &CscMatrix) -> Result { let symbolic = CscSymbolicCholesky::factor(matrix.pattern().clone()); Self::factor_numerical(symbolic, matrix.values()) } /// Re-computes the factorization for a new set of non-zero values. /// /// This is useful when the values of a matrix changes, but the sparsity pattern remains /// constant. /// /// # Errors /// /// Returns an error if the numerical factorization fails. This can occur if the matrix is not /// symmetric positive definite. /// /// # Panics /// /// Panics if the number of values does not match the number of non-zeros in the sparsity /// pattern. pub fn refactor(&mut self, values: &[T]) -> Result<(), CholeskyError> { self.decompose_left_looking(values) } /// Returns a reference to the Cholesky factor `L`. pub fn l(&self) -> &CscMatrix { &self.l_factor } /// Returns the Cholesky factor `L`. pub fn take_l(self) -> CscMatrix { self.l_factor } /// Perform a numerical left-looking cholesky decomposition of a matrix with the same structure as the /// one used to initialize `self`, but with different non-zero values provided by `values`. fn decompose_left_looking(&mut self, values: &[T]) -> Result<(), CholeskyError> { assert!( values.len() >= self.m_pattern.nnz(), // TODO: Improve error message "The set of values is too small." ); let n = self.l_factor.nrows(); // Reset `work_c` to the column pointers of `l`. self.work_c.clear(); self.work_c.extend_from_slice(self.l_factor.col_offsets()); unsafe { for k in 0..n { // Scatter the k-th column of the original matrix with the values provided. let range_begin = *self.m_pattern.major_offsets().get_unchecked(k); let range_end = *self.m_pattern.major_offsets().get_unchecked(k + 1); let range_k = range_begin..range_end; *self.work_x.get_unchecked_mut(k) = T::zero(); for p in range_k.clone() { let irow = *self.m_pattern.minor_indices().get_unchecked(p); if irow >= k { *self.work_x.get_unchecked_mut(irow) = *values.get_unchecked(p); } } for &j in self.u_pattern.lane(k) { let factor = -*self .l_factor .values() .get_unchecked(*self.work_c.get_unchecked(j)); *self.work_c.get_unchecked_mut(j) += 1; if j < k { let col_j = self.l_factor.col(j); let col_j_entries = col_j.row_indices().iter().zip(col_j.values()); for (&z, val) in col_j_entries { if z >= k { *self.work_x.get_unchecked_mut(z) += val.inlined_clone() * factor; } } } } let diag = *self.work_x.get_unchecked(k); if diag > T::zero() { let denom = diag.sqrt(); { let (offsets, _, values) = self.l_factor.csc_data_mut(); *values.get_unchecked_mut(*offsets.get_unchecked(k)) = denom; } let mut col_k = self.l_factor.col_mut(k); let (col_k_rows, col_k_values) = col_k.rows_and_values_mut(); let col_k_entries = col_k_rows.iter().zip(col_k_values); for (&p, val) in col_k_entries { *val = *self.work_x.get_unchecked(p) / denom; *self.work_x.get_unchecked_mut(p) = T::zero(); } } else { return Err(CholeskyError::NotPositiveDefinite); } } } Ok(()) } /// Solves the system `A X = B`, where `X` and `B` are dense matrices. /// /// # Panics /// /// Panics if `B` is not square. pub fn solve<'a>(&'a self, b: impl Into>) -> DMatrix { let b = b.into(); let mut output = b.clone_owned(); self.solve_mut(&mut output); output } /// Solves the system `AX = B`, where `X` and `B` are dense matrices. /// /// The result is stored in-place in `b`. /// /// # Panics /// /// Panics if `b` is not square. pub fn solve_mut<'a>(&'a self, b: impl Into>) { let expect_msg = "If the Cholesky factorization succeeded,\ then the triangular solve should never fail"; // Solve LY = B let mut y = b.into(); spsolve_csc_lower_triangular(Op::NoOp(self.l()), &mut y).expect(expect_msg); // Solve L^T X = Y let mut x = y; spsolve_csc_lower_triangular(Op::Transpose(self.l()), &mut x).expect(expect_msg); } } fn reach( pattern: &SparsityPattern, j: usize, max_j: usize, tree: &[usize], marks: &mut Vec, out: &mut Vec, ) { marks.clear(); marks.resize(tree.len(), false); // TODO: avoid all those allocations. let mut tmp = Vec::new(); let mut res = Vec::new(); for &irow in pattern.lane(j) { let mut curr = irow; while curr != usize::max_value() && curr <= max_j && !marks[curr] { marks[curr] = true; tmp.push(curr); curr = tree[curr]; } tmp.append(&mut res); mem::swap(&mut tmp, &mut res); } res.sort_unstable(); out.append(&mut res); } fn nonzero_pattern(m: &SparsityPattern) -> (SparsityPattern, SparsityPattern) { let etree = elimination_tree(m); // Note: We assume CSC, therefore rows == minor and cols == major let (nrows, ncols) = (m.minor_dim(), m.major_dim()); let mut rows = Vec::with_capacity(m.nnz()); let mut col_offsets = Vec::with_capacity(ncols + 1); let mut marks = Vec::new(); // NOTE: the following will actually compute the non-zero pattern of // the transpose of l. col_offsets.push(0); for i in 0..nrows { reach(m, i, i, &etree, &mut marks, &mut rows); col_offsets.push(rows.len()); } let u_pattern = SparsityPattern::try_from_offsets_and_indices(nrows, ncols, col_offsets, rows).unwrap(); // TODO: Avoid this transpose? let l_pattern = u_pattern.transpose(); (l_pattern, u_pattern) } fn elimination_tree(pattern: &SparsityPattern) -> Vec { // Note: The pattern is assumed to of a CSC matrix, so the number of rows is // given by the minor dimension let nrows = pattern.minor_dim(); let mut forest: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect(); let mut ancestor: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect(); for k in 0..nrows { for &irow in pattern.lane(k) { let mut i = irow; while i < k { let i_ancestor = ancestor[i]; ancestor[i] = k; if i_ancestor == usize::max_value() { forest[i] = k; break; } i = i_ancestor; } } } forest }