#[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; use crate::allocator::Allocator; use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Unit, VectorN}; use crate::dimension::{Dim, DimDiff, DimMin, DimMinimum, DimSub, U1}; use crate::storage::Storage; use simba::scalar::ComplexField; use crate::geometry::Reflection; use crate::linalg::householder; /// The bidiagonalization of a general matrix. #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", serde(bound(serialize = "DimMinimum: DimSub, DefaultAllocator: Allocator + Allocator> + Allocator, U1>>, MatrixMN: Serialize, VectorN>: Serialize, VectorN, U1>>: Serialize")) )] #[cfg_attr( feature = "serde-serialize", serde(bound(deserialize = "DimMinimum: DimSub, DefaultAllocator: Allocator + Allocator> + Allocator, U1>>, MatrixMN: Deserialize<'de>, VectorN>: Deserialize<'de>, VectorN, U1>>: Deserialize<'de>")) )] #[derive(Clone, Debug)] pub struct Bidiagonal, C: Dim> where DimMinimum: DimSub, DefaultAllocator: Allocator + Allocator> + Allocator, U1>>, { // TODO: perhaps we should pack the axes into different vectors so that axes for `v_t` are // contiguous. This prevents some useless copies. uv: MatrixMN, /// The diagonal elements of the decomposed matrix. diagonal: VectorN>, /// The off-diagonal elements of the decomposed matrix. off_diagonal: VectorN, U1>>, upper_diagonal: bool, } impl, C: Dim> Copy for Bidiagonal where DimMinimum: DimSub, DefaultAllocator: Allocator + Allocator> + Allocator, U1>>, MatrixMN: Copy, VectorN>: Copy, VectorN, U1>>: Copy, { } impl, C: Dim> Bidiagonal where DimMinimum: DimSub, DefaultAllocator: Allocator + Allocator + Allocator + Allocator> + Allocator, U1>>, { /// Computes the Bidiagonal decomposition using householder reflections. pub fn new(mut matrix: MatrixMN) -> Self { let (nrows, ncols) = matrix.data.shape(); let min_nrows_ncols = nrows.min(ncols); let dim = min_nrows_ncols.value(); assert!( dim != 0, "Cannot compute the bidiagonalization of an empty matrix." ); let mut diagonal = unsafe { crate::zero_or_uninitialized_generic!(min_nrows_ncols, U1) }; let mut off_diagonal = unsafe { crate::zero_or_uninitialized_generic!(min_nrows_ncols.sub(U1), U1) }; let mut axis_packed = unsafe { crate::zero_or_uninitialized_generic!(ncols, U1) }; let mut work = unsafe { crate::zero_or_uninitialized_generic!(nrows, U1) }; let upper_diagonal = nrows.value() >= ncols.value(); if upper_diagonal { for ite in 0..dim - 1 { householder::clear_column_unchecked(&mut matrix, &mut diagonal[ite], ite, 0, None); householder::clear_row_unchecked( &mut matrix, &mut off_diagonal[ite], &mut axis_packed, &mut work, ite, 1, ); } householder::clear_column_unchecked( &mut matrix, &mut diagonal[dim - 1], dim - 1, 0, None, ); } else { for ite in 0..dim - 1 { householder::clear_row_unchecked( &mut matrix, &mut diagonal[ite], &mut axis_packed, &mut work, ite, 0, ); householder::clear_column_unchecked( &mut matrix, &mut off_diagonal[ite], ite, 1, None, ); } householder::clear_row_unchecked( &mut matrix, &mut diagonal[dim - 1], &mut axis_packed, &mut work, dim - 1, 0, ); } Bidiagonal { uv: matrix, diagonal, off_diagonal, upper_diagonal, } } /// Indicates whether this decomposition contains an upper-diagonal matrix. #[inline] pub fn is_upper_diagonal(&self) -> bool { self.upper_diagonal } #[inline] fn axis_shift(&self) -> (usize, usize) { if self.upper_diagonal { (0, 1) } else { (1, 0) } } /// Unpacks this decomposition into its three matrix factors `(U, D, V^t)`. /// /// The decomposed matrix `M` is equal to `U * D * V^t`. #[inline] pub fn unpack( self, ) -> ( MatrixMN>, MatrixN>, MatrixMN, C>, ) where DefaultAllocator: Allocator, DimMinimum> + Allocator> + Allocator, C>, { // TODO: optimize by calling a reallocator. (self.u(), self.d(), self.v_t()) } /// Retrieves the upper trapezoidal submatrix `R` of this decomposition. #[inline] pub fn d(&self) -> MatrixN> where DefaultAllocator: Allocator, DimMinimum>, { let (nrows, ncols) = self.uv.data.shape(); let d = nrows.min(ncols); let mut res = MatrixN::identity_generic(d, d); res.set_partial_diagonal(self.diagonal.iter().map(|e| N::from_real(e.modulus()))); let start = self.axis_shift(); res.slice_mut(start, (d.value() - 1, d.value() - 1)) .set_partial_diagonal(self.off_diagonal.iter().map(|e| N::from_real(e.modulus()))); res } /// Computes the orthogonal matrix `U` of this `U * D * V` decomposition. // TODO: code duplication with householder::assemble_q. // Except that we are returning a rectangular matrix here. pub fn u(&self) -> MatrixMN> where DefaultAllocator: Allocator>, { let (nrows, ncols) = self.uv.data.shape(); let mut res = Matrix::identity_generic(nrows, nrows.min(ncols)); let dim = self.diagonal.len(); let shift = self.axis_shift().0; for i in (0..dim - shift).rev() { let axis = self.uv.slice_range(i + shift.., i); // TODO: sometimes, the axis might have a zero magnitude. let refl = Reflection::new(Unit::new_unchecked(axis), N::zero()); let mut res_rows = res.slice_range_mut(i + shift.., i..); let sign = if self.upper_diagonal { self.diagonal[i].signum() } else { self.off_diagonal[i].signum() }; refl.reflect_with_sign(&mut res_rows, sign); } res } /// Computes the orthogonal matrix `V_t` of this `U * D * V_t` decomposition. pub fn v_t(&self) -> MatrixMN, C> where DefaultAllocator: Allocator, C>, { let (nrows, ncols) = self.uv.data.shape(); let min_nrows_ncols = nrows.min(ncols); let mut res = Matrix::identity_generic(min_nrows_ncols, ncols); let mut work = unsafe { crate::zero_or_uninitialized_generic!(min_nrows_ncols, U1) }; let mut axis_packed = unsafe { crate::zero_or_uninitialized_generic!(ncols, U1) }; let shift = self.axis_shift().1; for i in (0..min_nrows_ncols.value() - shift).rev() { let axis = self.uv.slice_range(i, i + shift..); let mut axis_packed = axis_packed.rows_range_mut(i + shift..); axis_packed.tr_copy_from(&axis); // TODO: sometimes, the axis might have a zero magnitude. let refl = Reflection::new(Unit::new_unchecked(axis_packed), N::zero()); let mut res_rows = res.slice_range_mut(i.., i + shift..); let sign = if self.upper_diagonal { self.off_diagonal[i].signum() } else { self.diagonal[i].signum() }; refl.reflect_rows_with_sign(&mut res_rows, &mut work.rows_range_mut(i..), sign); } res } /// The diagonal part of this decomposed matrix. pub fn diagonal(&self) -> VectorN> where DefaultAllocator: Allocator>, { self.diagonal.map(|e| e.modulus()) } /// The off-diagonal part of this decomposed matrix. pub fn off_diagonal(&self) -> VectorN, U1>> where DefaultAllocator: Allocator, U1>>, { self.off_diagonal.map(|e| e.modulus()) } #[doc(hidden)] pub fn uv_internal(&self) -> &MatrixMN { &self.uv } } // impl + DimSub> Bidiagonal // where DefaultAllocator: Allocator + // Allocator { // /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined. // pub fn solve(&self, b: &Matrix) -> MatrixMN // where S2: StorageMut, // ShapeConstraint: SameNumberOfRows, // DefaultAllocator: Allocator { // let mut res = b.clone_owned(); // self.solve_mut(&mut res); // res // } // // /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined. // pub fn solve_mut(&self, b: &mut Matrix) // where S2: StorageMut, // ShapeConstraint: SameNumberOfRows { // // assert_eq!(self.uv.nrows(), b.nrows(), "Bidiagonal solve matrix dimension mismatch."); // assert!(self.uv.is_square(), "Bidiagonal solve: unable to solve a non-square system."); // // self.q_tr_mul(b); // self.solve_upper_triangular_mut(b); // } // // // TODO: duplicate code from the `solve` module. // fn solve_upper_triangular_mut(&self, b: &mut Matrix) // where S2: StorageMut, // ShapeConstraint: SameNumberOfRows { // // let dim = self.uv.nrows(); // // for k in 0 .. b.ncols() { // let mut b = b.column_mut(k); // for i in (0 .. dim).rev() { // let coeff; // // unsafe { // let diag = *self.diag.vget_unchecked(i); // coeff = *b.vget_unchecked(i) / diag; // *b.vget_unchecked_mut(i) = coeff; // } // // b.rows_range_mut(.. i).axpy(-coeff, &self.uv.slice_range(.. i, i), N::one()); // } // } // } // // /// Computes the inverse of the decomposed matrix. // pub fn inverse(&self) -> MatrixN { // assert!(self.uv.is_square(), "Bidiagonal inverse: unable to compute the inverse of a non-square matrix."); // // // TODO: is there a less naive method ? // let (nrows, ncols) = self.uv.data.shape(); // let mut res = MatrixN::identity_generic(nrows, ncols); // self.solve_mut(&mut res); // res // } // // // /// Computes the determinant of the decomposed matrix. // // pub fn determinant(&self) -> N { // // let dim = self.uv.nrows(); // // assert!(self.uv.is_square(), "Bidiagonal determinant: unable to compute the determinant of a non-square matrix."); // // // let mut res = N::one(); // // for i in 0 .. dim { // // res *= unsafe { *self.diag.vget_unchecked(i) }; // // } // // // res self.q_determinant() // // } // }