#![feature(macro_rules)] extern crate "nalgebra" as na; use std::rand::random; use na::{Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6, Mat3, Iterable, IterableMut}; macro_rules! test_iterator_impl( ($t: ty, $n: ty) => ( for _ in range(0u, 10000) { let v: $t = random(); let mut mv: $t = v.clone(); let n: $n = random(); let nv: $t = v.iter().map(|e| e * n).collect(); for e in mv.mut_iter() { *e = *e * n } assert!(nv == mv && nv == v * n); } ) ) macro_rules! test_commut_dot_impl( ($t: ty) => ( for _ in range(0u, 10000) { let v1 : $t = random(); let v2 : $t = random(); assert!(na::approx_eq(&na::dot(&v1, &v2), &na::dot(&v2, &v1))); } ); ) macro_rules! test_scalar_op_impl( ($t: ty, $n: ty) => ( for _ in range(0u, 10000) { let v1 : $t = random(); let n : $n = random(); assert!(na::approx_eq(&((v1 * n) / n), &v1)); assert!(na::approx_eq(&((v1 / n) * n), &v1)); assert!(na::approx_eq(&((v1 - n) + n), &v1)); assert!(na::approx_eq(&((v1 + n) - n), &v1)); let mut v1 : $t = random(); let v0 : $t = v1.clone(); let n : $n = random(); v1 = v1 * n; v1 = v1 / n; assert!(na::approx_eq(&v1, &v0)); } ); ) macro_rules! test_basis_impl( ($t: ty) => ( for _ in range(0u, 10000) { na::canonical_basis(|e1: $t| { na::canonical_basis(|e2: $t| { assert!(e1 == e2 || na::approx_eq(&na::dot(&e1, &e2), &na::zero())); true }); assert!(na::approx_eq(&na::norm(&e1), &na::one())); true }) } ); ) macro_rules! test_subspace_basis_impl( ($t: ty) => ( for _ in range(0u, 10000) { let v : $t = random(); let v1 = na::normalize(&v); na::orthonormal_subspace_basis(&v1, |e1| { // check vectors are orthogonal to v1 assert!(na::approx_eq(&na::dot(&v1, &e1), &na::zero())); // check vectors form an orthonormal basis assert!(na::approx_eq(&na::norm(&e1), &na::one())); // check vectors form an ortogonal basis na::orthonormal_subspace_basis(&v1, |e2| { assert!(e1 == e2 || na::approx_eq(&na::dot(&e1, &e2), &na::zero())); true }); true }) } ); ) #[test] fn test_cross_vec3() { for _ in range(0u, 10000) { let v1 : Vec3 = random(); let v2 : Vec3 = random(); let v3 : Vec3 = na::cross(&v1, &v2); assert!(na::approx_eq(&na::dot(&v3, &v2), &na::zero())); assert!(na::approx_eq(&na::dot(&v3, &v1), &na::zero())); } } #[test] fn test_commut_dot_vec0() { test_commut_dot_impl!(Vec0); } #[test] fn test_commut_dot_vec1() { test_commut_dot_impl!(Vec1); } #[test] fn test_commut_dot_vec2() { test_commut_dot_impl!(Vec2); } #[test] fn test_commut_dot_vec3() { test_commut_dot_impl!(Vec3); } #[test] fn test_commut_dot_vec4() { test_commut_dot_impl!(Vec4); } #[test] fn test_commut_dot_vec5() { test_commut_dot_impl!(Vec5); } #[test] fn test_commut_dot_vec6() { test_commut_dot_impl!(Vec6); } #[test] fn test_basis_vec0() { test_basis_impl!(Vec0); } #[test] fn test_basis_vec1() { test_basis_impl!(Vec1); } #[test] fn test_basis_vec2() { test_basis_impl!(Vec2); } #[test] fn test_basis_vec3() { test_basis_impl!(Vec3); } #[test] fn test_basis_vec4() { test_basis_impl!(Vec4); } #[test] fn test_basis_vec5() { test_basis_impl!(Vec5); } #[test] fn test_basis_vec6() { test_basis_impl!(Vec6); } #[test] fn test_subspace_basis_vec0() { test_subspace_basis_impl!(Vec0); } #[test] fn test_subspace_basis_vec1() { test_subspace_basis_impl!(Vec1); } #[test] fn test_subspace_basis_vec2() { test_subspace_basis_impl!(Vec2); } #[test] fn test_subspace_basis_vec3() { test_subspace_basis_impl!(Vec3); } #[test] fn test_subspace_basis_vec4() { test_subspace_basis_impl!(Vec4); } #[test] fn test_subspace_basis_vec5() { test_subspace_basis_impl!(Vec5); } #[test] fn test_subspace_basis_vec6() { test_subspace_basis_impl!(Vec6); } #[test] fn test_scalar_op_vec0() { test_scalar_op_impl!(Vec0, f64); } #[test] fn test_scalar_op_vec1() { test_scalar_op_impl!(Vec1, f64); } #[test] fn test_scalar_op_vec2() { test_scalar_op_impl!(Vec2, f64); } #[test] fn test_scalar_op_vec3() { test_scalar_op_impl!(Vec3, f64); } #[test] fn test_scalar_op_vec4() { test_scalar_op_impl!(Vec4, f64); } #[test] fn test_scalar_op_vec5() { test_scalar_op_impl!(Vec5, f64); } #[test] fn test_scalar_op_vec6() { test_scalar_op_impl!(Vec6, f64); } #[test] fn test_iterator_vec0() { test_iterator_impl!(Vec0, f64); } #[test] fn test_iterator_vec1() { test_iterator_impl!(Vec1, f64); } #[test] fn test_iterator_vec2() { test_iterator_impl!(Vec2, f64); } #[test] fn test_iterator_vec3() { test_iterator_impl!(Vec3, f64); } #[test] fn test_iterator_vec4() { test_iterator_impl!(Vec4, f64); } #[test] fn test_iterator_vec5() { test_iterator_impl!(Vec5, f64); } #[test] fn test_iterator_vec6() { test_iterator_impl!(Vec6, f64); } #[test] fn test_ord_vec3() { // equality assert!(Vec3::new(0.5f64, 0.5, 0.5) == Vec3::new(0.5, 0.5, 0.5)); assert!(!(Vec3::new(1.5f64, 0.5, 0.5) == Vec3::new(0.5, 0.5, 0.5))); assert!(Vec3::new(1.5f64, 0.5, 0.5) != Vec3::new(0.5, 0.5, 0.5)); // comparable assert!(na::partial_cmp(&Vec3::new(0.5f64, 0.3, 0.3), &Vec3::new(1.0, 2.0, 1.0)).is_le()); assert!(na::partial_cmp(&Vec3::new(0.5f64, 0.3, 0.3), &Vec3::new(1.0, 2.0, 1.0)).is_lt()); assert!(na::partial_cmp(&Vec3::new(2.0f64, 4.0, 2.0), &Vec3::new(1.0, 2.0, 1.0)).is_ge()); assert!(na::partial_cmp(&Vec3::new(2.0f64, 4.0, 2.0), &Vec3::new(1.0, 2.0, 1.0)).is_gt()); // not comparable assert!(na::partial_cmp(&Vec3::new(0.0f64, 3.0, 0.0), &Vec3::new(1.0, 2.0, 1.0)).is_not_comparable()); } #[test] fn test_min_max_vec3() { assert_eq!(na::sup(&Vec3::new(1.0f64, 2.0, 3.0), &Vec3::new(3.0, 2.0, 1.0)), Vec3::new(3.0, 2.0, 3.0)); assert_eq!(na::inf(&Vec3::new(1.0f64, 2.0, 3.0), &Vec3::new(3.0, 2.0, 1.0)), Vec3::new(1.0, 2.0, 1.0)); } #[test] fn test_outer_vec3() { assert_eq!( na::outer(&Vec3::new(1.0f64, 2.0, 3.0), &Vec3::new(4.0, 5.0, 6.0)), Mat3::new( 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 12.0, 15.0, 18.0)); }