use na::{Vector2, Vector3}; #[test] fn angle_2() { let a = Vector2::new(4.0, 0.0); let b = Vector2::new(9.0, 0.0); assert_eq!(a.angle(&b), 0.0); } #[test] fn angle_3() { let a = Vector3::new(4.0, 0.0, 0.5); let b = Vector3::new(8.0, 0.0, 1.0); assert_eq!(a.angle(&b), 0.0); } #[cfg(feature = "arbitrary")] mod quickcheck_tests { use std::f64; use alga::general::Real; use na::{self, Vector2, Vector3, Rotation2, Rotation3, Unit}; quickcheck! { /* * * Euler angles. * */ fn from_euler_angles(r: f64, p: f64, y: f64) -> bool { let roll = Rotation3::from_euler_angles(r, 0.0, 0.0); let pitch = Rotation3::from_euler_angles(0.0, p, 0.0); let yaw = Rotation3::from_euler_angles(0.0, 0.0, y); let rpy = Rotation3::from_euler_angles(r, p, y); roll[(0, 0)] == 1.0 && // rotation wrt. x axis. pitch[(1, 1)] == 1.0 && // rotation wrt. y axis. yaw[(2, 2)] == 1.0 && // rotation wrt. z axis. yaw * pitch * roll == rpy } fn to_euler_angles(r: f64, p: f64, y: f64) -> bool { let rpy = Rotation3::from_euler_angles(r, p, y); let (roll, pitch, yaw) = rpy.to_euler_angles(); relative_eq!(Rotation3::from_euler_angles(roll, pitch, yaw), rpy, epsilon = 1.0e-7) } fn to_euler_angles_gimble_lock(r: f64, y: f64) -> bool { let pos = Rotation3::from_euler_angles(r, f64::frac_pi_2(), y); let neg = Rotation3::from_euler_angles(r, -f64::frac_pi_2(), y); let (pos_r, pos_p, pos_y) = pos.to_euler_angles(); let (neg_r, neg_p, neg_y) = neg.to_euler_angles(); relative_eq!(Rotation3::from_euler_angles(pos_r, pos_p, pos_y), pos, epsilon = 1.0e-7) && relative_eq!(Rotation3::from_euler_angles(neg_r, neg_p, neg_y), neg, epsilon = 1.0e-7) } /* * * Inversion is transposition. * */ fn rotation_inv_3(a: Rotation3<f64>) -> bool { let ta = a.transpose(); let ia = a.inverse(); ta == ia && relative_eq!(&ta * &a, Rotation3::identity(), epsilon = 1.0e-7) && relative_eq!(&ia * a, Rotation3::identity(), epsilon = 1.0e-7) && relative_eq!( a * &ta, Rotation3::identity(), epsilon = 1.0e-7) && relative_eq!( a * ia, Rotation3::identity(), epsilon = 1.0e-7) } fn rotation_inv_2(a: Rotation2<f64>) -> bool { let ta = a.transpose(); let ia = a.inverse(); ta == ia && relative_eq!(&ta * &a, Rotation2::identity(), epsilon = 1.0e-7) && relative_eq!(&ia * a, Rotation2::identity(), epsilon = 1.0e-7) && relative_eq!( a * &ta, Rotation2::identity(), epsilon = 1.0e-7) && relative_eq!( a * ia, Rotation2::identity(), epsilon = 1.0e-7) } /* * * Angle between vectors. * */ fn angle_is_commutative_2(a: Vector2<f64>, b: Vector2<f64>) -> bool { a.angle(&b) == b.angle(&a) } fn angle_is_commutative_3(a: Vector3<f64>, b: Vector3<f64>) -> bool { a.angle(&b) == b.angle(&a) } /* * * Rotation matrix between vectors. * */ fn rotation_between_is_anticommutative_2(a: Vector2<f64>, b: Vector2<f64>) -> bool { let rab = Rotation2::rotation_between(&a, &b); let rba = Rotation2::rotation_between(&b, &a); relative_eq!(rab * rba, Rotation2::identity()) } fn rotation_between_is_anticommutative_3(a: Vector3<f64>, b: Vector3<f64>) -> bool { let rots = (Rotation3::rotation_between(&a, &b), Rotation3::rotation_between(&b, &a)); if let (Some(rab), Some(rba)) = rots { relative_eq!(rab * rba, Rotation3::identity(), epsilon = 1.0e-7) } else { true } } fn rotation_between_is_identity(v2: Vector2<f64>, v3: Vector3<f64>) -> bool { let vv2 = 3.42 * v2; let vv3 = 4.23 * v3; relative_eq!(v2.angle(&vv2), 0.0, epsilon = 1.0e-7) && relative_eq!(v3.angle(&vv3), 0.0, epsilon = 1.0e-7) && relative_eq!(Rotation2::rotation_between(&v2, &vv2), Rotation2::identity()) && Rotation3::rotation_between(&v3, &vv3).unwrap() == Rotation3::identity() } fn rotation_between_2(a: Vector2<f64>, b: Vector2<f64>) -> bool { if !relative_eq!(a.angle(&b), 0.0, epsilon = 1.0e-7) { let r = Rotation2::rotation_between(&a, &b); relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7) } else { true } } fn rotation_between_3(a: Vector3<f64>, b: Vector3<f64>) -> bool { if !relative_eq!(a.angle(&b), 0.0, epsilon = 1.0e-7) { let r = Rotation3::rotation_between(&a, &b).unwrap(); relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7) } else { true } } /* * * Rotation construction. * */ fn new_rotation_2(angle: f64) -> bool { let r = Rotation2::new(angle); let angle = na::wrap(angle, -f64::pi(), f64::pi()); relative_eq!(r.angle(), angle, epsilon = 1.0e-7) } fn new_rotation_3(axisangle: Vector3<f64>) -> bool { let r = Rotation3::new(axisangle); if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, 0.0) { let angle = na::wrap(angle, -f64::pi(), f64::pi()); (relative_eq!(r.angle(), angle, epsilon = 1.0e-7) && relative_eq!(r.axis().unwrap(), axis, epsilon = 1.0e-7)) || (relative_eq!(r.angle(), -angle, epsilon = 1.0e-7) && relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7)) } else { r == Rotation3::identity() } } /* * * Rotation pow. * */ fn powf_rotation_2(angle: f64, pow: f64) -> bool { let r = Rotation2::new(angle).powf(pow); let angle = na::wrap(angle, -f64::pi(), f64::pi()); let pangle = na::wrap(angle * pow, -f64::pi(), f64::pi()); relative_eq!(r.angle(), pangle, epsilon = 1.0e-7) } fn powf_rotation_3(axisangle: Vector3<f64>, pow: f64) -> bool { let r = Rotation3::new(axisangle).powf(pow); if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, 0.0) { let angle = na::wrap(angle, -f64::pi(), f64::pi()); let pangle = na::wrap(angle * pow, -f64::pi(), f64::pi()); (relative_eq!(r.angle(), pangle, epsilon = 1.0e-7) && relative_eq!(r.axis().unwrap(), axis, epsilon = 1.0e-7)) || (relative_eq!(r.angle(), -pangle, epsilon = 1.0e-7) && relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7)) } else { r == Rotation3::identity() } } } }