use crate::storage::RawStorage; use crate::{ComplexField, Dim, Matrix, Scalar, SimdComplexField, SimdPartialOrd, Vector}; use num::{Signed, Zero}; use simba::simd::SimdSigned; /// # Find the min and max components impl> Matrix { /// Returns the absolute value of the component with the largest absolute value. /// # Example /// ``` /// # use nalgebra::Vector3; /// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).amax(), 3.0); /// assert_eq!(Vector3::new(-1.0, -2.0, -3.0).amax(), 3.0); /// ``` #[inline] #[must_use] pub fn amax(&self) -> T where T: Zero + SimdSigned + SimdPartialOrd, { self.fold_with( |e| e.unwrap_or(&T::zero()).simd_abs(), |a, b| a.simd_max(b.simd_abs()), ) } /// Returns the the 1-norm of the complex component with the largest 1-norm. /// # Example /// ``` /// # use nalgebra::{Vector3, Complex}; /// assert_eq!(Vector3::new( /// Complex::new(-3.0, -2.0), /// Complex::new(1.0, 2.0), /// Complex::new(1.0, 3.0)).camax(), 5.0); /// ``` #[inline] #[must_use] pub fn camax(&self) -> T::SimdRealField where T: SimdComplexField, { self.fold_with( |e| e.unwrap_or(&T::zero()).clone().simd_norm1(), |a, b| a.simd_max(b.clone().simd_norm1()), ) } /// Returns the component with the largest value. /// # Example /// ``` /// # use nalgebra::Vector3; /// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).max(), 3.0); /// assert_eq!(Vector3::new(-1.0, -2.0, -3.0).max(), -1.0); /// assert_eq!(Vector3::new(5u32, 2, 3).max(), 5); /// ``` #[inline] #[must_use] pub fn max(&self) -> T where T: SimdPartialOrd + Zero, { self.fold_with( |e| e.cloned().unwrap_or_else(T::zero), |a, b| a.simd_max(b.clone()), ) } /// Returns the absolute value of the component with the smallest absolute value. /// # Example /// ``` /// # use nalgebra::Vector3; /// assert_eq!(Vector3::new(-1.0, 2.0, -3.0).amin(), 1.0); /// assert_eq!(Vector3::new(10.0, 2.0, 30.0).amin(), 2.0); /// ``` #[inline] #[must_use] pub fn amin(&self) -> T where T: Zero + SimdPartialOrd + SimdSigned, { self.fold_with( |e| e.map(|e| e.simd_abs()).unwrap_or_else(T::zero), |a, b| a.simd_min(b.simd_abs()), ) } /// Returns the the 1-norm of the complex component with the smallest 1-norm. /// # Example /// ``` /// # use nalgebra::{Vector3, Complex}; /// assert_eq!(Vector3::new( /// Complex::new(-3.0, -2.0), /// Complex::new(1.0, 2.0), /// Complex::new(1.0, 3.0)).camin(), 3.0); /// ``` #[inline] #[must_use] pub fn camin(&self) -> T::SimdRealField where T: SimdComplexField, { self.fold_with( |e| { e.map(|e| e.clone().simd_norm1()) .unwrap_or_else(T::SimdRealField::zero) }, |a, b| a.simd_min(b.clone().simd_norm1()), ) } /// Returns the component with the smallest value. /// # Example /// ``` /// # use nalgebra::Vector3; /// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).min(), -1.0); /// assert_eq!(Vector3::new(1.0, 2.0, 3.0).min(), 1.0); /// assert_eq!(Vector3::new(5u32, 2, 3).min(), 2); /// ``` #[inline] #[must_use] pub fn min(&self) -> T where T: SimdPartialOrd + Zero, { self.fold_with( |e| e.cloned().unwrap_or_else(T::zero), |a, b| a.simd_min(b.clone()), ) } /// Computes the index of the matrix component with the largest absolute value. /// /// # Examples: /// /// ``` /// # extern crate num_complex; /// # extern crate nalgebra; /// # use num_complex::Complex; /// # use nalgebra::Matrix2x3; /// let mat = Matrix2x3::new(Complex::new(11.0, 1.0), Complex::new(-12.0, 2.0), Complex::new(13.0, 3.0), /// Complex::new(21.0, 43.0), Complex::new(22.0, 5.0), Complex::new(-23.0, 0.0)); /// assert_eq!(mat.icamax_full(), (1, 0)); /// ``` #[inline] #[must_use] pub fn icamax_full(&self) -> (usize, usize) where T: ComplexField, { assert!(!self.is_empty(), "The input matrix must not be empty."); let mut the_max = unsafe { self.get_unchecked((0, 0)).clone().norm1() }; let mut the_ij = (0, 0); for j in 0..self.ncols() { for i in 0..self.nrows() { let val = unsafe { self.get_unchecked((i, j)).clone().norm1() }; if val > the_max { the_max = val; the_ij = (i, j); } } } the_ij } } impl> Matrix { /// Computes the index of the matrix component with the largest absolute value. /// /// # Examples: /// /// ``` /// # use nalgebra::Matrix2x3; /// let mat = Matrix2x3::new(11, -12, 13, /// 21, 22, -23); /// assert_eq!(mat.iamax_full(), (1, 2)); /// ``` #[inline] #[must_use] pub fn iamax_full(&self) -> (usize, usize) { assert!(!self.is_empty(), "The input matrix must not be empty."); let mut the_max = unsafe { self.get_unchecked((0, 0)).abs() }; let mut the_ij = (0, 0); for j in 0..self.ncols() { for i in 0..self.nrows() { let val = unsafe { self.get_unchecked((i, j)).abs() }; if val > the_max { the_max = val; the_ij = (i, j); } } } the_ij } } // TODO: find a way to avoid code duplication just for complex number support. /// # Find the min and max components (vector-specific methods) impl> Vector { /// Computes the index of the vector component with the largest complex or real absolute value. /// /// # Examples: /// /// ``` /// # extern crate num_complex; /// # extern crate nalgebra; /// # use num_complex::Complex; /// # use nalgebra::Vector3; /// let vec = Vector3::new(Complex::new(11.0, 3.0), Complex::new(-15.0, 0.0), Complex::new(13.0, 5.0)); /// assert_eq!(vec.icamax(), 2); /// ``` #[inline] #[must_use] pub fn icamax(&self) -> usize where T: ComplexField, { assert!(!self.is_empty(), "The input vector must not be empty."); let mut the_max = unsafe { self.vget_unchecked(0).clone().norm1() }; let mut the_i = 0; for i in 1..self.nrows() { let val = unsafe { self.vget_unchecked(i).clone().norm1() }; if val > the_max { the_max = val; the_i = i; } } the_i } /// Computes the index and value of the vector component with the largest value. /// /// # Examples: /// /// ``` /// # use nalgebra::Vector3; /// let vec = Vector3::new(11, -15, 13); /// assert_eq!(vec.argmax(), (2, 13)); /// ``` #[inline] #[must_use] pub fn argmax(&self) -> (usize, T) where T: PartialOrd, { assert!(!self.is_empty(), "The input vector must not be empty."); let mut the_max = unsafe { self.vget_unchecked(0) }; let mut the_i = 0; for i in 1..self.nrows() { let val = unsafe { self.vget_unchecked(i) }; if val > the_max { the_max = val; the_i = i; } } (the_i, the_max.clone()) } /// Computes the index of the vector component with the largest value. /// /// # Examples: /// /// ``` /// # use nalgebra::Vector3; /// let vec = Vector3::new(11, -15, 13); /// assert_eq!(vec.imax(), 2); /// ``` #[inline] #[must_use] pub fn imax(&self) -> usize where T: PartialOrd, { self.argmax().0 } /// Computes the index of the vector component with the largest absolute value. /// /// # Examples: /// /// ``` /// # use nalgebra::Vector3; /// let vec = Vector3::new(11, -15, 13); /// assert_eq!(vec.iamax(), 1); /// ``` #[inline] #[must_use] pub fn iamax(&self) -> usize where T: PartialOrd + Signed, { assert!(!self.is_empty(), "The input vector must not be empty."); let mut the_max = unsafe { self.vget_unchecked(0).abs() }; let mut the_i = 0; for i in 1..self.nrows() { let val = unsafe { self.vget_unchecked(i).abs() }; if val > the_max { the_max = val; the_i = i; } } the_i } /// Computes the index and value of the vector component with the smallest value. /// /// # Examples: /// /// ``` /// # use nalgebra::Vector3; /// let vec = Vector3::new(11, -15, 13); /// assert_eq!(vec.argmin(), (1, -15)); /// ``` #[inline] #[must_use] pub fn argmin(&self) -> (usize, T) where T: PartialOrd, { assert!(!self.is_empty(), "The input vector must not be empty."); let mut the_min = unsafe { self.vget_unchecked(0) }; let mut the_i = 0; for i in 1..self.nrows() { let val = unsafe { self.vget_unchecked(i) }; if val < the_min { the_min = val; the_i = i; } } (the_i, the_min.clone()) } /// Computes the index of the vector component with the smallest value. /// /// # Examples: /// /// ``` /// # use nalgebra::Vector3; /// let vec = Vector3::new(11, -15, 13); /// assert_eq!(vec.imin(), 1); /// ``` #[inline] #[must_use] pub fn imin(&self) -> usize where T: PartialOrd, { self.argmin().0 } /// Computes the index of the vector component with the smallest absolute value. /// /// # Examples: /// /// ``` /// # use nalgebra::Vector3; /// let vec = Vector3::new(11, -15, 13); /// assert_eq!(vec.iamin(), 0); /// ``` #[inline] #[must_use] pub fn iamin(&self) -> usize where T: PartialOrd + Signed, { assert!(!self.is_empty(), "The input vector must not be empty."); let mut the_min = unsafe { self.vget_unchecked(0).abs() }; let mut the_i = 0; for i in 1..self.nrows() { let val = unsafe { self.vget_unchecked(i).abs() }; if val < the_min { the_min = val; the_i = i; } } the_i } }