#[cfg(feature = "arbitrary")] use quickcheck::{Arbitrary, Gen}; #[cfg(feature = "rand-no-std")] use rand::{ distributions::{Distribution, Standard}, Rng, }; use num::One; use num_complex::Complex; use crate::base::dimension::{U1, U2}; use crate::base::storage::Storage; use crate::base::{Matrix2, Scalar, Unit, Vector, Vector2}; use crate::geometry::{Rotation2, UnitComplex}; use simba::scalar::{RealField, SupersetOf}; use simba::simd::SimdRealField; /// # Identity impl UnitComplex where T::Element: SimdRealField, { /// The unit complex number multiplicative identity. /// /// # Example /// ``` /// # use nalgebra::UnitComplex; /// let rot1 = UnitComplex::identity(); /// let rot2 = UnitComplex::new(1.7); /// /// assert_eq!(rot1 * rot2, rot2); /// assert_eq!(rot2 * rot1, rot2); /// ``` #[inline] pub fn identity() -> Self { Self::new_unchecked(Complex::new(T::one(), T::zero())) } } /// # Construction from a 2D rotation angle impl UnitComplex where T::Element: SimdRealField, { /// Builds the unit complex number corresponding to the rotation with the given angle. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitComplex, Point2}; /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2); /// /// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0)); /// ``` #[inline] pub fn new(angle: T) -> Self { let (sin, cos) = angle.simd_sin_cos(); Self::from_cos_sin_unchecked(cos, sin) } /// Builds the unit complex number corresponding to the rotation with the angle. /// /// Same as `Self::new(angle)`. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitComplex, Point2}; /// let rot = UnitComplex::from_angle(f32::consts::FRAC_PI_2); /// /// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0)); /// ``` // TODO: deprecate this. #[inline] pub fn from_angle(angle: T) -> Self { Self::new(angle) } /// Builds the unit complex number from the sinus and cosinus of the rotation angle. /// /// The input values are not checked to actually be cosines and sine of the same value. /// Is is generally preferable to use the `::new(angle)` constructor instead. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitComplex, Vector2, Point2}; /// let angle = f32::consts::FRAC_PI_2; /// let rot = UnitComplex::from_cos_sin_unchecked(angle.cos(), angle.sin()); /// /// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0)); /// ``` #[inline] pub fn from_cos_sin_unchecked(cos: T, sin: T) -> Self { Self::new_unchecked(Complex::new(cos, sin)) } /// Builds a unit complex rotation from an angle in radian wrapped in a 1-dimensional vector. /// /// This is generally used in the context of generic programming. Using /// the `::new(angle)` method instead is more common. #[inline] pub fn from_scaled_axis>(axisangle: Vector) -> Self { Self::from_angle(axisangle[0]) } } /// # Construction from an existing 2D matrix or complex number impl UnitComplex where T::Element: SimdRealField, { /// Cast the components of `self` to another type. /// /// # Example /// ``` /// # use nalgebra::UnitComplex; /// let c = UnitComplex::new(1.0f64); /// let c2 = c.cast::(); /// assert_eq!(c2, UnitComplex::new(1.0f32)); /// ``` pub fn cast(self) -> UnitComplex where UnitComplex: SupersetOf, { crate::convert(self) } /// The underlying complex number. /// /// Same as `self.as_ref()`. /// /// # Example /// ``` /// # extern crate num_complex; /// # use num_complex::Complex; /// # use nalgebra::UnitComplex; /// let angle = 1.78f32; /// let rot = UnitComplex::new(angle); /// assert_eq!(*rot.complex(), Complex::new(angle.cos(), angle.sin())); /// ``` #[inline] #[must_use] pub fn complex(&self) -> &Complex { self.as_ref() } /// Creates a new unit complex number from a complex number. /// /// The input complex number will be normalized. #[inline] pub fn from_complex(q: Complex) -> Self { Self::from_complex_and_get(q).0 } /// Creates a new unit complex number from a complex number. /// /// The input complex number will be normalized. Returns the norm of the complex number as well. #[inline] pub fn from_complex_and_get(q: Complex) -> (Self, T) { let norm = (q.im * q.im + q.re * q.re).simd_sqrt(); (Self::new_unchecked(q / norm), norm) } /// Builds the unit complex number from the corresponding 2D rotation matrix. /// /// # Example /// ``` /// # use nalgebra::{Rotation2, UnitComplex}; /// let rot = Rotation2::new(1.7); /// let complex = UnitComplex::from_rotation_matrix(&rot); /// assert_eq!(complex, UnitComplex::new(1.7)); /// ``` // TODO: add UnitComplex::from(...) instead? #[inline] pub fn from_rotation_matrix(rotmat: &Rotation2) -> Self { Self::new_unchecked(Complex::new(rotmat[(0, 0)], rotmat[(1, 0)])) } /// Builds a rotation from a basis assumed to be orthonormal. /// /// In order to get a valid unit-quaternion, the input must be an /// orthonormal basis, i.e., all vectors are normalized, and the are /// all orthogonal to each other. These invariants are not checked /// by this method. pub fn from_basis_unchecked(basis: &[Vector2; 2]) -> Self { let mat = Matrix2::from_columns(&basis[..]); let rot = Rotation2::from_matrix_unchecked(mat); Self::from_rotation_matrix(&rot) } /// Builds an unit complex by extracting the rotation part of the given transformation `m`. /// /// This is an iterative method. See `.from_matrix_eps` to provide mover /// convergence parameters and starting solution. /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al. pub fn from_matrix(m: &Matrix2) -> Self where T: RealField, { Rotation2::from_matrix(m).into() } /// Builds an unit complex by extracting the rotation part of the given transformation `m`. /// /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al. /// /// # Parameters /// /// * `m`: the matrix from which the rotational part is to be extracted. /// * `eps`: the angular errors tolerated between the current rotation and the optimal one. /// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`. /// * `guess`: an estimate of the solution. Convergence will be significantly faster if an initial solution close /// to the actual solution is provided. Can be set to `UnitQuaternion::identity()` if no other /// guesses come to mind. pub fn from_matrix_eps(m: &Matrix2, eps: T, max_iter: usize, guess: Self) -> Self where T: RealField, { let guess = Rotation2::from(guess); Rotation2::from_matrix_eps(m, eps, max_iter, guess).into() } /// The unit complex number needed to make `self` and `other` coincide. /// /// The result is such that: `self.rotation_to(other) * self == other`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::UnitComplex; /// let rot1 = UnitComplex::new(0.1); /// let rot2 = UnitComplex::new(1.7); /// let rot_to = rot1.rotation_to(&rot2); /// /// assert_relative_eq!(rot_to * rot1, rot2); /// assert_relative_eq!(rot_to.inverse() * rot2, rot1); /// ``` #[inline] #[must_use] pub fn rotation_to(&self, other: &Self) -> Self { other / self } /// Raise this unit complex number to a given floating power. /// /// This returns the unit complex number that identifies a rotation angle equal to /// `self.angle() × n`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::UnitComplex; /// let rot = UnitComplex::new(0.78); /// let pow = rot.powf(2.0); /// assert_relative_eq!(pow.angle(), 2.0 * 0.78); /// ``` #[inline] #[must_use] pub fn powf(&self, n: T) -> Self { Self::from_angle(self.angle() * n) } } /// # Construction from two vectors impl UnitComplex where T::Element: SimdRealField, { /// The unit complex needed to make `a` and `b` be collinear and point toward the same /// direction. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector2, UnitComplex}; /// let a = Vector2::new(1.0, 2.0); /// let b = Vector2::new(2.0, 1.0); /// let rot = UnitComplex::rotation_between(&a, &b); /// assert_relative_eq!(rot * a, b); /// assert_relative_eq!(rot.inverse() * b, a); /// ``` #[inline] pub fn rotation_between(a: &Vector, b: &Vector) -> Self where T: RealField, SB: Storage, SC: Storage, { Self::scaled_rotation_between(a, b, T::one()) } /// The smallest rotation needed to make `a` and `b` collinear and point toward the same /// direction, raised to the power `s`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector2, UnitComplex}; /// let a = Vector2::new(1.0, 2.0); /// let b = Vector2::new(2.0, 1.0); /// let rot2 = UnitComplex::scaled_rotation_between(&a, &b, 0.2); /// let rot5 = UnitComplex::scaled_rotation_between(&a, &b, 0.5); /// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6); /// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6); /// ``` #[inline] pub fn scaled_rotation_between( a: &Vector, b: &Vector, s: T, ) -> Self where T: RealField, SB: Storage, SC: Storage, { // TODO: code duplication with Rotation. if let (Some(na), Some(nb)) = ( Unit::try_new(a.clone_owned(), T::zero()), Unit::try_new(b.clone_owned(), T::zero()), ) { Self::scaled_rotation_between_axis(&na, &nb, s) } else { Self::identity() } } /// The unit complex needed to make `a` and `b` be collinear and point toward the same /// direction. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Unit, Vector2, UnitComplex}; /// let a = Unit::new_normalize(Vector2::new(1.0, 2.0)); /// let b = Unit::new_normalize(Vector2::new(2.0, 1.0)); /// let rot = UnitComplex::rotation_between_axis(&a, &b); /// assert_relative_eq!(rot * a, b); /// assert_relative_eq!(rot.inverse() * b, a); /// ``` #[inline] pub fn rotation_between_axis( a: &Unit>, b: &Unit>, ) -> Self where SB: Storage, SC: Storage, { Self::scaled_rotation_between_axis(a, b, T::one()) } /// The smallest rotation needed to make `a` and `b` collinear and point toward the same /// direction, raised to the power `s`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Unit, Vector2, UnitComplex}; /// let a = Unit::new_normalize(Vector2::new(1.0, 2.0)); /// let b = Unit::new_normalize(Vector2::new(2.0, 1.0)); /// let rot2 = UnitComplex::scaled_rotation_between_axis(&a, &b, 0.2); /// let rot5 = UnitComplex::scaled_rotation_between_axis(&a, &b, 0.5); /// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6); /// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6); /// ``` #[inline] pub fn scaled_rotation_between_axis( na: &Unit>, nb: &Unit>, s: T, ) -> Self where SB: Storage, SC: Storage, { let sang = na.perp(&nb); let cang = na.dot(&nb); Self::from_angle(sang.simd_atan2(cang) * s) } } impl One for UnitComplex where T::Element: SimdRealField, { #[inline] fn one() -> Self { Self::identity() } } #[cfg(feature = "rand")] impl Distribution> for Standard where T::Element: SimdRealField, rand_distr::UnitCircle: Distribution<[T; 2]>, { /// Generate a uniformly distributed random `UnitComplex`. #[inline] fn sample<'a, R: Rng + ?Sized>(&self, rng: &mut R) -> UnitComplex { let x = rng.sample(rand_distr::UnitCircle); UnitComplex::new_unchecked(Complex::new(x[0], x[1])) } } #[cfg(feature = "arbitrary")] impl Arbitrary for UnitComplex where T::Element: SimdRealField, { #[inline] fn arbitrary(g: &mut Gen) -> Self { UnitComplex::from_angle(T::arbitrary(g)) } }