use crate::common::{ csc_strategy, csr_strategy, non_zero_i32_value_strategy, value_strategy, PROPTEST_I32_VALUE_STRATEGY, PROPTEST_MATRIX_DIM, PROPTEST_MAX_NNZ, }; use nalgebra_sparse::csc::CscMatrix; use nalgebra_sparse::csr::CsrMatrix; use nalgebra_sparse::ops::serial::{ spadd_csc_prealloc, spadd_csr_prealloc, spadd_pattern, spmm_csc_dense, spmm_csc_prealloc, spmm_csc_prealloc_unchecked, spmm_csr_dense, spmm_csr_pattern, spmm_csr_prealloc, spmm_csr_prealloc_unchecked, spsolve_csc_lower_triangular, }; use nalgebra_sparse::ops::Op; use nalgebra_sparse::pattern::SparsityPattern; use nalgebra_sparse::proptest::{csc, csr, sparsity_pattern}; use nalgebra::proptest::{matrix, vector}; use nalgebra::{DMatrix, DMatrixView, DMatrixViewMut, Scalar}; use proptest::prelude::*; use matrixcompare::prop_assert_matrix_eq; use std::panic::catch_unwind; /// Represents the sparsity pattern of a CSR matrix as a dense matrix with 0/1 fn dense_csr_pattern(pattern: &SparsityPattern) -> DMatrix<i32> { let boolean_csr = CsrMatrix::try_from_pattern_and_values(pattern.clone(), vec![1; pattern.nnz()]).unwrap(); DMatrix::from(&boolean_csr) } /// Represents the sparsity pattern of a CSC matrix as a dense matrix with 0/1 fn dense_csc_pattern(pattern: &SparsityPattern) -> DMatrix<i32> { let boolean_csc = CscMatrix::try_from_pattern_and_values(pattern.clone(), vec![1; pattern.nnz()]).unwrap(); DMatrix::from(&boolean_csc) } #[derive(Debug)] struct SpmmCsrDenseArgs<T: Scalar> { c: DMatrix<T>, beta: T, alpha: T, a: Op<CsrMatrix<T>>, b: Op<DMatrix<T>>, } #[derive(Debug)] struct SpmmCscDenseArgs<T: Scalar> { c: DMatrix<T>, beta: T, alpha: T, a: Op<CscMatrix<T>>, b: Op<DMatrix<T>>, } /// Returns matrices C, A and B with compatible dimensions such that it can be used /// in an `spmm` operation `C = beta * C + alpha * trans(A) * trans(B)`. fn spmm_csr_dense_args_strategy() -> impl Strategy<Value = SpmmCsrDenseArgs<i32>> { let max_nnz = PROPTEST_MAX_NNZ; let value_strategy = PROPTEST_I32_VALUE_STRATEGY; let c_rows = PROPTEST_MATRIX_DIM; let c_cols = PROPTEST_MATRIX_DIM; let common_dim = PROPTEST_MATRIX_DIM; let trans_strategy = trans_strategy(); let c_matrix_strategy = matrix(value_strategy.clone(), c_rows, c_cols); ( c_matrix_strategy, common_dim, trans_strategy.clone(), trans_strategy.clone(), ) .prop_flat_map(move |(c, common_dim, trans_a, trans_b)| { let a_shape = if trans_a { (common_dim, c.nrows()) } else { (c.nrows(), common_dim) }; let b_shape = if trans_b { (c.ncols(), common_dim) } else { (common_dim, c.ncols()) }; let a = csr(value_strategy.clone(), a_shape.0, a_shape.1, max_nnz); let b = matrix(value_strategy.clone(), b_shape.0, b_shape.1); // We use the same values for alpha, beta parameters as for matrix elements let alpha = value_strategy.clone(); let beta = value_strategy.clone(); (Just(c), beta, alpha, Just(trans_a), a, Just(trans_b), b) }) .prop_map( |(c, beta, alpha, trans_a, a, trans_b, b)| SpmmCsrDenseArgs { c, beta, alpha, a: if trans_a { Op::Transpose(a) } else { Op::NoOp(a) }, b: if trans_b { Op::Transpose(b) } else { Op::NoOp(b) }, }, ) } /// Returns matrices C, A and B with compatible dimensions such that it can be used /// in an `spmm` operation `C = beta * C + alpha * trans(A) * trans(B)`. fn spmm_csc_dense_args_strategy() -> impl Strategy<Value = SpmmCscDenseArgs<i32>> { spmm_csr_dense_args_strategy().prop_map(|args| SpmmCscDenseArgs { c: args.c, beta: args.beta, alpha: args.alpha, a: args.a.map_same_op(|a| CscMatrix::from(&a)), b: args.b, }) } #[derive(Debug)] struct SpaddCsrArgs<T> { c: CsrMatrix<T>, beta: T, alpha: T, a: Op<CsrMatrix<T>>, } #[derive(Debug)] struct SpaddCscArgs<T> { c: CscMatrix<T>, beta: T, alpha: T, a: Op<CscMatrix<T>>, } fn spadd_csr_prealloc_args_strategy() -> impl Strategy<Value = SpaddCsrArgs<i32>> { let value_strategy = PROPTEST_I32_VALUE_STRATEGY; spadd_pattern_strategy() .prop_flat_map(move |(a_pattern, b_pattern)| { let c_pattern = spadd_pattern(&a_pattern, &b_pattern); let a_values = vec![value_strategy.clone(); a_pattern.nnz()]; let c_values = vec![value_strategy.clone(); c_pattern.nnz()]; let alpha = value_strategy.clone(); let beta = value_strategy.clone(); ( Just(c_pattern), Just(a_pattern), c_values, a_values, alpha, beta, trans_strategy(), ) }) .prop_map( |(c_pattern, a_pattern, c_values, a_values, alpha, beta, trans_a)| { let c = CsrMatrix::try_from_pattern_and_values(c_pattern, c_values).unwrap(); let a = CsrMatrix::try_from_pattern_and_values(a_pattern, a_values).unwrap(); let a = if trans_a { Op::Transpose(a.transpose()) } else { Op::NoOp(a) }; SpaddCsrArgs { c, beta, alpha, a } }, ) } fn spadd_csc_prealloc_args_strategy() -> impl Strategy<Value = SpaddCscArgs<i32>> { spadd_csr_prealloc_args_strategy().prop_map(|args| SpaddCscArgs { c: CscMatrix::from(&args.c), beta: args.beta, alpha: args.alpha, a: args.a.map_same_op(|a| CscMatrix::from(&a)), }) } fn dense_strategy() -> impl Strategy<Value = DMatrix<i32>> { matrix( PROPTEST_I32_VALUE_STRATEGY, PROPTEST_MATRIX_DIM, PROPTEST_MATRIX_DIM, ) } fn trans_strategy() -> impl Strategy<Value = bool> + Clone { proptest::bool::ANY } /// Wraps the values of the given strategy in `Op`, producing both transposed and non-transposed /// values. fn op_strategy<S: Strategy>(strategy: S) -> impl Strategy<Value = Op<S::Value>> { let is_transposed = proptest::bool::ANY; (strategy, is_transposed).prop_map(|(obj, is_trans)| { if is_trans { Op::Transpose(obj) } else { Op::NoOp(obj) } }) } fn pattern_strategy() -> impl Strategy<Value = SparsityPattern> { sparsity_pattern(PROPTEST_MATRIX_DIM, PROPTEST_MATRIX_DIM, PROPTEST_MAX_NNZ) } /// Constructs pairs (a, b) where a and b have the same dimensions fn spadd_pattern_strategy() -> impl Strategy<Value = (SparsityPattern, SparsityPattern)> { pattern_strategy().prop_flat_map(|a| { let b = sparsity_pattern(a.major_dim(), a.minor_dim(), PROPTEST_MAX_NNZ); (Just(a), b) }) } /// Constructs pairs (a, b) where a and b have compatible dimensions for a matrix product fn spmm_csr_pattern_strategy() -> impl Strategy<Value = (SparsityPattern, SparsityPattern)> { pattern_strategy().prop_flat_map(|a| { let b = sparsity_pattern(a.minor_dim(), PROPTEST_MATRIX_DIM, PROPTEST_MAX_NNZ); (Just(a), b) }) } #[derive(Debug)] struct SpmmCsrArgs<T> { c: CsrMatrix<T>, beta: T, alpha: T, a: Op<CsrMatrix<T>>, b: Op<CsrMatrix<T>>, } #[derive(Debug)] struct SpmmCscArgs<T> { c: CscMatrix<T>, beta: T, alpha: T, a: Op<CscMatrix<T>>, b: Op<CscMatrix<T>>, } fn spmm_csr_prealloc_args_strategy() -> impl Strategy<Value = SpmmCsrArgs<i32>> { spmm_csr_pattern_strategy() .prop_flat_map(|(a_pattern, b_pattern)| { let a_values = vec![PROPTEST_I32_VALUE_STRATEGY; a_pattern.nnz()]; let b_values = vec![PROPTEST_I32_VALUE_STRATEGY; b_pattern.nnz()]; let c_pattern = spmm_csr_pattern(&a_pattern, &b_pattern); let c_values = vec![PROPTEST_I32_VALUE_STRATEGY; c_pattern.nnz()]; let a = a_values.prop_map(move |values| { CsrMatrix::try_from_pattern_and_values(a_pattern.clone(), values).unwrap() }); let b = b_values.prop_map(move |values| { CsrMatrix::try_from_pattern_and_values(b_pattern.clone(), values).unwrap() }); let c = c_values.prop_map(move |values| { CsrMatrix::try_from_pattern_and_values(c_pattern.clone(), values).unwrap() }); let alpha = PROPTEST_I32_VALUE_STRATEGY; let beta = PROPTEST_I32_VALUE_STRATEGY; (c, beta, alpha, trans_strategy(), a, trans_strategy(), b) }) .prop_map( |(c, beta, alpha, trans_a, a, trans_b, b)| SpmmCsrArgs::<i32> { c, beta, alpha, a: if trans_a { Op::Transpose(a.transpose()) } else { Op::NoOp(a) }, b: if trans_b { Op::Transpose(b.transpose()) } else { Op::NoOp(b) }, }, ) } fn spmm_csc_prealloc_args_strategy() -> impl Strategy<Value = SpmmCscArgs<i32>> { // Note: Converting from CSR is simple, but might be significantly slower than // writing a common implementation that can be shared between CSR and CSC args spmm_csr_prealloc_args_strategy().prop_map(|args| SpmmCscArgs { c: CscMatrix::from(&args.c), beta: args.beta, alpha: args.alpha, a: args.a.map_same_op(|a| CscMatrix::from(&a)), b: args.b.map_same_op(|b| CscMatrix::from(&b)), }) } fn csc_invertible_diagonal() -> impl Strategy<Value = CscMatrix<f64>> { let non_zero_values = value_strategy::<f64>().prop_filter("Only non-zeros values accepted", |x| x != &0.0); vector(non_zero_values, PROPTEST_MATRIX_DIM).prop_map(|d| { let mut matrix = CscMatrix::identity(d.len()); matrix.values_mut().clone_from_slice(&d.as_slice()); matrix }) } fn csc_square_with_non_zero_diagonals() -> impl Strategy<Value = CscMatrix<f64>> { csc_invertible_diagonal().prop_flat_map(|d| { csc( value_strategy::<f64>(), d.nrows(), d.nrows(), PROPTEST_MAX_NNZ, ) .prop_map(move |mut c| { for (i, j, v) in c.triplet_iter_mut() { if i == j { *v = 0.0; } } // Return the sum of a matrix with zero diagonals and an invertible diagonal // matrix c + &d }) }) } /// Helper function to help us call dense GEMM with our `Op` type fn dense_gemm<'a>( beta: i32, c: impl Into<DMatrixViewMut<'a, i32>>, alpha: i32, a: Op<impl Into<DMatrixView<'a, i32>>>, b: Op<impl Into<DMatrixView<'a, i32>>>, ) { let mut c = c.into(); let a = a.convert(); let b = b.convert(); use Op::{NoOp, Transpose}; match (a, b) { (NoOp(a), NoOp(b)) => c.gemm(alpha, &a, &b, beta), (Transpose(a), NoOp(b)) => c.gemm(alpha, &a.transpose(), &b, beta), (NoOp(a), Transpose(b)) => c.gemm(alpha, &a, &b.transpose(), beta), (Transpose(a), Transpose(b)) => c.gemm(alpha, &a.transpose(), &b.transpose(), beta), } } proptest! { #[test] fn spmm_csr_dense_agrees_with_dense_result( SpmmCsrDenseArgs { c, beta, alpha, a, b } in spmm_csr_dense_args_strategy() ) { let mut spmm_result = c.clone(); spmm_csr_dense(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref()); let mut gemm_result = c.clone(); let a_dense = a.map_same_op(|a| DMatrix::from(&a)); dense_gemm(beta, &mut gemm_result, alpha, a_dense.as_ref(), b.as_ref()); prop_assert_eq!(spmm_result, gemm_result); } #[test] fn spmm_csr_dense_panics_on_dim_mismatch( (alpha, beta, c, a, b) in (PROPTEST_I32_VALUE_STRATEGY, PROPTEST_I32_VALUE_STRATEGY, dense_strategy(), op_strategy(csr_strategy()), op_strategy(dense_strategy())) ) { // We refer to `A * B` as the "product" let product_rows = match &a { Op::NoOp(ref a) => a.nrows(), Op::Transpose(ref a) => a.ncols(), }; let product_cols = match &b { Op::NoOp(ref b) => b.ncols(), Op::Transpose(ref b) => b.nrows(), }; // Determine the common dimension in the product // from the perspective of a and b, respectively let product_a_common = match &a { Op::NoOp(ref a) => a.ncols(), Op::Transpose(ref a) => a.nrows(), }; let product_b_common = match &b { Op::NoOp(ref b) => b.nrows(), Op::Transpose(ref b) => b.ncols() }; let dims_are_compatible = product_rows == c.nrows() && product_cols == c.ncols() && product_a_common == product_b_common; // If the dimensions randomly happen to be compatible, then of course we need to // skip the test, so we assume that they are not. prop_assume!(!dims_are_compatible); let result = catch_unwind(|| { let mut spmm_result = c.clone(); spmm_csr_dense(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref()); }); prop_assert!(result.is_err(), "The SPMM kernel executed successfully despite mismatch dimensions"); } #[test] fn spadd_pattern_test((a, b) in spadd_pattern_strategy()) { // (a, b) are dimensionally compatible patterns let pattern_result = spadd_pattern(&a, &b); // To verify the pattern, we construct CSR matrices with positive integer entries // corresponding to a and b, and convert them to dense matrices. // The sum of these dense matrices will then have non-zeros in exactly the same locations // as the result of "adding" the sparsity patterns let a_csr = CsrMatrix::try_from_pattern_and_values(a.clone(), vec![1; a.nnz()]) .unwrap(); let a_dense = DMatrix::from(&a_csr); let b_csr = CsrMatrix::try_from_pattern_and_values(b.clone(), vec![1; b.nnz()]) .unwrap(); let b_dense = DMatrix::from(&b_csr); let c_dense = a_dense + b_dense; let c_csr = CsrMatrix::from(&c_dense); prop_assert_eq!(&pattern_result, c_csr.pattern()); } #[test] fn spadd_csr_prealloc_test(SpaddCsrArgs { c, beta, alpha, a } in spadd_csr_prealloc_args_strategy()) { // Test that we get the expected result by comparing to an equivalent dense operation // (here we give in the C matrix, so the sparsity pattern is essentially fixed) let mut c_sparse = c.clone(); spadd_csr_prealloc(beta, &mut c_sparse, alpha, a.as_ref()).unwrap(); let mut c_dense = DMatrix::from(&c); let op_a_dense = match a { Op::NoOp(a) => DMatrix::from(&a), Op::Transpose(a) => DMatrix::from(&a).transpose(), }; c_dense = beta * c_dense + alpha * &op_a_dense; prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense); } #[test] fn csr_add_csr( // a and b have the same dimensions (a, b) in csr_strategy() .prop_flat_map(|a| { let b = csr(PROPTEST_I32_VALUE_STRATEGY, a.nrows(), a.ncols(), PROPTEST_MAX_NNZ); (Just(a), b) })) { // We use the dense result as the ground truth for the arithmetic result let c_dense = DMatrix::from(&a) + DMatrix::from(&b); // However, it's not enough only to cover the dense result, we also need to verify the // sparsity pattern. We can determine the exact sparsity pattern by using // dense arithmetic with positive integer values and extracting positive entries. let c_dense_pattern = dense_csr_pattern(a.pattern()) + dense_csr_pattern(b.pattern()); let c_pattern = CsrMatrix::from(&c_dense_pattern).pattern().clone(); // Check each combination of owned matrices and references let c_owned_owned = a.clone() + b.clone(); prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense); prop_assert_eq!(c_owned_owned.pattern(), &c_pattern); let c_owned_ref = a.clone() + &b; prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense); prop_assert_eq!(c_owned_ref.pattern(), &c_pattern); let c_ref_owned = &a + b.clone(); prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense); prop_assert_eq!(c_ref_owned.pattern(), &c_pattern); let c_ref_ref = &a + &b; prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense); prop_assert_eq!(c_ref_ref.pattern(), &c_pattern); } #[test] fn csr_sub_csr( // a and b have the same dimensions (a, b) in csr_strategy() .prop_flat_map(|a| { let b = csr(PROPTEST_I32_VALUE_STRATEGY, a.nrows(), a.ncols(), PROPTEST_MAX_NNZ); (Just(a), b) })) { // See comments in csr_add_csr for rationale for checking the pattern this way let c_dense = DMatrix::from(&a) - DMatrix::from(&b); let c_dense_pattern = dense_csr_pattern(a.pattern()) + dense_csr_pattern(b.pattern()); let c_pattern = CsrMatrix::from(&c_dense_pattern).pattern().clone(); // Check each combination of owned matrices and references let c_owned_owned = a.clone() - b.clone(); prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense); prop_assert_eq!(c_owned_owned.pattern(), &c_pattern); let c_owned_ref = a.clone() - &b; prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense); prop_assert_eq!(c_owned_ref.pattern(), &c_pattern); let c_ref_owned = &a - b.clone(); prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense); prop_assert_eq!(c_ref_owned.pattern(), &c_pattern); let c_ref_ref = &a - &b; prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense); prop_assert_eq!(c_ref_ref.pattern(), &c_pattern); } #[test] fn spmm_csr_pattern_test((a, b) in spmm_csr_pattern_strategy()) { // (a, b) are multiplication-wise dimensionally compatible patterns let c_pattern = spmm_csr_pattern(&a, &b); // To verify the pattern, we construct CSR matrices with positive integer entries // corresponding to a and b, and convert them to dense matrices. // The product of these dense matrices will then have non-zeros in exactly the same locations // as the result of "multiplying" the sparsity patterns let a_csr = CsrMatrix::try_from_pattern_and_values(a.clone(), vec![1; a.nnz()]) .unwrap(); let a_dense = DMatrix::from(&a_csr); let b_csr = CsrMatrix::try_from_pattern_and_values(b.clone(), vec![1; b.nnz()]) .unwrap(); let b_dense = DMatrix::from(&b_csr); let c_dense = a_dense * b_dense; let c_csr = CsrMatrix::from(&c_dense); prop_assert_eq!(&c_pattern, c_csr.pattern()); } #[test] fn spmm_csr_prealloc_unchecked_test(SpmmCsrArgs { c, beta, alpha, a, b } in spmm_csr_prealloc_args_strategy() ) { // Test that we get the expected result by comparing to an equivalent dense operation // (here we give in the C matrix, so the sparsity pattern is essentially fixed) let mut c_sparse = c.clone(); spmm_csr_prealloc_unchecked(beta, &mut c_sparse, alpha, a.as_ref(), b.as_ref()).unwrap(); let mut c_dense = DMatrix::from(&c); let op_a_dense = match a { Op::NoOp(ref a) => DMatrix::from(a), Op::Transpose(ref a) => DMatrix::from(a).transpose(), }; let op_b_dense = match b { Op::NoOp(ref b) => DMatrix::from(b), Op::Transpose(ref b) => DMatrix::from(b).transpose(), }; c_dense = beta * c_dense + alpha * &op_a_dense * op_b_dense; prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense); } #[test] fn spmm_csr_prealloc_test(SpmmCsrArgs { c, beta, alpha, a, b } in spmm_csr_prealloc_args_strategy() ) { // Test that we get the expected result by comparing to an equivalent dense operation // (here we give in the C matrix, so the sparsity pattern is essentially fixed) let mut c_sparse = c.clone(); spmm_csr_prealloc(beta, &mut c_sparse, alpha, a.as_ref(), b.as_ref()).unwrap(); let mut c_dense = DMatrix::from(&c); let op_a_dense = match a { Op::NoOp(ref a) => DMatrix::from(a), Op::Transpose(ref a) => DMatrix::from(a).transpose(), }; let op_b_dense = match b { Op::NoOp(ref b) => DMatrix::from(b), Op::Transpose(ref b) => DMatrix::from(b).transpose(), }; c_dense = beta * c_dense + alpha * &op_a_dense * op_b_dense; prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense); } #[test] fn spmm_csr_prealloc_panics_on_dim_mismatch( (alpha, beta, c, a, b) in (PROPTEST_I32_VALUE_STRATEGY, PROPTEST_I32_VALUE_STRATEGY, csr_strategy(), op_strategy(csr_strategy()), op_strategy(csr_strategy())) ) { // We refer to `A * B` as the "product" let product_rows = match &a { Op::NoOp(ref a) => a.nrows(), Op::Transpose(ref a) => a.ncols(), }; let product_cols = match &b { Op::NoOp(ref b) => b.ncols(), Op::Transpose(ref b) => b.nrows(), }; // Determine the common dimension in the product // from the perspective of a and b, respectively let product_a_common = match &a { Op::NoOp(ref a) => a.ncols(), Op::Transpose(ref a) => a.nrows(), }; let product_b_common = match &b { Op::NoOp(ref b) => b.nrows(), Op::Transpose(ref b) => b.ncols(), }; let dims_are_compatible = product_rows == c.nrows() && product_cols == c.ncols() && product_a_common == product_b_common; // If the dimensions randomly happen to be compatible, then of course we need to // skip the test, so we assume that they are not. prop_assume!(!dims_are_compatible); let result = catch_unwind(|| { let mut spmm_result = c.clone(); spmm_csr_prealloc(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref()).unwrap(); }); prop_assert!(result.is_err(), "The SPMM kernel executed successfully despite mismatch dimensions"); } #[test] fn spadd_csr_prealloc_panics_on_dim_mismatch( (alpha, beta, c, op_a) in (PROPTEST_I32_VALUE_STRATEGY, PROPTEST_I32_VALUE_STRATEGY, csr_strategy(), op_strategy(csr_strategy())) ) { let op_a_rows = match &op_a { &Op::NoOp(ref a) => a.nrows(), &Op::Transpose(ref a) => a.ncols() }; let op_a_cols = match &op_a { &Op::NoOp(ref a) => a.ncols(), &Op::Transpose(ref a) => a.nrows() }; let dims_are_compatible = c.nrows() == op_a_rows && c.ncols() == op_a_cols; // If the dimensions randomly happen to be compatible, then of course we need to // skip the test, so we assume that they are not. prop_assume!(!dims_are_compatible); let result = catch_unwind(|| { let mut spmm_result = c.clone(); spadd_csr_prealloc(beta, &mut spmm_result, alpha, op_a.as_ref()).unwrap(); }); prop_assert!(result.is_err(), "The SPMM kernel executed successfully despite mismatch dimensions"); } #[test] fn csr_mul_csr( // a and b have dimensions compatible for multiplication (a, b) in csr_strategy() .prop_flat_map(|a| { let max_nnz = PROPTEST_MAX_NNZ; let cols = PROPTEST_MATRIX_DIM; let b = csr(PROPTEST_I32_VALUE_STRATEGY, a.ncols(), cols, max_nnz); (Just(a), b) })) { // We use the dense result as the ground truth for the arithmetic result let c_dense = DMatrix::from(&a) * DMatrix::from(&b); // However, it's not enough only to cover the dense result, we also need to verify the // sparsity pattern. We can determine the exact sparsity pattern by using // dense arithmetic with positive integer values and extracting positive entries. let c_dense_pattern = dense_csr_pattern(a.pattern()) * dense_csr_pattern(b.pattern()); let c_pattern = CsrMatrix::from(&c_dense_pattern).pattern().clone(); // Check each combination of owned matrices and references let c_owned_owned = a.clone() * b.clone(); prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense); prop_assert_eq!(c_owned_owned.pattern(), &c_pattern); let c_owned_ref = a.clone() * &b; prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense); prop_assert_eq!(c_owned_ref.pattern(), &c_pattern); let c_ref_owned = &a * b.clone(); prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense); prop_assert_eq!(c_ref_owned.pattern(), &c_pattern); let c_ref_ref = &a * &b; prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense); prop_assert_eq!(c_ref_ref.pattern(), &c_pattern); } #[test] fn spmm_csc_prealloc_test(SpmmCscArgs { c, beta, alpha, a, b } in spmm_csc_prealloc_args_strategy() ) { // Test that we get the expected result by comparing to an equivalent dense operation // (here we give in the C matrix, so the sparsity pattern is essentially fixed) let mut c_sparse = c.clone(); spmm_csc_prealloc(beta, &mut c_sparse, alpha, a.as_ref(), b.as_ref()).unwrap(); let mut c_dense = DMatrix::from(&c); let op_a_dense = match a { Op::NoOp(ref a) => DMatrix::from(a), Op::Transpose(ref a) => DMatrix::from(a).transpose(), }; let op_b_dense = match b { Op::NoOp(ref b) => DMatrix::from(b), Op::Transpose(ref b) => DMatrix::from(b).transpose(), }; c_dense = beta * c_dense + alpha * &op_a_dense * op_b_dense; prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense); } #[test] fn spmm_csc_prealloc_unchecked_test(SpmmCscArgs { c, beta, alpha, a, b } in spmm_csc_prealloc_args_strategy() ) { // Test that we get the expected result by comparing to an equivalent dense operation // (here we give in the C matrix, so the sparsity pattern is essentially fixed) let mut c_sparse = c.clone(); spmm_csc_prealloc_unchecked(beta, &mut c_sparse, alpha, a.as_ref(), b.as_ref()).unwrap(); let mut c_dense = DMatrix::from(&c); let op_a_dense = match a { Op::NoOp(ref a) => DMatrix::from(a), Op::Transpose(ref a) => DMatrix::from(a).transpose(), }; let op_b_dense = match b { Op::NoOp(ref b) => DMatrix::from(b), Op::Transpose(ref b) => DMatrix::from(b).transpose(), }; c_dense = beta * c_dense + alpha * &op_a_dense * op_b_dense; prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense); } #[test] fn spmm_csc_prealloc_panics_on_dim_mismatch( (alpha, beta, c, a, b) in (PROPTEST_I32_VALUE_STRATEGY, PROPTEST_I32_VALUE_STRATEGY, csc_strategy(), op_strategy(csc_strategy()), op_strategy(csc_strategy())) ) { // We refer to `A * B` as the "product" let product_rows = match &a { Op::NoOp(ref a) => a.nrows(), Op::Transpose(ref a) => a.ncols(), }; let product_cols = match &b { Op::NoOp(ref b) => b.ncols(), Op::Transpose(ref b) => b.nrows(), }; // Determine the common dimension in the product // from the perspective of a and b, respectively let product_a_common = match &a { Op::NoOp(ref a) => a.ncols(), Op::Transpose(ref a) => a.nrows(), }; let product_b_common = match &b { Op::NoOp(ref b) => b.nrows(), Op::Transpose(ref b) => b.ncols(), }; let dims_are_compatible = product_rows == c.nrows() && product_cols == c.ncols() && product_a_common == product_b_common; // If the dimensions randomly happen to be compatible, then of course we need to // skip the test, so we assume that they are not. prop_assume!(!dims_are_compatible); let result = catch_unwind(|| { let mut spmm_result = c.clone(); spmm_csc_prealloc(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref()).unwrap(); }); prop_assert!(result.is_err(), "The SPMM kernel executed successfully despite mismatch dimensions"); } #[test] fn csc_mul_csc( // a and b have dimensions compatible for multiplication (a, b) in csc_strategy() .prop_flat_map(|a| { let max_nnz = PROPTEST_MAX_NNZ; let cols = PROPTEST_MATRIX_DIM; let b = csc(PROPTEST_I32_VALUE_STRATEGY, a.ncols(), cols, max_nnz); (Just(a), b) }) .prop_map(|(a, b)| { println!("a: {} x {}, b: {} x {}", a.nrows(), a.ncols(), b.nrows(), b.ncols()); (a, b) })) { assert_eq!(a.ncols(), b.nrows()); // We use the dense result as the ground truth for the arithmetic result let c_dense = DMatrix::from(&a) * DMatrix::from(&b); // However, it's not enough only to cover the dense result, we also need to verify the // sparsity pattern. We can determine the exact sparsity pattern by using // dense arithmetic with positive integer values and extracting positive entries. let c_dense_pattern = dense_csc_pattern(a.pattern()) * dense_csc_pattern(b.pattern()); let c_pattern = CscMatrix::from(&c_dense_pattern).pattern().clone(); // Check each combination of owned matrices and references let c_owned_owned = a.clone() * b.clone(); prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense); prop_assert_eq!(c_owned_owned.pattern(), &c_pattern); let c_owned_ref = a.clone() * &b; prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense); prop_assert_eq!(c_owned_ref.pattern(), &c_pattern); let c_ref_owned = &a * b.clone(); prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense); prop_assert_eq!(c_ref_owned.pattern(), &c_pattern); let c_ref_ref = &a * &b; prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense); prop_assert_eq!(c_ref_ref.pattern(), &c_pattern); } #[test] fn spmm_csc_dense_agrees_with_dense_result( SpmmCscDenseArgs { c, beta, alpha, a, b } in spmm_csc_dense_args_strategy() ) { let mut spmm_result = c.clone(); spmm_csc_dense(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref()); let mut gemm_result = c.clone(); let a_dense = a.map_same_op(|a| DMatrix::from(&a)); dense_gemm(beta, &mut gemm_result, alpha, a_dense.as_ref(), b.as_ref()); prop_assert_eq!(spmm_result, gemm_result); } #[test] fn spmm_csc_dense_panics_on_dim_mismatch( (alpha, beta, c, a, b) in (PROPTEST_I32_VALUE_STRATEGY, PROPTEST_I32_VALUE_STRATEGY, dense_strategy(), op_strategy(csc_strategy()), op_strategy(dense_strategy())) ) { // We refer to `A * B` as the "product" let product_rows = match &a { Op::NoOp(ref a) => a.nrows(), Op::Transpose(ref a) => a.ncols(), }; let product_cols = match &b { Op::NoOp(ref b) => b.ncols(), Op::Transpose(ref b) => b.nrows(), }; // Determine the common dimension in the product // from the perspective of a and b, respectively let product_a_common = match &a { Op::NoOp(ref a) => a.ncols(), Op::Transpose(ref a) => a.nrows(), }; let product_b_common = match &b { Op::NoOp(ref b) => b.nrows(), Op::Transpose(ref b) => b.ncols() }; let dims_are_compatible = product_rows == c.nrows() && product_cols == c.ncols() && product_a_common == product_b_common; // If the dimensions randomly happen to be compatible, then of course we need to // skip the test, so we assume that they are not. prop_assume!(!dims_are_compatible); let result = catch_unwind(|| { let mut spmm_result = c.clone(); spmm_csc_dense(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref()); }); prop_assert!(result.is_err(), "The SPMM kernel executed successfully despite mismatch dimensions"); } #[test] fn spadd_csc_prealloc_test(SpaddCscArgs { c, beta, alpha, a } in spadd_csc_prealloc_args_strategy()) { // Test that we get the expected result by comparing to an equivalent dense operation // (here we give in the C matrix, so the sparsity pattern is essentially fixed) let mut c_sparse = c.clone(); spadd_csc_prealloc(beta, &mut c_sparse, alpha, a.as_ref()).unwrap(); let mut c_dense = DMatrix::from(&c); let op_a_dense = match a { Op::NoOp(a) => DMatrix::from(&a), Op::Transpose(a) => DMatrix::from(&a).transpose(), }; c_dense = beta * c_dense + alpha * &op_a_dense; prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense); } #[test] fn spadd_csc_prealloc_panics_on_dim_mismatch( (alpha, beta, c, op_a) in (PROPTEST_I32_VALUE_STRATEGY, PROPTEST_I32_VALUE_STRATEGY, csc_strategy(), op_strategy(csc_strategy())) ) { let op_a_rows = match &op_a { &Op::NoOp(ref a) => a.nrows(), &Op::Transpose(ref a) => a.ncols() }; let op_a_cols = match &op_a { &Op::NoOp(ref a) => a.ncols(), &Op::Transpose(ref a) => a.nrows() }; let dims_are_compatible = c.nrows() == op_a_rows && c.ncols() == op_a_cols; // If the dimensions randomly happen to be compatible, then of course we need to // skip the test, so we assume that they are not. prop_assume!(!dims_are_compatible); let result = catch_unwind(|| { let mut spmm_result = c.clone(); spadd_csc_prealloc(beta, &mut spmm_result, alpha, op_a.as_ref()).unwrap(); }); prop_assert!(result.is_err(), "The SPMM kernel executed successfully despite mismatch dimensions"); } #[test] fn csc_add_csc( // a and b have the same dimensions (a, b) in csc_strategy() .prop_flat_map(|a| { let b = csc(PROPTEST_I32_VALUE_STRATEGY, a.nrows(), a.ncols(), PROPTEST_MAX_NNZ); (Just(a), b) })) { // We use the dense result as the ground truth for the arithmetic result let c_dense = DMatrix::from(&a) + DMatrix::from(&b); // However, it's not enough only to cover the dense result, we also need to verify the // sparsity pattern. We can determine the exact sparsity pattern by using // dense arithmetic with positive integer values and extracting positive entries. let c_dense_pattern = dense_csc_pattern(a.pattern()) + dense_csc_pattern(b.pattern()); let c_pattern = CscMatrix::from(&c_dense_pattern).pattern().clone(); // Check each combination of owned matrices and references let c_owned_owned = a.clone() + b.clone(); prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense); prop_assert_eq!(c_owned_owned.pattern(), &c_pattern); let c_owned_ref = a.clone() + &b; prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense); prop_assert_eq!(c_owned_ref.pattern(), &c_pattern); let c_ref_owned = &a + b.clone(); prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense); prop_assert_eq!(c_ref_owned.pattern(), &c_pattern); let c_ref_ref = &a + &b; prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense); prop_assert_eq!(c_ref_ref.pattern(), &c_pattern); } #[test] fn csc_sub_csc( // a and b have the same dimensions (a, b) in csc_strategy() .prop_flat_map(|a| { let b = csc(PROPTEST_I32_VALUE_STRATEGY, a.nrows(), a.ncols(), PROPTEST_MAX_NNZ); (Just(a), b) })) { // See comments in csc_add_csc for rationale for checking the pattern this way let c_dense = DMatrix::from(&a) - DMatrix::from(&b); let c_dense_pattern = dense_csc_pattern(a.pattern()) + dense_csc_pattern(b.pattern()); let c_pattern = CscMatrix::from(&c_dense_pattern).pattern().clone(); // Check each combination of owned matrices and references let c_owned_owned = a.clone() - b.clone(); prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense); prop_assert_eq!(c_owned_owned.pattern(), &c_pattern); let c_owned_ref = a.clone() - &b; prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense); prop_assert_eq!(c_owned_ref.pattern(), &c_pattern); let c_ref_owned = &a - b.clone(); prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense); prop_assert_eq!(c_ref_owned.pattern(), &c_pattern); let c_ref_ref = &a - &b; prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense); prop_assert_eq!(c_ref_ref.pattern(), &c_pattern); } #[test] fn csr_mul_scalar((scalar, matrix) in (PROPTEST_I32_VALUE_STRATEGY, csr_strategy())) { let dense = DMatrix::from(&matrix); let dense_result = dense * scalar; let result_owned_owned = matrix.clone() * scalar; let result_owned_ref = matrix.clone() * &scalar; let result_ref_owned = &matrix * scalar; let result_ref_ref = &matrix * &scalar; // Check that all the combinations of reference and owned variables return the same // result prop_assert_eq!(&result_owned_ref, &result_owned_owned); prop_assert_eq!(&result_ref_owned, &result_owned_owned); prop_assert_eq!(&result_ref_ref, &result_owned_owned); // Check that this result is consistent with the dense result, and that the // NNZ is the same as before prop_assert_eq!(result_owned_owned.nnz(), matrix.nnz()); prop_assert_eq!(DMatrix::from(&result_owned_owned), dense_result); // Finally, check mul-assign let mut result_assign_owned = matrix.clone(); result_assign_owned *= scalar; let mut result_assign_ref = matrix.clone(); result_assign_ref *= &scalar; prop_assert_eq!(&result_assign_owned, &result_owned_owned); prop_assert_eq!(&result_assign_ref, &result_owned_owned); } #[test] fn csc_mul_scalar((scalar, matrix) in (PROPTEST_I32_VALUE_STRATEGY, csc_strategy())) { let dense = DMatrix::from(&matrix); let dense_result = dense * scalar; let result_owned_owned = matrix.clone() * scalar; let result_owned_ref = matrix.clone() * &scalar; let result_ref_owned = &matrix * scalar; let result_ref_ref = &matrix * &scalar; // Check that all the combinations of reference and owned variables return the same // result prop_assert_eq!(&result_owned_ref, &result_owned_owned); prop_assert_eq!(&result_ref_owned, &result_owned_owned); prop_assert_eq!(&result_ref_ref, &result_owned_owned); // Check that this result is consistent with the dense result, and that the // NNZ is the same as before prop_assert_eq!(result_owned_owned.nnz(), matrix.nnz()); prop_assert_eq!(DMatrix::from(&result_owned_owned), dense_result); // Finally, check mul-assign let mut result_assign_owned = matrix.clone(); result_assign_owned *= scalar; let mut result_assign_ref = matrix.clone(); result_assign_ref *= &scalar; prop_assert_eq!(&result_assign_owned, &result_owned_owned); prop_assert_eq!(&result_assign_ref, &result_owned_owned); } #[test] fn scalar_mul_csr((scalar, matrix) in (PROPTEST_I32_VALUE_STRATEGY, csr_strategy())) { // For scalar * matrix, we cannot generally implement this for any type T, // so we have implemented this for the built in types separately. This requires // us to also test these types separately. For validation, we check that // scalar * matrix == matrix * scalar, // which is sufficient for correctness if matrix * scalar is correctly implemented // (which is tested separately). // We only test for i32 here, because with our current implementation, the implementations // for different types are completely identical and only rely on basic arithmetic // operations let result = &matrix * scalar; prop_assert_eq!(&(scalar * matrix.clone()), &result); prop_assert_eq!(&(scalar * &matrix), &result); prop_assert_eq!(&(&scalar * matrix.clone()), &result); prop_assert_eq!(&(&scalar * &matrix), &result); } #[test] fn scalar_mul_csc((scalar, matrix) in (PROPTEST_I32_VALUE_STRATEGY, csc_strategy())) { // See comments for scalar_mul_csr let result = &matrix * scalar; prop_assert_eq!(&(scalar * matrix.clone()), &result); prop_assert_eq!(&(scalar * &matrix), &result); prop_assert_eq!(&(&scalar * matrix.clone()), &result); prop_assert_eq!(&(&scalar * &matrix), &result); } #[test] fn csr_neg(csr in csr_strategy()) { let result = &csr - 2 * &csr; prop_assert_eq!(-&csr, result.clone()); prop_assert_eq!(-csr, result); } #[test] fn csc_neg(csc in csc_strategy()) { let result = &csc - 2 * &csc; prop_assert_eq!(-&csc, result.clone()); prop_assert_eq!(-csc, result); } #[test] fn csr_div((csr, divisor) in (csr_strategy(), non_zero_i32_value_strategy())) { let result_owned_owned = csr.clone() / divisor; let result_owned_ref = csr.clone() / &divisor; let result_ref_owned = &csr / divisor; let result_ref_ref = &csr / &divisor; // Verify that all results are the same prop_assert_eq!(&result_owned_ref, &result_owned_owned); prop_assert_eq!(&result_ref_owned, &result_owned_owned); prop_assert_eq!(&result_ref_ref, &result_owned_owned); // Check that NNZ was left unchanged prop_assert_eq!(result_owned_owned.nnz(), csr.nnz()); // Then compare against the equivalent dense result let dense_result = DMatrix::from(&csr) / divisor; prop_assert_eq!(DMatrix::from(&result_owned_owned), dense_result); } #[test] fn csc_div((csc, divisor) in (csc_strategy(), non_zero_i32_value_strategy())) { let result_owned_owned = csc.clone() / divisor; let result_owned_ref = csc.clone() / &divisor; let result_ref_owned = &csc / divisor; let result_ref_ref = &csc / &divisor; // Verify that all results are the same prop_assert_eq!(&result_owned_ref, &result_owned_owned); prop_assert_eq!(&result_ref_owned, &result_owned_owned); prop_assert_eq!(&result_ref_ref, &result_owned_owned); // Check that NNZ was left unchanged prop_assert_eq!(result_owned_owned.nnz(), csc.nnz()); // Then compare against the equivalent dense result let dense_result = DMatrix::from(&csc) / divisor; prop_assert_eq!(DMatrix::from(&result_owned_owned), dense_result); } #[test] fn csr_div_assign((csr, divisor) in (csr_strategy(), non_zero_i32_value_strategy())) { let result_owned = { let mut csr = csr.clone(); csr /= divisor; csr }; let result_ref = { let mut csr = csr.clone(); csr /= &divisor; csr }; let expected_result = csr / divisor; prop_assert_eq!(&result_owned, &expected_result); prop_assert_eq!(&result_ref, &expected_result); } #[test] fn csc_div_assign((csc, divisor) in (csc_strategy(), non_zero_i32_value_strategy())) { let result_owned = { let mut csc = csc.clone(); csc /= divisor; csc }; let result_ref = { let mut csc = csc.clone(); csc /= &divisor; csc }; let expected_result = csc / divisor; prop_assert_eq!(&result_owned, &expected_result); prop_assert_eq!(&result_ref, &expected_result); } #[test] fn csr_mul_dense( // a and b have dimensions compatible for multiplication (a, b) in csr_strategy() .prop_flat_map(|a| { let cols = PROPTEST_MATRIX_DIM; let b = matrix(PROPTEST_I32_VALUE_STRATEGY, a.ncols(), cols); (Just(a), b) })) { let expected = DMatrix::from(&a) * &b; prop_assert_eq!(&a * &b, expected.clone()); prop_assert_eq!(&a * b.clone(), expected.clone()); prop_assert_eq!(a.clone() * &b, expected.clone()); prop_assert_eq!(a.clone() * b.clone(), expected.clone()); } #[test] fn csc_mul_dense( // a and b have dimensions compatible for multiplication (a, b) in csc_strategy() .prop_flat_map(|a| { let cols = PROPTEST_MATRIX_DIM; let b = matrix(PROPTEST_I32_VALUE_STRATEGY, a.ncols(), cols); (Just(a), b) })) { let expected = DMatrix::from(&a) * &b; prop_assert_eq!(&a * &b, expected.clone()); prop_assert_eq!(&a * b.clone(), expected.clone()); prop_assert_eq!(a.clone() * &b, expected.clone()); prop_assert_eq!(a.clone() * b.clone(), expected.clone()); } #[test] fn csc_solve_lower_triangular_no_transpose( // A CSC matrix `a` and a dimensionally compatible dense matrix `b` (a, b) in csc_square_with_non_zero_diagonals() .prop_flat_map(|a| { let nrows = a.nrows(); (Just(a), matrix(value_strategy::<f64>(), nrows, PROPTEST_MATRIX_DIM)) })) { let mut x = b.clone(); spsolve_csc_lower_triangular(Op::NoOp(&a), &mut x).unwrap(); let a_lower = a.lower_triangle(); // We're using a high tolerance here because there are some "bad" inputs that can give // severe loss of precision. prop_assert_matrix_eq!(&a_lower * &x, &b, comp = abs, tol = 1e-4); } #[test] fn csc_solve_lower_triangular_transpose( // A CSC matrix `a` and a dimensionally compatible dense matrix `b` (with a transposed) (a, b) in csc_square_with_non_zero_diagonals() .prop_flat_map(|a| { let ncols = a.ncols(); (Just(a), matrix(value_strategy::<f64>(), ncols, PROPTEST_MATRIX_DIM)) })) { let mut x = b.clone(); spsolve_csc_lower_triangular(Op::Transpose(&a), &mut x).unwrap(); let a_lower = a.lower_triangle(); // We're using a high tolerance here because there are some "bad" inputs that can give // severe loss of precision. prop_assert_matrix_eq!(&a_lower.transpose() * &x, &b, comp = abs, tol = 1e-4); } }