/*! # nalgebra **nalgebra** is a low-dimensional linear algebra library written for Rust targeting: * general-purpose linear algebra (still lacks a lot of features…). * real time computer graphics. * real time computer physics. An on-line version of this documentation is available [here](http://nalgebra.org). ## Using **nalgebra** All the functionality of **nalgebra** is grouped in one place: the root module `nalgebra::`. This module re-exports everything and includes free functions for all traits methods doing out-of-place modifications. * You can import the whole prelude using: ```.ignore use nalgebra::*; ``` The preferred way to use **nalgebra** is to import types and traits explicitly, and call free-functions using the `na::` prefix: ```.rust extern crate nalgebra as na; use na::{Vec3, Rot3, Rotation}; fn main() { let a = Vec3::new(1.0f64, 1.0, 1.0); let mut b = Rot3::new(na::zero()); b.append_rotation_mut(&a); assert!(na::approx_eq(&na::rotation(&b), &a)); } ``` ## Features **nalgebra** is meant to be a general-purpose, low-dimensional, linear algebra library, with an optimized set of tools for computer graphics and physics. Those features include: * Vectors with predefined static sizes: `Vec0`, `Vec1`, `Vec2`, `Vec3`, `Vec4`, `Vec5`, `Vec6`. * Vector with a user-defined static size: `VecN`. * Points with static sizes: `Pnt0`, `Pnt1`, `Pnt2`, `Pnt3`, `Pnt4`, `Pnt5`, `Pnt6`. * Square matrices with static sizes: `Mat1`, `Mat2`, `Mat3`, `Mat4`, `Mat5`, `Mat6 `. * Rotation matrices: `Rot2`, `Rot3`, `Rot4`. * Quaternions: `Quat`, `UnitQuat`. * Isometries (translation * rotation): `Iso2`, `Iso3`, `Iso4`. * Similarity transformations (translation * rotation * uniform scale): `Sim2`, `Sim3`. * 3D projections for computer graphics: `Persp3`, `PerspMat3`, `Ortho3`, `OrthoMat3`. * Dynamically sized heap-allocated vector: `DVec`. * Dynamically sized stack-allocated vectors with a maximum size: `DVec1` to `DVec6`. * Dynamically sized heap-allocated (square or rectangular) matrix: `DMat`. * A few methods for data analysis: `Cov`, `Mean`. * Almost one trait per functionality: useful for generic programming. ## **nalgebra** in use Here are some projects using **nalgebra**. Feel free to add your project to this list if you happen to use **nalgebra**! * [nphysics](https://github.com/sebcrozet/nphysics): a real-time physics engine. * [ncollide](https://github.com/sebcrozet/ncollide): a collision detection library. * [kiss3d](https://github.com/sebcrozet/kiss3d): a minimalistic graphics engine. * [nrays](https://github.com/sebcrozet/nrays): a ray tracer. */ #![deny(non_camel_case_types)] #![deny(unused_parens)] #![deny(non_upper_case_globals)] #![deny(unused_qualifications)] #![deny(unused_results)] #![warn(missing_docs)] #![doc(html_root_url = "http://nalgebra.org/doc")] extern crate rustc_serialize; extern crate rand; extern crate num; extern crate generic_array; #[cfg(feature="arbitrary")] extern crate quickcheck; use std::cmp; use std::ops::{Neg, Mul}; use num::{Zero, One}; pub use traits::{ Absolute, AbsoluteRotate, ApproxEq, Axpy, Basis, BaseFloat, BaseNum, Bounded, Cast, Col, ColSlice, RowSlice, Cov, Cross, CrossMatrix, Det, Diag, Dim, Dot, EigenQR, Eye, FloatPnt, FloatVec, FromHomogeneous, Indexable, Inv, Iterable, IterableMut, Mat, Mean, Norm, NumPnt, NumVec, Orig, Outer, POrd, POrdering, PntAsVec, Repeat, Rotate, Rotation, RotationMatrix, RotationWithTranslation, RotationTo, Row, Shape, SquareMat, ToHomogeneous, Transform, Transformation, Translate, Translation, Transpose, UniformSphereSample }; pub use structs::{ Identity, DMat, DMat1, DMat2, DMat3, DMat4, DMat5, DMat6, DVec, DVec1, DVec2, DVec3, DVec4, DVec5, DVec6, Iso2, Iso3, Iso4, Sim2, Sim3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot2, Rot3, Rot4, VecN, Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6, Pnt0, Pnt1, Pnt2, Pnt3, Pnt4, Pnt5, Pnt6, Persp3, PerspMat3, Ortho3, OrthoMat3, Quat, UnitQuat }; pub use linalg::{ qr, householder_matrix, cholesky, hessenberg }; mod structs; mod traits; mod linalg; mod macros; // mod lower_triangular; // mod chol; /// Change the input value to ensure it is on the range `[min, max]`. #[inline(always)] pub fn clamp(val: T, min: T, max: T) -> T { if val > min { if val < max { val } else { max } } else { min } } /// Same as `cmp::max`. #[inline(always)] pub fn max(a: T, b: T) -> T { cmp::max(a, b) } /// Same as `cmp::min`. #[inline(always)] pub fn min(a: T, b: T) -> T { cmp::min(a, b) } /// Returns the infimum of `a` and `b`. #[inline(always)] pub fn inf(a: &T, b: &T) -> T { POrd::inf(a, b) } /// Returns the supremum of `a` and `b`. #[inline(always)] pub fn sup(a: &T, b: &T) -> T { POrd::sup(a, b) } /// Compare `a` and `b` using a partial ordering relation. #[inline(always)] pub fn partial_cmp(a: &T, b: &T) -> POrdering { POrd::partial_cmp(a, b) } /// Returns `true` iff `a` and `b` are comparable and `a < b`. #[inline(always)] pub fn partial_lt(a: &T, b: &T) -> bool { POrd::partial_lt(a, b) } /// Returns `true` iff `a` and `b` are comparable and `a <= b`. #[inline(always)] pub fn partial_le(a: &T, b: &T) -> bool { POrd::partial_le(a, b) } /// Returns `true` iff `a` and `b` are comparable and `a > b`. #[inline(always)] pub fn partial_gt(a: &T, b: &T) -> bool { POrd::partial_gt(a, b) } /// Returns `true` iff `a` and `b` are comparable and `a >= b`. #[inline(always)] pub fn partial_ge(a: &T, b: &T) -> bool { POrd::partial_ge(a, b) } /// Return the minimum of `a` and `b` if they are comparable. #[inline(always)] pub fn partial_min<'a, T: POrd>(a: &'a T, b: &'a T) -> Option<&'a T> { POrd::partial_min(a, b) } /// Return the maximum of `a` and `b` if they are comparable. #[inline(always)] pub fn partial_max<'a, T: POrd>(a: &'a T, b: &'a T) -> Option<&'a T> { POrd::partial_max(a, b) } /// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to /// `min` or `max`. #[inline(always)] pub fn partial_clamp<'a, T: POrd>(value: &'a T, min: &'a T, max: &'a T) -> Option<&'a T> { POrd::partial_clamp(value, min, max) } // // // Constructors // // /// Create a special identity object. /// /// Same as `Identity::new()`. #[inline(always)] pub fn identity() -> Identity { Identity::new() } /// Create a zero-valued value. /// /// This is the same as `std::num::zero()`. #[inline(always)] pub fn zero() -> T { Zero::zero() } /// Tests is a value is iqual to zero. #[inline(always)] pub fn is_zero(val: &T) -> bool { val.is_zero() } /// Create a one-valued value. /// /// This is the same as `std::num::one()`. #[inline(always)] pub fn one() -> T { One::one() } // // // Geometry // // /// Returns the trivial origin of an affine space. #[inline(always)] pub fn orig() -> P { Orig::orig() } /// Returns the center of two points. #[inline] pub fn center, V: Copy + Norm>(a: &P, b: &P) -> P { let _2 = one::() + one(); (*a + *b.as_vec()) / _2 } /* * FloatPnt */ /// Returns the distance between two points. #[inline(always)] pub fn dist, V: Norm>(a: &P, b: &P) -> N { a.dist(b) } /// Returns the squared distance between two points. #[inline(always)] pub fn sqdist, V: Norm>(a: &P, b: &P) -> N { a.sqdist(b) } /* * Translation */ /// Gets the translation applicable by `m`. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Vec3, Iso3}; /// /// fn main() { /// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero()); /// let trans = na::translation(&t); /// /// assert!(trans == Vec3::new(1.0, 1.0, 1.0)); /// } /// ``` #[inline(always)] pub fn translation>(m: &M) -> V { m.translation() } /// Gets the inverse translation applicable by `m`. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Vec3, Iso3}; /// /// fn main() { /// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero()); /// let itrans = na::inv_translation(&t); /// /// assert!(itrans == Vec3::new(-1.0, -1.0, -1.0)); /// } /// ``` #[inline(always)] pub fn inv_translation>(m: &M) -> V { m.inv_translation() } /// Applies the translation `v` to a copy of `m`. #[inline(always)] pub fn append_translation>(m: &M, v: &V) -> M { Translation::append_translation(m, v) } /* * Translate

*/ /// Applies a translation to a point. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Pnt3, Vec3, Iso3}; /// /// fn main() { /// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero()); /// let p = Pnt3::new(2.0, 2.0, 2.0); /// /// let tp = na::translate(&t, &p); /// /// assert!(tp == Pnt3::new(3.0, 3.0, 3.0)) /// } /// ``` #[inline(always)] pub fn translate>(m: &M, p: &P) -> P { m.translate(p) } /// Applies an inverse translation to a point. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Pnt3, Vec3, Iso3}; /// /// fn main() { /// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero()); /// let p = Pnt3::new(2.0, 2.0, 2.0); /// /// let tp = na::inv_translate(&t, &p); /// /// assert!(na::approx_eq(&tp, &Pnt3::new(1.0, 1.0, 1.0))) /// } #[inline(always)] pub fn inv_translate>(m: &M, p: &P) -> P { m.inv_translate(p) } /* * Rotation */ /// Gets the rotation applicable by `m`. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Vec3, Rot3}; /// /// fn main() { /// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0)); /// /// assert!(na::approx_eq(&na::rotation(&t), &Vec3::new(1.0, 1.0, 1.0))); /// } /// ``` #[inline(always)] pub fn rotation>(m: &M) -> V { m.rotation() } /// Gets the inverse rotation applicable by `m`. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Vec3, Rot3}; /// /// fn main() { /// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0)); /// /// assert!(na::approx_eq(&na::inv_rotation(&t), &Vec3::new(-1.0, -1.0, -1.0))); /// } /// ``` #[inline(always)] pub fn inv_rotation>(m: &M) -> V { m.inv_rotation() } // FIXME: this example is a bit shity /// Applies the rotation `v` to a copy of `m`. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Vec3, Rot3}; /// /// fn main() { /// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0)); /// let v = Vec3::new(1.0, 1.0, 1.0); /// let rt = na::append_rotation(&t, &v); /// /// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0))) /// } /// ``` #[inline(always)] pub fn append_rotation>(m: &M, v: &V) -> M { Rotation::append_rotation(m, v) } // FIXME: this example is a bit shity /// Pre-applies the rotation `v` to a copy of `m`. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Vec3, Rot3}; /// /// fn main() { /// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0)); /// let v = Vec3::new(1.0, 1.0, 1.0); /// let rt = na::prepend_rotation(&t, &v); /// /// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0))) /// } /// ``` #[inline(always)] pub fn prepend_rotation>(m: &M, v: &V) -> M { Rotation::prepend_rotation(m, v) } /* * Rotate */ /// Applies a rotation to a vector. /// /// ```rust /// extern crate nalgebra as na; /// use na::{BaseFloat, Rot3, Vec3}; /// /// fn main() { /// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * ::pi())); /// let v = Vec3::new(1.0, 0.0, 0.0); /// /// let tv = na::rotate(&t, &v); /// /// assert!(na::approx_eq(&tv, &Vec3::new(0.0, 1.0, 0.0))) /// } /// ``` #[inline(always)] pub fn rotate>(m: &M, v: &V) -> V { m.rotate(v) } /// Applies an inverse rotation to a vector. /// /// ```rust /// extern crate nalgebra as na; /// use na::{BaseFloat, Rot3, Vec3}; /// /// fn main() { /// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * ::pi())); /// let v = Vec3::new(1.0, 0.0, 0.0); /// /// let tv = na::inv_rotate(&t, &v); /// /// assert!(na::approx_eq(&tv, &Vec3::new(0.0, -1.0, 0.0))) /// } /// ``` #[inline(always)] pub fn inv_rotate>(m: &M, v: &V) -> V { m.inv_rotate(v) } /* * RotationWithTranslation */ /// Rotates a copy of `m` by `amount` using `center` as the pivot point. #[inline(always)] pub fn append_rotation_wrt_point + Copy, AV, M: RotationWithTranslation>( m: &M, amount: &AV, center: &LV) -> M { RotationWithTranslation::append_rotation_wrt_point(m, amount, center) } /// Rotates a copy of `m` by `amount` using `m.translation()` as the pivot point. #[inline(always)] pub fn append_rotation_wrt_center + Copy, AV, M: RotationWithTranslation>( m: &M, amount: &AV) -> M { RotationWithTranslation::append_rotation_wrt_center(m, amount) } /* * RotationTo */ /// Computes the angle of the rotation needed to transfom `a` to `b`. #[inline(always)] pub fn angle_between(a: &V, b: &V) -> V::AngleType { a.angle_to(b) } /// Computes the rotation needed to transform `a` to `b`. #[inline(always)] pub fn rotation_between(a: &V, b: &V) -> V::DeltaRotationType { a.rotation_to(b) } /* * RotationMatrix */ /// Builds a rotation matrix from `r`. #[inline(always)] pub fn to_rot_mat(r: &R) -> M where R: RotationMatrix, M: SquareMat + Rotation + Copy, LV: Mul { // FIXME: rust-lang/rust#20413 r.to_rot_mat() } /* * AbsoluteRotate */ /// Applies a rotation using the absolute values of its components. #[inline(always)] pub fn absolute_rotate>(m: &M, v: &V) -> V { m.absolute_rotate(v) } /* * Transformation */ /// Gets the transformation applicable by `m`. #[inline(always)] pub fn transformation>(m: &M) -> T { m.transformation() } /// Gets the inverse transformation applicable by `m`. #[inline(always)] pub fn inv_transformation>(m: &M) -> T { m.inv_transformation() } /// Gets a transformed copy of `m`. #[inline(always)] pub fn append_transformation>(m: &M, t: &T) -> M { Transformation::append_transformation(m, t) } /* * Transform */ /// Applies a transformation to a vector. #[inline(always)] pub fn transform>(m: &M, v: &V) -> V { m.transform(v) } /// Applies an inverse transformation to a vector. #[inline(always)] pub fn inv_transform>(m: &M, v: &V) -> V { m.inv_transform(v) } /* * Dot */ /// Computes the dot product of two vectors. #[inline(always)] pub fn dot, N>(a: &V, b: &V) -> N { Dot::dot(a, b) } /* * Norm */ /// Computes the L2 norm of a vector. #[inline(always)] pub fn norm, N: BaseFloat>(v: &V) -> N { Norm::norm(v) } /// Computes the squared L2 norm of a vector. #[inline(always)] pub fn sqnorm, N: BaseFloat>(v: &V) -> N { Norm::sqnorm(v) } /// Gets the normalized version of a vector. #[inline(always)] pub fn normalize, N: BaseFloat>(v: &V) -> V { Norm::normalize(v) } /* * Det */ /// Computes the determinant of a square matrix. #[inline(always)] pub fn det, N>(m: &M) -> N { Det::det(m) } /* * Cross */ /// Computes the cross product of two vectors. #[inline(always)] pub fn cross(a: &LV, b: &LV) -> LV::CrossProductType { Cross::cross(a, b) } /* * CrossMatrix */ /// Given a vector, computes the matrix which, when multiplied by another vector, computes a cross /// product. #[inline(always)] pub fn cross_matrix, M>(v: &V) -> M { CrossMatrix::cross_matrix(v) } /* * ToHomogeneous */ /// Converts a matrix or vector to homogeneous coordinates. #[inline(always)] pub fn to_homogeneous, Res>(m: &M) -> Res { ToHomogeneous::to_homogeneous(m) } /* * FromHomogeneous */ /// Converts a matrix or vector from homogeneous coordinates. /// /// w-normalization is appied. #[inline(always)] pub fn from_homogeneous>(m: &M) -> Res { FromHomogeneous::from(m) } /* * UniformSphereSample */ /// Samples the unit sphere living on the dimension as the samples types. /// /// The number of sampling point is implementation-specific. It is always uniform. #[inline(always)] pub fn sample_sphere(f: F) { UniformSphereSample::sample(f) } // // // Operations // // /* * AproxEq */ /// Tests approximate equality. #[inline(always)] pub fn approx_eq, N>(a: &T, b: &T) -> bool { ApproxEq::approx_eq(a, b) } /// Tests approximate equality using a custom epsilon. #[inline(always)] pub fn approx_eq_eps, N>(a: &T, b: &T, eps: &N) -> bool { ApproxEq::approx_eq_eps(a, b, eps) } /* * Absolute */ /// Computes a component-wise absolute value. #[inline(always)] pub fn abs, Res>(m: &M) -> Res { Absolute::abs(m) } /* * Inv */ /// Gets an inverted copy of a matrix. #[inline(always)] pub fn inv(m: &M) -> Option { Inv::inv(m) } /* * Transpose */ /// Gets a transposed copy of a matrix. #[inline(always)] pub fn transpose(m: &M) -> M { Transpose::transpose(m) } /* * Outer */ /// Computes the outer product of two vectors. #[inline(always)] pub fn outer(a: &V, b: &V) -> V::OuterProductType { Outer::outer(a, b) } /* * Cov */ /// Computes the covariance of a set of observations. #[inline(always)] pub fn cov, Res>(observations: &M) -> Res { Cov::cov(observations) } /* * Mean */ /// Computes the mean of a set of observations. #[inline(always)] pub fn mean>(observations: &M) -> N { Mean::mean(observations) } /* * EigenQR */ /// Computes the eigenvalues and eigenvectors of a square matrix usin the QR algorithm. #[inline(always)] pub fn eigen_qr(m: &M, eps: &N, niter: usize) -> (M, V) where V: Mul, M: EigenQR { EigenQR::eigen_qr(m, eps, niter) } // // // Structure // // /* * Eye */ /// Construct the identity matrix for a given dimension #[inline(always)] pub fn new_identity(dim: usize) -> M { Eye::new_identity(dim) } /* * Repeat */ /// Create an object by repeating a value. /// /// Same as `Identity::new()`. #[inline(always)] pub fn repeat>(val: N) -> T { Repeat::repeat(val) } /* * Basis */ /// Computes the canonical basis for a given dimension. #[inline(always)] pub fn canonical_basis bool>(f: F) { Basis::canonical_basis(f) } /// Computes the basis of the orthonormal subspace of a given vector. #[inline(always)] pub fn orthonormal_subspace_basis bool>(v: &V, f: F) { Basis::orthonormal_subspace_basis(v, f) } /// Gets the (0-based) i-th element of the canonical basis of V. #[inline] pub fn canonical_basis_element(i: usize) -> Option { Basis::canonical_basis_element(i) } /* * Row */ /* * Col */ /* * Diag */ /// Gets the diagonal of a square matrix. #[inline(always)] pub fn diag, V>(m: &M) -> V { m.diag() } /* * Dim */ /// Gets the dimension an object lives in. /// /// Same as `Dim::dim::(None::)`. #[inline(always)] pub fn dim() -> usize { Dim::dim(None::) } /// Gets the indexable range of an object. #[inline(always)] pub fn shape, I>(v: &V) -> I { v.shape() } /* * Cast */ /// Converts an object from one type to another. /// /// For primitive types, this is the same as the `as` keywords. /// The following properties are preserved by a cast: /// /// * Type-level geometric invariants cannot be broken (eg. a cast from Rot3 to Rot3 is /// not possible) /// * A cast to a type with more type-level invariants cannot be done (eg. a cast from Mat to /// Rot3 is not possible) /// * For primitive types an unbounded cast is done using the `as` keyword (this is different from /// the standard library which makes bound-checking to ensure eg. that a i64 is not out of the /// range of an i32 when a cast from i64 to i32 is done). /// * A cast does not affect the dimension of an algebraic object. Note that this prevents an /// isometric transform to be cast to a raw matrix. Use `to_homogeneous` for that special purpose. #[inline(always)] pub fn cast>(t: T) -> U { Cast::from(t) } /* * Indexable */