forked from M-Labs/nalgebra
Merge pull request #788 from dimforge/docs_improvements
Docs improvements - part 1
This commit is contained in:
commit
ffef8e7f54
@ -239,9 +239,9 @@ where
|
||||
x.map(|x| x.floor())
|
||||
}
|
||||
|
||||
//// FIXME: should be implemented for TVec/TMat?
|
||||
//// TODO: should be implemented for TVec/TMat?
|
||||
//pub fn fma<N: Number>(a: N, b: N, c: N) -> N {
|
||||
// // FIXME: use an actual FMA
|
||||
// // TODO: use an actual FMA
|
||||
// a * b + c
|
||||
//}
|
||||
|
||||
@ -268,10 +268,10 @@ where
|
||||
x.map(|x| x.fract())
|
||||
}
|
||||
|
||||
//// FIXME: should be implemented for TVec/TMat?
|
||||
//// TODO: should be implemented for TVec/TMat?
|
||||
///// Returns the (significant, exponent) of this float number.
|
||||
//pub fn frexp<N: RealField>(x: N, exp: N) -> (N, N) {
|
||||
// // FIXME: is there a better approach?
|
||||
// // TODO: is there a better approach?
|
||||
// let e = x.log2().ceil();
|
||||
// (x * (-e).exp2(), e)
|
||||
//}
|
||||
@ -327,7 +327,7 @@ where
|
||||
|
||||
///// Returns the (significant, exponent) of this float number.
|
||||
//pub fn ldexp<N: RealField>(x: N, exp: N) -> N {
|
||||
// // FIXME: is there a better approach?
|
||||
// // TODO: is there a better approach?
|
||||
// x * (exp).exp2()
|
||||
//}
|
||||
|
||||
|
@ -227,7 +227,7 @@ pub fn root_three<N: RealField>() -> N {
|
||||
/// * [`root_five`](fn.root_five.html)
|
||||
/// * [`root_three`](fn.root_three.html)
|
||||
pub fn root_two<N: RealField>() -> N {
|
||||
// FIXME: there should be a crate::sqrt_2() on the RealField trait.
|
||||
// TODO: there should be a crate::sqrt_2() on the RealField trait.
|
||||
na::convert::<_, N>(2.0).sqrt()
|
||||
}
|
||||
|
||||
|
@ -8,7 +8,7 @@ pub fn affine_inverse<N: RealField, D: Dimension>(m: TMat<N, D, D>) -> TMat<N, D
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
// FIXME: this should be optimized.
|
||||
// TODO: this should be optimized.
|
||||
m.try_inverse().unwrap_or_else(TMat::<_, D, D>::zeros)
|
||||
}
|
||||
|
||||
|
@ -57,18 +57,18 @@ pub fn quat_look_at_rh<N: RealField>(direction: &TVec3<N>, up: &TVec3<N>) -> Qua
|
||||
|
||||
/// The "roll" Euler angle of the quaternion `x` assumed to be normalized.
|
||||
pub fn quat_roll<N: RealField>(x: &Qua<N>) -> N {
|
||||
// FIXME: optimize this.
|
||||
// TODO: optimize this.
|
||||
quat_euler_angles(x).z
|
||||
}
|
||||
|
||||
/// The "yaw" Euler angle of the quaternion `x` assumed to be normalized.
|
||||
pub fn quat_yaw<N: RealField>(x: &Qua<N>) -> N {
|
||||
// FIXME: optimize this.
|
||||
// TODO: optimize this.
|
||||
quat_euler_angles(x).y
|
||||
}
|
||||
|
||||
/// The "pitch" Euler angle of the quaternion `x` assumed to be normalized.
|
||||
pub fn quat_pitch<N: RealField>(x: &Qua<N>) -> N {
|
||||
// FIXME: optimize this.
|
||||
// TODO: optimize this.
|
||||
quat_euler_angles(x).x
|
||||
}
|
||||
|
@ -48,7 +48,7 @@ where
|
||||
/// Only the lower-triangular part of the input matrix is considered.
|
||||
#[inline]
|
||||
pub fn new(mut m: MatrixN<N, D>) -> Option<Self> {
|
||||
// FIXME: check symmetry as well?
|
||||
// TODO: check symmetry as well?
|
||||
assert!(
|
||||
m.is_square(),
|
||||
"Unable to compute the cholesky decomposition of a non-square matrix."
|
||||
|
@ -79,7 +79,7 @@ where
|
||||
let lda = n as i32;
|
||||
|
||||
let mut wr = unsafe { Matrix::new_uninitialized_generic(nrows, U1) };
|
||||
// FIXME: Tap into the workspace.
|
||||
// TODO: Tap into the workspace.
|
||||
let mut wi = unsafe { Matrix::new_uninitialized_generic(nrows, U1) };
|
||||
|
||||
let mut info = 0;
|
||||
@ -379,6 +379,6 @@ macro_rules! real_eigensystem_scalar_impl (
|
||||
real_eigensystem_scalar_impl!(f32, lapack::sgeev);
|
||||
real_eigensystem_scalar_impl!(f64, lapack::dgeev);
|
||||
|
||||
//// FIXME: decomposition of complex matrix and matrices with complex eigenvalues.
|
||||
//// TODO: decomposition of complex matrix and matrices with complex eigenvalues.
|
||||
// eigensystem_complex_impl!(f32, lapack::cgeev);
|
||||
// eigensystem_complex_impl!(f64, lapack::zgeev);
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
macro_rules! lapack_check(
|
||||
($info: expr) => (
|
||||
// FIXME: return a richer error.
|
||||
// TODO: return a richer error.
|
||||
if $info != 0 {
|
||||
return None;
|
||||
}
|
||||
|
@ -119,7 +119,7 @@ where
|
||||
id
|
||||
}
|
||||
|
||||
// FIXME: when we support resizing a matrix, we could add unwrap_u/unwrap_l that would
|
||||
// TODO: when we support resizing a matrix, we could add unwrap_u/unwrap_l that would
|
||||
// re-use the memory from the internal matrix!
|
||||
|
||||
/// Gets the LAPACK permutation indices.
|
||||
|
@ -37,9 +37,9 @@ where
|
||||
DefaultAllocator: Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C>,
|
||||
{
|
||||
/// The left-singular vectors `U` of this SVD.
|
||||
pub u: MatrixN<N, R>, // FIXME: should be MatrixMN<N, R, DimMinimum<R, C>>
|
||||
pub u: MatrixN<N, R>, // TODO: should be MatrixMN<N, R, DimMinimum<R, C>>
|
||||
/// The right-singular vectors `V^t` of this SVD.
|
||||
pub vt: MatrixN<N, C>, // FIXME: should be MatrixMN<N, DimMinimum<R, C>, C>
|
||||
pub vt: MatrixN<N, C>, // TODO: should be MatrixMN<N, DimMinimum<R, C>, C>
|
||||
/// The singular values of this SVD.
|
||||
pub singular_values: VectorN<N, DimMinimum<R, C>>,
|
||||
}
|
||||
@ -134,7 +134,7 @@ macro_rules! svd_impl(
|
||||
}
|
||||
|
||||
impl<R: DimMin<C>, C: Dim> SVD<$t, R, C>
|
||||
// FIXME: All those bounds…
|
||||
// TODO: All those bounds…
|
||||
where DefaultAllocator: Allocator<$t, R, C> +
|
||||
Allocator<$t, C, R> +
|
||||
Allocator<$t, U1, R> +
|
||||
@ -219,7 +219,7 @@ macro_rules! svd_impl(
|
||||
i
|
||||
}
|
||||
|
||||
// FIXME: add methods to retrieve the null-space and column-space? (Respectively
|
||||
// TODO: add methods to retrieve the null-space and column-space? (Respectively
|
||||
// corresponding to the zero and non-zero singular values).
|
||||
}
|
||||
);
|
||||
|
@ -21,94 +21,132 @@ pub type MatrixNM<N, R, C> = Matrix<N, R, C, Owned<N, R, C>>;
|
||||
pub type MatrixMN<N, R, C> = Matrix<N, R, C, Owned<N, R, C>>;
|
||||
|
||||
/// A statically sized column-major square matrix with `D` rows and columns.
|
||||
pub type MatrixN<N, D> = MatrixMN<N, D, D>;
|
||||
pub type MatrixN<N, D> = Matrix<N, D, D, Owned<N, D, D>>;
|
||||
|
||||
/// A dynamically sized column-major matrix.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type DMatrix<N> = MatrixN<N, Dynamic>;
|
||||
pub type DMatrix<N> = Matrix<N, Dynamic, Dynamic, Owned<N, Dynamic, Dynamic>>;
|
||||
|
||||
/// A heap-allocated, column-major, matrix with a dynamic number of rows and 1 columns.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type MatrixXx1<N> = Matrix<N, Dynamic, U1, Owned<N, Dynamic, U1>>;
|
||||
/// A heap-allocated, column-major, matrix with a dynamic number of rows and 2 columns.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type MatrixXx2<N> = Matrix<N, Dynamic, U2, Owned<N, Dynamic, U2>>;
|
||||
/// A heap-allocated, column-major, matrix with a dynamic number of rows and 3 columns.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type MatrixXx3<N> = Matrix<N, Dynamic, U3, Owned<N, Dynamic, U3>>;
|
||||
/// A heap-allocated, column-major, matrix with a dynamic number of rows and 4 columns.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type MatrixXx4<N> = Matrix<N, Dynamic, U4, Owned<N, Dynamic, U4>>;
|
||||
/// A heap-allocated, column-major, matrix with a dynamic number of rows and 5 columns.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type MatrixXx5<N> = Matrix<N, Dynamic, U5, Owned<N, Dynamic, U5>>;
|
||||
/// A heap-allocated, column-major, matrix with a dynamic number of rows and 6 columns.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type MatrixXx6<N> = Matrix<N, Dynamic, U6, Owned<N, Dynamic, U6>>;
|
||||
|
||||
/// A heap-allocated, row-major, matrix with 1 rows and a dynamic number of columns.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type Matrix1xX<N> = Matrix<N, U1, Dynamic, Owned<N, U1, Dynamic>>;
|
||||
/// A heap-allocated, row-major, matrix with 2 rows and a dynamic number of columns.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type Matrix2xX<N> = Matrix<N, U2, Dynamic, Owned<N, U2, Dynamic>>;
|
||||
/// A heap-allocated, row-major, matrix with 3 rows and a dynamic number of columns.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type Matrix3xX<N> = Matrix<N, U3, Dynamic, Owned<N, U3, Dynamic>>;
|
||||
/// A heap-allocated, row-major, matrix with 4 rows and a dynamic number of columns.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type Matrix4xX<N> = Matrix<N, U4, Dynamic, Owned<N, U4, Dynamic>>;
|
||||
/// A heap-allocated, row-major, matrix with 5 rows and a dynamic number of columns.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type Matrix5xX<N> = Matrix<N, U5, Dynamic, Owned<N, U5, Dynamic>>;
|
||||
/// A heap-allocated, row-major, matrix with 6 rows and a dynamic number of columns.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub type Matrix6xX<N> = Matrix<N, U6, Dynamic, Owned<N, U6, Dynamic>>;
|
||||
|
||||
/// A stack-allocated, column-major, 1x1 square matrix.
|
||||
pub type Matrix1<N> = MatrixN<N, U1>;
|
||||
pub type Matrix1<N> = Matrix<N, U1, U1, Owned<N, U1, U1>>;
|
||||
/// A stack-allocated, column-major, 2x2 square matrix.
|
||||
pub type Matrix2<N> = MatrixN<N, U2>;
|
||||
pub type Matrix2<N> = Matrix<N, U2, U2, Owned<N, U2, U2>>;
|
||||
/// A stack-allocated, column-major, 3x3 square matrix.
|
||||
pub type Matrix3<N> = MatrixN<N, U3>;
|
||||
pub type Matrix3<N> = Matrix<N, U3, U3, Owned<N, U3, U3>>;
|
||||
/// A stack-allocated, column-major, 4x4 square matrix.
|
||||
pub type Matrix4<N> = MatrixN<N, U4>;
|
||||
pub type Matrix4<N> = Matrix<N, U4, U4, Owned<N, U4, U4>>;
|
||||
/// A stack-allocated, column-major, 5x5 square matrix.
|
||||
pub type Matrix5<N> = MatrixN<N, U5>;
|
||||
pub type Matrix5<N> = Matrix<N, U5, U5, Owned<N, U5, U5>>;
|
||||
/// A stack-allocated, column-major, 6x6 square matrix.
|
||||
pub type Matrix6<N> = MatrixN<N, U6>;
|
||||
pub type Matrix6<N> = Matrix<N, U6, U6, Owned<N, U6, U6>>;
|
||||
|
||||
/// A stack-allocated, column-major, 1x2 matrix.
|
||||
pub type Matrix1x2<N> = MatrixMN<N, U1, U2>;
|
||||
pub type Matrix1x2<N> = Matrix<N, U1, U2, Owned<N, U1, U2>>;
|
||||
/// A stack-allocated, column-major, 1x3 matrix.
|
||||
pub type Matrix1x3<N> = MatrixMN<N, U1, U3>;
|
||||
pub type Matrix1x3<N> = Matrix<N, U1, U3, Owned<N, U1, U3>>;
|
||||
/// A stack-allocated, column-major, 1x4 matrix.
|
||||
pub type Matrix1x4<N> = MatrixMN<N, U1, U4>;
|
||||
pub type Matrix1x4<N> = Matrix<N, U1, U4, Owned<N, U1, U4>>;
|
||||
/// A stack-allocated, column-major, 1x5 matrix.
|
||||
pub type Matrix1x5<N> = MatrixMN<N, U1, U5>;
|
||||
pub type Matrix1x5<N> = Matrix<N, U1, U5, Owned<N, U1, U5>>;
|
||||
/// A stack-allocated, column-major, 1x6 matrix.
|
||||
pub type Matrix1x6<N> = MatrixMN<N, U1, U6>;
|
||||
pub type Matrix1x6<N> = Matrix<N, U1, U6, Owned<N, U1, U6>>;
|
||||
|
||||
/// A stack-allocated, column-major, 2x3 matrix.
|
||||
pub type Matrix2x3<N> = MatrixMN<N, U2, U3>;
|
||||
pub type Matrix2x3<N> = Matrix<N, U2, U3, Owned<N, U2, U3>>;
|
||||
/// A stack-allocated, column-major, 2x4 matrix.
|
||||
pub type Matrix2x4<N> = MatrixMN<N, U2, U4>;
|
||||
pub type Matrix2x4<N> = Matrix<N, U2, U4, Owned<N, U2, U4>>;
|
||||
/// A stack-allocated, column-major, 2x5 matrix.
|
||||
pub type Matrix2x5<N> = MatrixMN<N, U2, U5>;
|
||||
pub type Matrix2x5<N> = Matrix<N, U2, U5, Owned<N, U2, U5>>;
|
||||
/// A stack-allocated, column-major, 2x6 matrix.
|
||||
pub type Matrix2x6<N> = MatrixMN<N, U2, U6>;
|
||||
pub type Matrix2x6<N> = Matrix<N, U2, U6, Owned<N, U2, U6>>;
|
||||
|
||||
/// A stack-allocated, column-major, 3x4 matrix.
|
||||
pub type Matrix3x4<N> = MatrixMN<N, U3, U4>;
|
||||
pub type Matrix3x4<N> = Matrix<N, U3, U4, Owned<N, U3, U4>>;
|
||||
/// A stack-allocated, column-major, 3x5 matrix.
|
||||
pub type Matrix3x5<N> = MatrixMN<N, U3, U5>;
|
||||
pub type Matrix3x5<N> = Matrix<N, U3, U5, Owned<N, U3, U5>>;
|
||||
/// A stack-allocated, column-major, 3x6 matrix.
|
||||
pub type Matrix3x6<N> = MatrixMN<N, U3, U6>;
|
||||
pub type Matrix3x6<N> = Matrix<N, U3, U6, Owned<N, U3, U6>>;
|
||||
|
||||
/// A stack-allocated, column-major, 4x5 matrix.
|
||||
pub type Matrix4x5<N> = MatrixMN<N, U4, U5>;
|
||||
pub type Matrix4x5<N> = Matrix<N, U4, U5, Owned<N, U4, U5>>;
|
||||
/// A stack-allocated, column-major, 4x6 matrix.
|
||||
pub type Matrix4x6<N> = MatrixMN<N, U4, U6>;
|
||||
pub type Matrix4x6<N> = Matrix<N, U4, U6, Owned<N, U4, U6>>;
|
||||
|
||||
/// A stack-allocated, column-major, 5x6 matrix.
|
||||
pub type Matrix5x6<N> = MatrixMN<N, U5, U6>;
|
||||
pub type Matrix5x6<N> = Matrix<N, U5, U6, Owned<N, U5, U6>>;
|
||||
|
||||
/// A stack-allocated, column-major, 2x1 matrix.
|
||||
pub type Matrix2x1<N> = MatrixMN<N, U2, U1>;
|
||||
pub type Matrix2x1<N> = Matrix<N, U2, U1, Owned<N, U2, U1>>;
|
||||
/// A stack-allocated, column-major, 3x1 matrix.
|
||||
pub type Matrix3x1<N> = MatrixMN<N, U3, U1>;
|
||||
pub type Matrix3x1<N> = Matrix<N, U3, U1, Owned<N, U3, U1>>;
|
||||
/// A stack-allocated, column-major, 4x1 matrix.
|
||||
pub type Matrix4x1<N> = MatrixMN<N, U4, U1>;
|
||||
pub type Matrix4x1<N> = Matrix<N, U4, U1, Owned<N, U4, U1>>;
|
||||
/// A stack-allocated, column-major, 5x1 matrix.
|
||||
pub type Matrix5x1<N> = MatrixMN<N, U5, U1>;
|
||||
pub type Matrix5x1<N> = Matrix<N, U5, U1, Owned<N, U5, U1>>;
|
||||
/// A stack-allocated, column-major, 6x1 matrix.
|
||||
pub type Matrix6x1<N> = MatrixMN<N, U6, U1>;
|
||||
pub type Matrix6x1<N> = Matrix<N, U6, U1, Owned<N, U6, U1>>;
|
||||
|
||||
/// A stack-allocated, column-major, 3x2 matrix.
|
||||
pub type Matrix3x2<N> = MatrixMN<N, U3, U2>;
|
||||
pub type Matrix3x2<N> = Matrix<N, U3, U2, Owned<N, U3, U2>>;
|
||||
/// A stack-allocated, column-major, 4x2 matrix.
|
||||
pub type Matrix4x2<N> = MatrixMN<N, U4, U2>;
|
||||
pub type Matrix4x2<N> = Matrix<N, U4, U2, Owned<N, U4, U2>>;
|
||||
/// A stack-allocated, column-major, 5x2 matrix.
|
||||
pub type Matrix5x2<N> = MatrixMN<N, U5, U2>;
|
||||
pub type Matrix5x2<N> = Matrix<N, U5, U2, Owned<N, U5, U2>>;
|
||||
/// A stack-allocated, column-major, 6x2 matrix.
|
||||
pub type Matrix6x2<N> = MatrixMN<N, U6, U2>;
|
||||
pub type Matrix6x2<N> = Matrix<N, U6, U2, Owned<N, U6, U2>>;
|
||||
|
||||
/// A stack-allocated, column-major, 4x3 matrix.
|
||||
pub type Matrix4x3<N> = MatrixMN<N, U4, U3>;
|
||||
pub type Matrix4x3<N> = Matrix<N, U4, U3, Owned<N, U4, U3>>;
|
||||
/// A stack-allocated, column-major, 5x3 matrix.
|
||||
pub type Matrix5x3<N> = MatrixMN<N, U5, U3>;
|
||||
pub type Matrix5x3<N> = Matrix<N, U5, U3, Owned<N, U5, U3>>;
|
||||
/// A stack-allocated, column-major, 6x3 matrix.
|
||||
pub type Matrix6x3<N> = MatrixMN<N, U6, U3>;
|
||||
pub type Matrix6x3<N> = Matrix<N, U6, U3, Owned<N, U6, U3>>;
|
||||
|
||||
/// A stack-allocated, column-major, 5x4 matrix.
|
||||
pub type Matrix5x4<N> = MatrixMN<N, U5, U4>;
|
||||
pub type Matrix5x4<N> = Matrix<N, U5, U4, Owned<N, U5, U4>>;
|
||||
/// A stack-allocated, column-major, 6x4 matrix.
|
||||
pub type Matrix6x4<N> = MatrixMN<N, U6, U4>;
|
||||
pub type Matrix6x4<N> = Matrix<N, U6, U4, Owned<N, U6, U4>>;
|
||||
|
||||
/// A stack-allocated, column-major, 6x5 matrix.
|
||||
pub type Matrix6x5<N> = MatrixMN<N, U6, U5>;
|
||||
pub type Matrix6x5<N> = Matrix<N, U6, U5, Owned<N, U6, U5>>;
|
||||
|
||||
/*
|
||||
*
|
||||
@ -122,20 +160,20 @@ pub type Matrix6x5<N> = MatrixMN<N, U6, U5>;
|
||||
pub type DVector<N> = Matrix<N, Dynamic, U1, VecStorage<N, Dynamic, U1>>;
|
||||
|
||||
/// A statically sized D-dimensional column vector.
|
||||
pub type VectorN<N, D> = MatrixMN<N, D, U1>;
|
||||
pub type VectorN<N, D> = Matrix<N, D, U1, Owned<N, D, U1>>;
|
||||
|
||||
/// A stack-allocated, 1-dimensional column vector.
|
||||
pub type Vector1<N> = VectorN<N, U1>;
|
||||
pub type Vector1<N> = Matrix<N, U1, U1, Owned<N, U1, U1>>;
|
||||
/// A stack-allocated, 2-dimensional column vector.
|
||||
pub type Vector2<N> = VectorN<N, U2>;
|
||||
pub type Vector2<N> = Matrix<N, U2, U1, Owned<N, U2, U1>>;
|
||||
/// A stack-allocated, 3-dimensional column vector.
|
||||
pub type Vector3<N> = VectorN<N, U3>;
|
||||
pub type Vector3<N> = Matrix<N, U3, U1, Owned<N, U3, U1>>;
|
||||
/// A stack-allocated, 4-dimensional column vector.
|
||||
pub type Vector4<N> = VectorN<N, U4>;
|
||||
pub type Vector4<N> = Matrix<N, U4, U1, Owned<N, U4, U1>>;
|
||||
/// A stack-allocated, 5-dimensional column vector.
|
||||
pub type Vector5<N> = VectorN<N, U5>;
|
||||
pub type Vector5<N> = Matrix<N, U5, U1, Owned<N, U5, U1>>;
|
||||
/// A stack-allocated, 6-dimensional column vector.
|
||||
pub type Vector6<N> = VectorN<N, U6>;
|
||||
pub type Vector6<N> = Matrix<N, U6, U1, Owned<N, U6, U1>>;
|
||||
|
||||
/*
|
||||
*
|
||||
@ -149,17 +187,17 @@ pub type Vector6<N> = VectorN<N, U6>;
|
||||
pub type RowDVector<N> = Matrix<N, U1, Dynamic, VecStorage<N, U1, Dynamic>>;
|
||||
|
||||
/// A statically sized D-dimensional row vector.
|
||||
pub type RowVectorN<N, D> = MatrixMN<N, U1, D>;
|
||||
pub type RowVectorN<N, D> = Matrix<N, U1, D, Owned<N, U1, D>>;
|
||||
|
||||
/// A stack-allocated, 1-dimensional row vector.
|
||||
pub type RowVector1<N> = RowVectorN<N, U1>;
|
||||
pub type RowVector1<N> = Matrix<N, U1, U1, Owned<N, U1, U1>>;
|
||||
/// A stack-allocated, 2-dimensional row vector.
|
||||
pub type RowVector2<N> = RowVectorN<N, U2>;
|
||||
pub type RowVector2<N> = Matrix<N, U1, U2, Owned<N, U1, U2>>;
|
||||
/// A stack-allocated, 3-dimensional row vector.
|
||||
pub type RowVector3<N> = RowVectorN<N, U3>;
|
||||
pub type RowVector3<N> = Matrix<N, U1, U3, Owned<N, U1, U3>>;
|
||||
/// A stack-allocated, 4-dimensional row vector.
|
||||
pub type RowVector4<N> = RowVectorN<N, U4>;
|
||||
pub type RowVector4<N> = Matrix<N, U1, U4, Owned<N, U1, U4>>;
|
||||
/// A stack-allocated, 5-dimensional row vector.
|
||||
pub type RowVector5<N> = RowVectorN<N, U5>;
|
||||
pub type RowVector5<N> = Matrix<N, U1, U5, Owned<N, U1, U5>>;
|
||||
/// A stack-allocated, 6-dimensional row vector.
|
||||
pub type RowVector6<N> = RowVectorN<N, U6>;
|
||||
pub type RowVector6<N> = Matrix<N, U1, U6, Owned<N, U1, U6>>;
|
||||
|
@ -15,164 +15,164 @@ pub type MatrixSliceMN<'a, N, R, C, RStride = U1, CStride = R> =
|
||||
|
||||
/// A column-major matrix slice with `D` rows and columns.
|
||||
pub type MatrixSliceN<'a, N, D, RStride = U1, CStride = D> =
|
||||
MatrixSliceMN<'a, N, D, D, RStride, CStride>;
|
||||
Matrix<N, D, D, SliceStorage<'a, N, D, D, RStride, CStride>>;
|
||||
|
||||
/// A column-major matrix slice dynamic numbers of rows and columns.
|
||||
pub type DMatrixSlice<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceN<'a, N, Dynamic, RStride, CStride>;
|
||||
Matrix<N, Dynamic, Dynamic, SliceStorage<'a, N, Dynamic, Dynamic, RStride, CStride>>;
|
||||
|
||||
/// A column-major 1x1 matrix slice.
|
||||
pub type MatrixSlice1<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceN<'a, N, U1, RStride, CStride>;
|
||||
Matrix<N, U1, U1, SliceStorage<'a, N, U1, U1, RStride, CStride>>;
|
||||
/// A column-major 2x2 matrix slice.
|
||||
pub type MatrixSlice2<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceN<'a, N, U2, RStride, CStride>;
|
||||
Matrix<N, U2, U2, SliceStorage<'a, N, U2, U2, RStride, CStride>>;
|
||||
/// A column-major 3x3 matrix slice.
|
||||
pub type MatrixSlice3<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceN<'a, N, U3, RStride, CStride>;
|
||||
Matrix<N, U3, U3, SliceStorage<'a, N, U3, U3, RStride, CStride>>;
|
||||
/// A column-major 4x4 matrix slice.
|
||||
pub type MatrixSlice4<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceN<'a, N, U4, RStride, CStride>;
|
||||
Matrix<N, U4, U4, SliceStorage<'a, N, U4, U4, RStride, CStride>>;
|
||||
/// A column-major 5x5 matrix slice.
|
||||
pub type MatrixSlice5<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceN<'a, N, U5, RStride, CStride>;
|
||||
Matrix<N, U5, U5, SliceStorage<'a, N, U5, U5, RStride, CStride>>;
|
||||
/// A column-major 6x6 matrix slice.
|
||||
pub type MatrixSlice6<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceN<'a, N, U6, RStride, CStride>;
|
||||
Matrix<N, U6, U6, SliceStorage<'a, N, U6, U6, RStride, CStride>>;
|
||||
|
||||
/// A column-major 1x2 matrix slice.
|
||||
pub type MatrixSlice1x2<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMN<'a, N, U1, U2, RStride, CStride>;
|
||||
Matrix<N, U1, U2, SliceStorage<'a, N, U1, U2, RStride, CStride>>;
|
||||
/// A column-major 1x3 matrix slice.
|
||||
pub type MatrixSlice1x3<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMN<'a, N, U1, U3, RStride, CStride>;
|
||||
Matrix<N, U1, U3, SliceStorage<'a, N, U1, U3, RStride, CStride>>;
|
||||
/// A column-major 1x4 matrix slice.
|
||||
pub type MatrixSlice1x4<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMN<'a, N, U1, U4, RStride, CStride>;
|
||||
Matrix<N, U1, U4, SliceStorage<'a, N, U1, U4, RStride, CStride>>;
|
||||
/// A column-major 1x5 matrix slice.
|
||||
pub type MatrixSlice1x5<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMN<'a, N, U1, U5, RStride, CStride>;
|
||||
Matrix<N, U1, U5, SliceStorage<'a, N, U1, U5, RStride, CStride>>;
|
||||
/// A column-major 1x6 matrix slice.
|
||||
pub type MatrixSlice1x6<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMN<'a, N, U1, U6, RStride, CStride>;
|
||||
Matrix<N, U1, U6, SliceStorage<'a, N, U1, U6, RStride, CStride>>;
|
||||
|
||||
/// A column-major 2x1 matrix slice.
|
||||
pub type MatrixSlice2x1<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMN<'a, N, U2, U1, RStride, CStride>;
|
||||
Matrix<N, U2, U1, SliceStorage<'a, N, U2, U1, RStride, CStride>>;
|
||||
/// A column-major 2x3 matrix slice.
|
||||
pub type MatrixSlice2x3<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMN<'a, N, U2, U3, RStride, CStride>;
|
||||
Matrix<N, U2, U3, SliceStorage<'a, N, U2, U3, RStride, CStride>>;
|
||||
/// A column-major 2x4 matrix slice.
|
||||
pub type MatrixSlice2x4<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMN<'a, N, U2, U4, RStride, CStride>;
|
||||
Matrix<N, U2, U4, SliceStorage<'a, N, U2, U4, RStride, CStride>>;
|
||||
/// A column-major 2x5 matrix slice.
|
||||
pub type MatrixSlice2x5<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMN<'a, N, U2, U5, RStride, CStride>;
|
||||
Matrix<N, U2, U5, SliceStorage<'a, N, U2, U5, RStride, CStride>>;
|
||||
/// A column-major 2x6 matrix slice.
|
||||
pub type MatrixSlice2x6<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMN<'a, N, U2, U6, RStride, CStride>;
|
||||
Matrix<N, U2, U6, SliceStorage<'a, N, U2, U6, RStride, CStride>>;
|
||||
|
||||
/// A column-major 3x1 matrix slice.
|
||||
pub type MatrixSlice3x1<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMN<'a, N, U3, U1, RStride, CStride>;
|
||||
Matrix<N, U3, U1, SliceStorage<'a, N, U3, U1, RStride, CStride>>;
|
||||
/// A column-major 3x2 matrix slice.
|
||||
pub type MatrixSlice3x2<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMN<'a, N, U3, U2, RStride, CStride>;
|
||||
Matrix<N, U3, U2, SliceStorage<'a, N, U3, U2, RStride, CStride>>;
|
||||
/// A column-major 3x4 matrix slice.
|
||||
pub type MatrixSlice3x4<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMN<'a, N, U3, U4, RStride, CStride>;
|
||||
Matrix<N, U3, U4, SliceStorage<'a, N, U3, U4, RStride, CStride>>;
|
||||
/// A column-major 3x5 matrix slice.
|
||||
pub type MatrixSlice3x5<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMN<'a, N, U3, U5, RStride, CStride>;
|
||||
Matrix<N, U3, U5, SliceStorage<'a, N, U3, U5, RStride, CStride>>;
|
||||
/// A column-major 3x6 matrix slice.
|
||||
pub type MatrixSlice3x6<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMN<'a, N, U3, U6, RStride, CStride>;
|
||||
Matrix<N, U3, U6, SliceStorage<'a, N, U3, U6, RStride, CStride>>;
|
||||
|
||||
/// A column-major 4x1 matrix slice.
|
||||
pub type MatrixSlice4x1<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMN<'a, N, U4, U1, RStride, CStride>;
|
||||
Matrix<N, U4, U1, SliceStorage<'a, N, U4, U1, RStride, CStride>>;
|
||||
/// A column-major 4x2 matrix slice.
|
||||
pub type MatrixSlice4x2<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMN<'a, N, U4, U2, RStride, CStride>;
|
||||
Matrix<N, U4, U2, SliceStorage<'a, N, U4, U2, RStride, CStride>>;
|
||||
/// A column-major 4x3 matrix slice.
|
||||
pub type MatrixSlice4x3<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMN<'a, N, U4, U3, RStride, CStride>;
|
||||
Matrix<N, U4, U3, SliceStorage<'a, N, U4, U3, RStride, CStride>>;
|
||||
/// A column-major 4x5 matrix slice.
|
||||
pub type MatrixSlice4x5<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMN<'a, N, U4, U5, RStride, CStride>;
|
||||
Matrix<N, U4, U5, SliceStorage<'a, N, U4, U5, RStride, CStride>>;
|
||||
/// A column-major 4x6 matrix slice.
|
||||
pub type MatrixSlice4x6<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMN<'a, N, U4, U6, RStride, CStride>;
|
||||
Matrix<N, U4, U6, SliceStorage<'a, N, U4, U6, RStride, CStride>>;
|
||||
|
||||
/// A column-major 5x1 matrix slice.
|
||||
pub type MatrixSlice5x1<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMN<'a, N, U5, U1, RStride, CStride>;
|
||||
Matrix<N, U5, U1, SliceStorage<'a, N, U5, U1, RStride, CStride>>;
|
||||
/// A column-major 5x2 matrix slice.
|
||||
pub type MatrixSlice5x2<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMN<'a, N, U5, U2, RStride, CStride>;
|
||||
Matrix<N, U5, U2, SliceStorage<'a, N, U5, U2, RStride, CStride>>;
|
||||
/// A column-major 5x3 matrix slice.
|
||||
pub type MatrixSlice5x3<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMN<'a, N, U5, U3, RStride, CStride>;
|
||||
Matrix<N, U5, U3, SliceStorage<'a, N, U5, U3, RStride, CStride>>;
|
||||
/// A column-major 5x4 matrix slice.
|
||||
pub type MatrixSlice5x4<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMN<'a, N, U5, U4, RStride, CStride>;
|
||||
Matrix<N, U5, U4, SliceStorage<'a, N, U5, U4, RStride, CStride>>;
|
||||
/// A column-major 5x6 matrix slice.
|
||||
pub type MatrixSlice5x6<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMN<'a, N, U5, U6, RStride, CStride>;
|
||||
Matrix<N, U5, U6, SliceStorage<'a, N, U5, U6, RStride, CStride>>;
|
||||
|
||||
/// A column-major 6x1 matrix slice.
|
||||
pub type MatrixSlice6x1<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMN<'a, N, U6, U1, RStride, CStride>;
|
||||
Matrix<N, U6, U1, SliceStorage<'a, N, U6, U1, RStride, CStride>>;
|
||||
/// A column-major 6x2 matrix slice.
|
||||
pub type MatrixSlice6x2<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMN<'a, N, U6, U2, RStride, CStride>;
|
||||
Matrix<N, U6, U2, SliceStorage<'a, N, U6, U2, RStride, CStride>>;
|
||||
/// A column-major 6x3 matrix slice.
|
||||
pub type MatrixSlice6x3<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMN<'a, N, U6, U3, RStride, CStride>;
|
||||
Matrix<N, U6, U3, SliceStorage<'a, N, U6, U3, RStride, CStride>>;
|
||||
/// A column-major 6x4 matrix slice.
|
||||
pub type MatrixSlice6x4<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMN<'a, N, U6, U4, RStride, CStride>;
|
||||
Matrix<N, U6, U4, SliceStorage<'a, N, U6, U4, RStride, CStride>>;
|
||||
/// A column-major 6x5 matrix slice.
|
||||
pub type MatrixSlice6x5<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMN<'a, N, U6, U6, RStride, CStride>;
|
||||
Matrix<N, U6, U5, SliceStorage<'a, N, U6, U5, RStride, CStride>>;
|
||||
|
||||
/// A column-major matrix slice with 1 row and a number of columns chosen at runtime.
|
||||
pub type MatrixSlice1xX<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMN<'a, N, U1, Dynamic, RStride, CStride>;
|
||||
Matrix<N, U1, Dynamic, SliceStorage<'a, N, U1, Dynamic, RStride, CStride>>;
|
||||
/// A column-major matrix slice with 2 rows and a number of columns chosen at runtime.
|
||||
pub type MatrixSlice2xX<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMN<'a, N, U2, Dynamic, RStride, CStride>;
|
||||
Matrix<N, U2, Dynamic, SliceStorage<'a, N, U2, Dynamic, RStride, CStride>>;
|
||||
/// A column-major matrix slice with 3 rows and a number of columns chosen at runtime.
|
||||
pub type MatrixSlice3xX<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMN<'a, N, U3, Dynamic, RStride, CStride>;
|
||||
Matrix<N, U3, Dynamic, SliceStorage<'a, N, U3, Dynamic, RStride, CStride>>;
|
||||
/// A column-major matrix slice with 4 rows and a number of columns chosen at runtime.
|
||||
pub type MatrixSlice4xX<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMN<'a, N, U4, Dynamic, RStride, CStride>;
|
||||
Matrix<N, U4, Dynamic, SliceStorage<'a, N, U4, Dynamic, RStride, CStride>>;
|
||||
/// A column-major matrix slice with 5 rows and a number of columns chosen at runtime.
|
||||
pub type MatrixSlice5xX<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMN<'a, N, U5, Dynamic, RStride, CStride>;
|
||||
Matrix<N, U5, Dynamic, SliceStorage<'a, N, U5, Dynamic, RStride, CStride>>;
|
||||
/// A column-major matrix slice with 6 rows and a number of columns chosen at runtime.
|
||||
pub type MatrixSlice6xX<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMN<'a, N, U6, Dynamic, RStride, CStride>;
|
||||
Matrix<N, U6, Dynamic, SliceStorage<'a, N, U6, Dynamic, RStride, CStride>>;
|
||||
|
||||
/// A column-major matrix slice with a number of rows chosen at runtime and 1 column.
|
||||
pub type MatrixSliceXx1<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMN<'a, N, Dynamic, U1, RStride, CStride>;
|
||||
Matrix<N, Dynamic, U1, SliceStorage<'a, N, Dynamic, U1, RStride, CStride>>;
|
||||
/// A column-major matrix slice with a number of rows chosen at runtime and 2 columns.
|
||||
pub type MatrixSliceXx2<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMN<'a, N, Dynamic, U2, RStride, CStride>;
|
||||
Matrix<N, Dynamic, U2, SliceStorage<'a, N, Dynamic, U2, RStride, CStride>>;
|
||||
/// A column-major matrix slice with a number of rows chosen at runtime and 3 columns.
|
||||
pub type MatrixSliceXx3<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMN<'a, N, Dynamic, U3, RStride, CStride>;
|
||||
Matrix<N, Dynamic, U3, SliceStorage<'a, N, Dynamic, U3, RStride, CStride>>;
|
||||
/// A column-major matrix slice with a number of rows chosen at runtime and 4 columns.
|
||||
pub type MatrixSliceXx4<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMN<'a, N, Dynamic, U4, RStride, CStride>;
|
||||
Matrix<N, Dynamic, U4, SliceStorage<'a, N, Dynamic, U4, RStride, CStride>>;
|
||||
/// A column-major matrix slice with a number of rows chosen at runtime and 5 columns.
|
||||
pub type MatrixSliceXx5<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMN<'a, N, Dynamic, U5, RStride, CStride>;
|
||||
Matrix<N, Dynamic, U5, SliceStorage<'a, N, Dynamic, U5, RStride, CStride>>;
|
||||
/// A column-major matrix slice with a number of rows chosen at runtime and 6 columns.
|
||||
pub type MatrixSliceXx6<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMN<'a, N, Dynamic, U6, RStride, CStride>;
|
||||
Matrix<N, Dynamic, U6, SliceStorage<'a, N, Dynamic, U6, RStride, CStride>>;
|
||||
|
||||
/// A column vector slice with `D` rows.
|
||||
pub type VectorSliceN<'a, N, D, RStride = U1, CStride = D> =
|
||||
@ -180,26 +180,26 @@ pub type VectorSliceN<'a, N, D, RStride = U1, CStride = D> =
|
||||
|
||||
/// A column vector slice dynamic numbers of rows and columns.
|
||||
pub type DVectorSlice<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
VectorSliceN<'a, N, Dynamic, RStride, CStride>;
|
||||
Matrix<N, Dynamic, U1, SliceStorage<'a, N, Dynamic, U1, RStride, CStride>>;
|
||||
|
||||
/// A 1D column vector slice.
|
||||
pub type VectorSlice1<'a, N, RStride = U1, CStride = U1> =
|
||||
VectorSliceN<'a, N, U1, RStride, CStride>;
|
||||
Matrix<N, U1, U1, SliceStorage<'a, N, U1, U1, RStride, CStride>>;
|
||||
/// A 2D column vector slice.
|
||||
pub type VectorSlice2<'a, N, RStride = U1, CStride = U2> =
|
||||
VectorSliceN<'a, N, U2, RStride, CStride>;
|
||||
Matrix<N, U2, U1, SliceStorage<'a, N, U2, U1, RStride, CStride>>;
|
||||
/// A 3D column vector slice.
|
||||
pub type VectorSlice3<'a, N, RStride = U1, CStride = U3> =
|
||||
VectorSliceN<'a, N, U3, RStride, CStride>;
|
||||
Matrix<N, U3, U1, SliceStorage<'a, N, U3, U1, RStride, CStride>>;
|
||||
/// A 4D column vector slice.
|
||||
pub type VectorSlice4<'a, N, RStride = U1, CStride = U4> =
|
||||
VectorSliceN<'a, N, U4, RStride, CStride>;
|
||||
Matrix<N, U4, U1, SliceStorage<'a, N, U4, U1, RStride, CStride>>;
|
||||
/// A 5D column vector slice.
|
||||
pub type VectorSlice5<'a, N, RStride = U1, CStride = U5> =
|
||||
VectorSliceN<'a, N, U5, RStride, CStride>;
|
||||
Matrix<N, U5, U1, SliceStorage<'a, N, U5, U1, RStride, CStride>>;
|
||||
/// A 6D column vector slice.
|
||||
pub type VectorSlice6<'a, N, RStride = U1, CStride = U6> =
|
||||
VectorSliceN<'a, N, U6, RStride, CStride>;
|
||||
Matrix<N, U6, U1, SliceStorage<'a, N, U6, U1, RStride, CStride>>;
|
||||
|
||||
/*
|
||||
*
|
||||
@ -208,194 +208,194 @@ pub type VectorSlice6<'a, N, RStride = U1, CStride = U6> =
|
||||
*
|
||||
*
|
||||
*/
|
||||
/// A column-major mutable matrix slice with `R` rows and `C` columns.
|
||||
/// A column-major matrix slice with `R` rows and `C` columns.
|
||||
pub type MatrixSliceMutMN<'a, N, R, C, RStride = U1, CStride = R> =
|
||||
Matrix<N, R, C, SliceStorageMut<'a, N, R, C, RStride, CStride>>;
|
||||
|
||||
/// A column-major mutable matrix slice with `D` rows and columns.
|
||||
/// A column-major matrix slice with `D` rows and columns.
|
||||
pub type MatrixSliceMutN<'a, N, D, RStride = U1, CStride = D> =
|
||||
MatrixSliceMutMN<'a, N, D, D, RStride, CStride>;
|
||||
Matrix<N, D, D, SliceStorageMut<'a, N, D, D, RStride, CStride>>;
|
||||
|
||||
/// A column-major mutable matrix slice dynamic numbers of rows and columns.
|
||||
/// A column-major matrix slice dynamic numbers of rows and columns.
|
||||
pub type DMatrixSliceMut<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMutN<'a, N, Dynamic, RStride, CStride>;
|
||||
Matrix<N, Dynamic, Dynamic, SliceStorageMut<'a, N, Dynamic, Dynamic, RStride, CStride>>;
|
||||
|
||||
/// A column-major 1x1 mutable matrix slice.
|
||||
/// A column-major 1x1 matrix slice.
|
||||
pub type MatrixSliceMut1<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMutN<'a, N, U1, RStride, CStride>;
|
||||
/// A column-major 2x2 mutable matrix slice.
|
||||
Matrix<N, U1, U1, SliceStorageMut<'a, N, U1, U1, RStride, CStride>>;
|
||||
/// A column-major 2x2 matrix slice.
|
||||
pub type MatrixSliceMut2<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMutN<'a, N, U2, RStride, CStride>;
|
||||
/// A column-major 3x3 mutable matrix slice.
|
||||
Matrix<N, U2, U2, SliceStorageMut<'a, N, U2, U2, RStride, CStride>>;
|
||||
/// A column-major 3x3 matrix slice.
|
||||
pub type MatrixSliceMut3<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMutN<'a, N, U3, RStride, CStride>;
|
||||
/// A column-major 4x4 mutable matrix slice.
|
||||
Matrix<N, U3, U3, SliceStorageMut<'a, N, U3, U3, RStride, CStride>>;
|
||||
/// A column-major 4x4 matrix slice.
|
||||
pub type MatrixSliceMut4<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMutN<'a, N, U4, RStride, CStride>;
|
||||
/// A column-major 5x5 mutable matrix slice.
|
||||
Matrix<N, U4, U4, SliceStorageMut<'a, N, U4, U4, RStride, CStride>>;
|
||||
/// A column-major 5x5 matrix slice.
|
||||
pub type MatrixSliceMut5<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMutN<'a, N, U5, RStride, CStride>;
|
||||
/// A column-major 6x6 mutable matrix slice.
|
||||
Matrix<N, U5, U5, SliceStorageMut<'a, N, U5, U5, RStride, CStride>>;
|
||||
/// A column-major 6x6 matrix slice.
|
||||
pub type MatrixSliceMut6<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMutN<'a, N, U6, RStride, CStride>;
|
||||
Matrix<N, U6, U6, SliceStorageMut<'a, N, U6, U6, RStride, CStride>>;
|
||||
|
||||
/// A column-major 1x2 mutable matrix slice.
|
||||
/// A column-major 1x2 matrix slice.
|
||||
pub type MatrixSliceMut1x2<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMutMN<'a, N, U1, U2, RStride, CStride>;
|
||||
/// A column-major 1x3 mutable matrix slice.
|
||||
Matrix<N, U1, U2, SliceStorageMut<'a, N, U1, U2, RStride, CStride>>;
|
||||
/// A column-major 1x3 matrix slice.
|
||||
pub type MatrixSliceMut1x3<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMutMN<'a, N, U1, U3, RStride, CStride>;
|
||||
/// A column-major 1x4 mutable matrix slice.
|
||||
Matrix<N, U1, U3, SliceStorageMut<'a, N, U1, U3, RStride, CStride>>;
|
||||
/// A column-major 1x4 matrix slice.
|
||||
pub type MatrixSliceMut1x4<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMutMN<'a, N, U1, U4, RStride, CStride>;
|
||||
/// A column-major 1x5 mutable matrix slice.
|
||||
Matrix<N, U1, U4, SliceStorageMut<'a, N, U1, U4, RStride, CStride>>;
|
||||
/// A column-major 1x5 matrix slice.
|
||||
pub type MatrixSliceMut1x5<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMutMN<'a, N, U1, U5, RStride, CStride>;
|
||||
/// A column-major 1x6 mutable matrix slice.
|
||||
Matrix<N, U1, U5, SliceStorageMut<'a, N, U1, U5, RStride, CStride>>;
|
||||
/// A column-major 1x6 matrix slice.
|
||||
pub type MatrixSliceMut1x6<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMutMN<'a, N, U1, U6, RStride, CStride>;
|
||||
Matrix<N, U1, U6, SliceStorageMut<'a, N, U1, U6, RStride, CStride>>;
|
||||
|
||||
/// A column-major 2x1 mutable matrix slice.
|
||||
/// A column-major 2x1 matrix slice.
|
||||
pub type MatrixSliceMut2x1<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMutMN<'a, N, U2, U1, RStride, CStride>;
|
||||
/// A column-major 2x3 mutable matrix slice.
|
||||
Matrix<N, U2, U1, SliceStorageMut<'a, N, U2, U1, RStride, CStride>>;
|
||||
/// A column-major 2x3 matrix slice.
|
||||
pub type MatrixSliceMut2x3<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMutMN<'a, N, U2, U3, RStride, CStride>;
|
||||
/// A column-major 2x4 mutable matrix slice.
|
||||
Matrix<N, U2, U3, SliceStorageMut<'a, N, U2, U3, RStride, CStride>>;
|
||||
/// A column-major 2x4 matrix slice.
|
||||
pub type MatrixSliceMut2x4<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMutMN<'a, N, U2, U4, RStride, CStride>;
|
||||
/// A column-major 2x5 mutable matrix slice.
|
||||
Matrix<N, U2, U4, SliceStorageMut<'a, N, U2, U4, RStride, CStride>>;
|
||||
/// A column-major 2x5 matrix slice.
|
||||
pub type MatrixSliceMut2x5<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMutMN<'a, N, U2, U5, RStride, CStride>;
|
||||
/// A column-major 2x6 mutable matrix slice.
|
||||
Matrix<N, U2, U5, SliceStorageMut<'a, N, U2, U5, RStride, CStride>>;
|
||||
/// A column-major 2x6 matrix slice.
|
||||
pub type MatrixSliceMut2x6<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMutMN<'a, N, U2, U6, RStride, CStride>;
|
||||
Matrix<N, U2, U6, SliceStorageMut<'a, N, U2, U6, RStride, CStride>>;
|
||||
|
||||
/// A column-major 3x1 mutable matrix slice.
|
||||
/// A column-major 3x1 matrix slice.
|
||||
pub type MatrixSliceMut3x1<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMutMN<'a, N, U3, U1, RStride, CStride>;
|
||||
/// A column-major 3x2 mutable matrix slice.
|
||||
Matrix<N, U3, U1, SliceStorageMut<'a, N, U3, U1, RStride, CStride>>;
|
||||
/// A column-major 3x2 matrix slice.
|
||||
pub type MatrixSliceMut3x2<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMutMN<'a, N, U3, U2, RStride, CStride>;
|
||||
/// A column-major 3x4 mutable matrix slice.
|
||||
Matrix<N, U3, U2, SliceStorageMut<'a, N, U3, U2, RStride, CStride>>;
|
||||
/// A column-major 3x4 matrix slice.
|
||||
pub type MatrixSliceMut3x4<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMutMN<'a, N, U3, U4, RStride, CStride>;
|
||||
/// A column-major 3x5 mutable matrix slice.
|
||||
Matrix<N, U3, U4, SliceStorageMut<'a, N, U3, U4, RStride, CStride>>;
|
||||
/// A column-major 3x5 matrix slice.
|
||||
pub type MatrixSliceMut3x5<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMutMN<'a, N, U3, U5, RStride, CStride>;
|
||||
/// A column-major 3x6 mutable matrix slice.
|
||||
Matrix<N, U3, U5, SliceStorageMut<'a, N, U3, U5, RStride, CStride>>;
|
||||
/// A column-major 3x6 matrix slice.
|
||||
pub type MatrixSliceMut3x6<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMutMN<'a, N, U3, U6, RStride, CStride>;
|
||||
Matrix<N, U3, U6, SliceStorageMut<'a, N, U3, U6, RStride, CStride>>;
|
||||
|
||||
/// A column-major 4x1 mutable matrix slice.
|
||||
/// A column-major 4x1 matrix slice.
|
||||
pub type MatrixSliceMut4x1<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMutMN<'a, N, U4, U1, RStride, CStride>;
|
||||
/// A column-major 4x2 mutable matrix slice.
|
||||
Matrix<N, U4, U1, SliceStorageMut<'a, N, U4, U1, RStride, CStride>>;
|
||||
/// A column-major 4x2 matrix slice.
|
||||
pub type MatrixSliceMut4x2<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMutMN<'a, N, U4, U2, RStride, CStride>;
|
||||
/// A column-major 4x3 mutable matrix slice.
|
||||
Matrix<N, U4, U2, SliceStorageMut<'a, N, U4, U2, RStride, CStride>>;
|
||||
/// A column-major 4x3 matrix slice.
|
||||
pub type MatrixSliceMut4x3<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMutMN<'a, N, U4, U3, RStride, CStride>;
|
||||
/// A column-major 4x5 mutable matrix slice.
|
||||
Matrix<N, U4, U3, SliceStorageMut<'a, N, U4, U3, RStride, CStride>>;
|
||||
/// A column-major 4x5 matrix slice.
|
||||
pub type MatrixSliceMut4x5<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMutMN<'a, N, U4, U5, RStride, CStride>;
|
||||
/// A column-major 4x6 mutable matrix slice.
|
||||
Matrix<N, U4, U5, SliceStorageMut<'a, N, U4, U5, RStride, CStride>>;
|
||||
/// A column-major 4x6 matrix slice.
|
||||
pub type MatrixSliceMut4x6<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMutMN<'a, N, U4, U6, RStride, CStride>;
|
||||
Matrix<N, U4, U6, SliceStorageMut<'a, N, U4, U6, RStride, CStride>>;
|
||||
|
||||
/// A column-major 5x1 mutable matrix slice.
|
||||
/// A column-major 5x1 matrix slice.
|
||||
pub type MatrixSliceMut5x1<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMutMN<'a, N, U5, U1, RStride, CStride>;
|
||||
/// A column-major 5x2 mutable matrix slice.
|
||||
Matrix<N, U5, U1, SliceStorageMut<'a, N, U5, U1, RStride, CStride>>;
|
||||
/// A column-major 5x2 matrix slice.
|
||||
pub type MatrixSliceMut5x2<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMutMN<'a, N, U5, U2, RStride, CStride>;
|
||||
/// A column-major 5x3 mutable matrix slice.
|
||||
Matrix<N, U5, U2, SliceStorageMut<'a, N, U5, U2, RStride, CStride>>;
|
||||
/// A column-major 5x3 matrix slice.
|
||||
pub type MatrixSliceMut5x3<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMutMN<'a, N, U5, U3, RStride, CStride>;
|
||||
/// A column-major 5x4 mutable matrix slice.
|
||||
Matrix<N, U5, U3, SliceStorageMut<'a, N, U5, U3, RStride, CStride>>;
|
||||
/// A column-major 5x4 matrix slice.
|
||||
pub type MatrixSliceMut5x4<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMutMN<'a, N, U5, U4, RStride, CStride>;
|
||||
/// A column-major 5x6 mutable matrix slice.
|
||||
Matrix<N, U5, U4, SliceStorageMut<'a, N, U5, U4, RStride, CStride>>;
|
||||
/// A column-major 5x6 matrix slice.
|
||||
pub type MatrixSliceMut5x6<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMutMN<'a, N, U5, U6, RStride, CStride>;
|
||||
Matrix<N, U5, U6, SliceStorageMut<'a, N, U5, U6, RStride, CStride>>;
|
||||
|
||||
/// A column-major 6x1 mutable matrix slice.
|
||||
/// A column-major 6x1 matrix slice.
|
||||
pub type MatrixSliceMut6x1<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMutMN<'a, N, U6, U1, RStride, CStride>;
|
||||
/// A column-major 6x2 mutable matrix slice.
|
||||
Matrix<N, U6, U1, SliceStorageMut<'a, N, U6, U1, RStride, CStride>>;
|
||||
/// A column-major 6x2 matrix slice.
|
||||
pub type MatrixSliceMut6x2<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMutMN<'a, N, U6, U2, RStride, CStride>;
|
||||
/// A column-major 6x3 mutable matrix slice.
|
||||
Matrix<N, U6, U2, SliceStorageMut<'a, N, U6, U2, RStride, CStride>>;
|
||||
/// A column-major 6x3 matrix slice.
|
||||
pub type MatrixSliceMut6x3<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMutMN<'a, N, U6, U3, RStride, CStride>;
|
||||
/// A column-major 6x4 mutable matrix slice.
|
||||
Matrix<N, U6, U3, SliceStorageMut<'a, N, U6, U3, RStride, CStride>>;
|
||||
/// A column-major 6x4 matrix slice.
|
||||
pub type MatrixSliceMut6x4<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMutMN<'a, N, U6, U4, RStride, CStride>;
|
||||
/// A column-major 6x5 mutable matrix slice.
|
||||
Matrix<N, U6, U4, SliceStorageMut<'a, N, U6, U4, RStride, CStride>>;
|
||||
/// A column-major 6x5 matrix slice.
|
||||
pub type MatrixSliceMut6x5<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMutMN<'a, N, U6, U5, RStride, CStride>;
|
||||
Matrix<N, U6, U5, SliceStorageMut<'a, N, U6, U5, RStride, CStride>>;
|
||||
|
||||
/// A column-major mutable matrix slice with 1 row and a number of columns chosen at runtime.
|
||||
/// A column-major matrix slice with 1 row and a number of columns chosen at runtime.
|
||||
pub type MatrixSliceMut1xX<'a, N, RStride = U1, CStride = U1> =
|
||||
MatrixSliceMutMN<'a, N, U1, Dynamic, RStride, CStride>;
|
||||
/// A column-major mutable matrix slice with 2 rows and a number of columns chosen at runtime.
|
||||
Matrix<N, U1, Dynamic, SliceStorageMut<'a, N, U1, Dynamic, RStride, CStride>>;
|
||||
/// A column-major matrix slice with 2 rows and a number of columns chosen at runtime.
|
||||
pub type MatrixSliceMut2xX<'a, N, RStride = U1, CStride = U2> =
|
||||
MatrixSliceMutMN<'a, N, U2, Dynamic, RStride, CStride>;
|
||||
/// A column-major mutable matrix slice with 3 rows and a number of columns chosen at runtime.
|
||||
Matrix<N, U2, Dynamic, SliceStorageMut<'a, N, U2, Dynamic, RStride, CStride>>;
|
||||
/// A column-major matrix slice with 3 rows and a number of columns chosen at runtime.
|
||||
pub type MatrixSliceMut3xX<'a, N, RStride = U1, CStride = U3> =
|
||||
MatrixSliceMutMN<'a, N, U3, Dynamic, RStride, CStride>;
|
||||
/// A column-major mutable matrix slice with 4 rows and a number of columns chosen at runtime.
|
||||
Matrix<N, U3, Dynamic, SliceStorageMut<'a, N, U3, Dynamic, RStride, CStride>>;
|
||||
/// A column-major matrix slice with 4 rows and a number of columns chosen at runtime.
|
||||
pub type MatrixSliceMut4xX<'a, N, RStride = U1, CStride = U4> =
|
||||
MatrixSliceMutMN<'a, N, U4, Dynamic, RStride, CStride>;
|
||||
/// A column-major mutable matrix slice with 5 rows and a number of columns chosen at runtime.
|
||||
Matrix<N, U4, Dynamic, SliceStorageMut<'a, N, U4, Dynamic, RStride, CStride>>;
|
||||
/// A column-major matrix slice with 5 rows and a number of columns chosen at runtime.
|
||||
pub type MatrixSliceMut5xX<'a, N, RStride = U1, CStride = U5> =
|
||||
MatrixSliceMutMN<'a, N, U5, Dynamic, RStride, CStride>;
|
||||
/// A column-major mutable matrix slice with 6 rows and a number of columns chosen at runtime.
|
||||
Matrix<N, U5, Dynamic, SliceStorageMut<'a, N, U5, Dynamic, RStride, CStride>>;
|
||||
/// A column-major matrix slice with 6 rows and a number of columns chosen at runtime.
|
||||
pub type MatrixSliceMut6xX<'a, N, RStride = U1, CStride = U6> =
|
||||
MatrixSliceMutMN<'a, N, U6, Dynamic, RStride, CStride>;
|
||||
Matrix<N, U6, Dynamic, SliceStorageMut<'a, N, U6, Dynamic, RStride, CStride>>;
|
||||
|
||||
/// A column-major mutable matrix slice with a number of rows chosen at runtime and 1 column.
|
||||
/// A column-major matrix slice with a number of rows chosen at runtime and 1 column.
|
||||
pub type MatrixSliceMutXx1<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMutMN<'a, N, Dynamic, U1, RStride, CStride>;
|
||||
/// A column-major mutable matrix slice with a number of rows chosen at runtime and 2 columns.
|
||||
Matrix<N, Dynamic, U1, SliceStorageMut<'a, N, Dynamic, U1, RStride, CStride>>;
|
||||
/// A column-major matrix slice with a number of rows chosen at runtime and 2 columns.
|
||||
pub type MatrixSliceMutXx2<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMutMN<'a, N, Dynamic, U2, RStride, CStride>;
|
||||
/// A column-major mutable matrix slice with a number of rows chosen at runtime and 3 columns.
|
||||
Matrix<N, Dynamic, U2, SliceStorageMut<'a, N, Dynamic, U2, RStride, CStride>>;
|
||||
/// A column-major matrix slice with a number of rows chosen at runtime and 3 columns.
|
||||
pub type MatrixSliceMutXx3<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMutMN<'a, N, Dynamic, U3, RStride, CStride>;
|
||||
/// A column-major mutable matrix slice with a number of rows chosen at runtime and 4 columns.
|
||||
Matrix<N, Dynamic, U3, SliceStorageMut<'a, N, Dynamic, U3, RStride, CStride>>;
|
||||
/// A column-major matrix slice with a number of rows chosen at runtime and 4 columns.
|
||||
pub type MatrixSliceMutXx4<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMutMN<'a, N, Dynamic, U4, RStride, CStride>;
|
||||
/// A column-major mutable matrix slice with a number of rows chosen at runtime and 5 columns.
|
||||
Matrix<N, Dynamic, U4, SliceStorageMut<'a, N, Dynamic, U4, RStride, CStride>>;
|
||||
/// A column-major matrix slice with a number of rows chosen at runtime and 5 columns.
|
||||
pub type MatrixSliceMutXx5<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMutMN<'a, N, Dynamic, U5, RStride, CStride>;
|
||||
/// A column-major mutable matrix slice with a number of rows chosen at runtime and 6 columns.
|
||||
Matrix<N, Dynamic, U5, SliceStorageMut<'a, N, Dynamic, U5, RStride, CStride>>;
|
||||
/// A column-major matrix slice with a number of rows chosen at runtime and 6 columns.
|
||||
pub type MatrixSliceMutXx6<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
MatrixSliceMutMN<'a, N, Dynamic, U6, RStride, CStride>;
|
||||
Matrix<N, Dynamic, U6, SliceStorageMut<'a, N, Dynamic, U6, RStride, CStride>>;
|
||||
|
||||
/// A mutable column vector slice with `D` rows.
|
||||
/// A column vector slice with `D` rows.
|
||||
pub type VectorSliceMutN<'a, N, D, RStride = U1, CStride = D> =
|
||||
Matrix<N, D, U1, SliceStorageMut<'a, N, D, U1, RStride, CStride>>;
|
||||
|
||||
/// A mutable column vector slice dynamic numbers of rows and columns.
|
||||
/// A column vector slice dynamic numbers of rows and columns.
|
||||
pub type DVectorSliceMut<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
VectorSliceMutN<'a, N, Dynamic, RStride, CStride>;
|
||||
Matrix<N, Dynamic, U1, SliceStorageMut<'a, N, Dynamic, U1, RStride, CStride>>;
|
||||
|
||||
/// A 1D mutable column vector slice.
|
||||
/// A 1D column vector slice.
|
||||
pub type VectorSliceMut1<'a, N, RStride = U1, CStride = U1> =
|
||||
VectorSliceMutN<'a, N, U1, RStride, CStride>;
|
||||
/// A 2D mutable column vector slice.
|
||||
Matrix<N, U1, U1, SliceStorageMut<'a, N, U1, U1, RStride, CStride>>;
|
||||
/// A 2D column vector slice.
|
||||
pub type VectorSliceMut2<'a, N, RStride = U1, CStride = U2> =
|
||||
VectorSliceMutN<'a, N, U2, RStride, CStride>;
|
||||
/// A 3D mutable column vector slice.
|
||||
Matrix<N, U2, U1, SliceStorageMut<'a, N, U2, U1, RStride, CStride>>;
|
||||
/// A 3D column vector slice.
|
||||
pub type VectorSliceMut3<'a, N, RStride = U1, CStride = U3> =
|
||||
VectorSliceMutN<'a, N, U3, RStride, CStride>;
|
||||
/// A 4D mutable column vector slice.
|
||||
Matrix<N, U3, U1, SliceStorageMut<'a, N, U3, U1, RStride, CStride>>;
|
||||
/// A 4D column vector slice.
|
||||
pub type VectorSliceMut4<'a, N, RStride = U1, CStride = U4> =
|
||||
VectorSliceMutN<'a, N, U4, RStride, CStride>;
|
||||
/// A 5D mutable column vector slice.
|
||||
Matrix<N, U4, U1, SliceStorageMut<'a, N, U4, U1, RStride, CStride>>;
|
||||
/// A 5D column vector slice.
|
||||
pub type VectorSliceMut5<'a, N, RStride = U1, CStride = U5> =
|
||||
VectorSliceMutN<'a, N, U5, RStride, CStride>;
|
||||
/// A 6D mutable column vector slice.
|
||||
Matrix<N, U5, U1, SliceStorageMut<'a, N, U5, U1, RStride, CStride>>;
|
||||
/// A 6D column vector slice.
|
||||
pub type VectorSliceMut6<'a, N, RStride = U1, CStride = U6> =
|
||||
VectorSliceMutN<'a, N, U6, RStride, CStride>;
|
||||
Matrix<N, U6, U1, SliceStorageMut<'a, N, U6, U1, RStride, CStride>>;
|
||||
|
@ -56,7 +56,7 @@ pub type SameShapeR<R1, R2> = <ShapeConstraint as SameNumberOfRows<R1, R2>>::Rep
|
||||
/// The number of columns of the result of a componentwise operation on two matrices.
|
||||
pub type SameShapeC<C1, C2> = <ShapeConstraint as SameNumberOfColumns<C1, C2>>::Representative;
|
||||
|
||||
// FIXME: Bad name.
|
||||
// TODO: Bad name.
|
||||
/// Restricts the given number of rows and columns to be respectively the same.
|
||||
pub trait SameShapeAllocator<N, R1, C1, R2, C2>:
|
||||
Allocator<N, R1, C1> + Allocator<N, SameShapeR<R1, R2>, SameShapeC<C1, C2>>
|
||||
|
268
src/base/blas.rs
268
src/base/blas.rs
@ -16,258 +16,7 @@ use crate::base::{
|
||||
DVectorSlice, DefaultAllocator, Matrix, Scalar, SquareMatrix, Vector, VectorSliceN,
|
||||
};
|
||||
|
||||
// FIXME: find a way to avoid code duplication just for complex number support.
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
|
||||
/// Computes the index of the vector component with the largest complex or real absolute value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # extern crate num_complex;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use num_complex::Complex;
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(Complex::new(11.0, 3.0), Complex::new(-15.0, 0.0), Complex::new(13.0, 5.0));
|
||||
/// assert_eq!(vec.icamax(), 2);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn icamax(&self) -> usize {
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.vget_unchecked(0).norm1() };
|
||||
let mut the_i = 0;
|
||||
|
||||
for i in 1..self.nrows() {
|
||||
let val = unsafe { self.vget_unchecked(i).norm1() };
|
||||
|
||||
if val > the_max {
|
||||
the_max = val;
|
||||
the_i = i;
|
||||
}
|
||||
}
|
||||
|
||||
the_i
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + PartialOrd, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
|
||||
/// Computes the index and value of the vector component with the largest value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(11, -15, 13);
|
||||
/// assert_eq!(vec.argmax(), (2, 13));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn argmax(&self) -> (usize, N) {
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.vget_unchecked(0) };
|
||||
let mut the_i = 0;
|
||||
|
||||
for i in 1..self.nrows() {
|
||||
let val = unsafe { self.vget_unchecked(i) };
|
||||
|
||||
if val > the_max {
|
||||
the_max = val;
|
||||
the_i = i;
|
||||
}
|
||||
}
|
||||
|
||||
(the_i, the_max.inlined_clone())
|
||||
}
|
||||
|
||||
/// Computes the index of the vector component with the largest value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(11, -15, 13);
|
||||
/// assert_eq!(vec.imax(), 2);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn imax(&self) -> usize {
|
||||
self.argmax().0
|
||||
}
|
||||
|
||||
/// Computes the index of the vector component with the largest absolute value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(11, -15, 13);
|
||||
/// assert_eq!(vec.iamax(), 1);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn iamax(&self) -> usize
|
||||
where
|
||||
N: Signed,
|
||||
{
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.vget_unchecked(0).abs() };
|
||||
let mut the_i = 0;
|
||||
|
||||
for i in 1..self.nrows() {
|
||||
let val = unsafe { self.vget_unchecked(i).abs() };
|
||||
|
||||
if val > the_max {
|
||||
the_max = val;
|
||||
the_i = i;
|
||||
}
|
||||
}
|
||||
|
||||
the_i
|
||||
}
|
||||
|
||||
/// Computes the index and value of the vector component with the smallest value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(11, -15, 13);
|
||||
/// assert_eq!(vec.argmin(), (1, -15));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn argmin(&self) -> (usize, N) {
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_min = unsafe { self.vget_unchecked(0) };
|
||||
let mut the_i = 0;
|
||||
|
||||
for i in 1..self.nrows() {
|
||||
let val = unsafe { self.vget_unchecked(i) };
|
||||
|
||||
if val < the_min {
|
||||
the_min = val;
|
||||
the_i = i;
|
||||
}
|
||||
}
|
||||
|
||||
(the_i, the_min.inlined_clone())
|
||||
}
|
||||
|
||||
/// Computes the index of the vector component with the smallest value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(11, -15, 13);
|
||||
/// assert_eq!(vec.imin(), 1);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn imin(&self) -> usize {
|
||||
self.argmin().0
|
||||
}
|
||||
|
||||
/// Computes the index of the vector component with the smallest absolute value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(11, -15, 13);
|
||||
/// assert_eq!(vec.iamin(), 0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn iamin(&self) -> usize
|
||||
where
|
||||
N: Signed,
|
||||
{
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_min = unsafe { self.vget_unchecked(0).abs() };
|
||||
let mut the_i = 0;
|
||||
|
||||
for i in 1..self.nrows() {
|
||||
let val = unsafe { self.vget_unchecked(i).abs() };
|
||||
|
||||
if val < the_min {
|
||||
the_min = val;
|
||||
the_i = i;
|
||||
}
|
||||
}
|
||||
|
||||
the_i
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: find a way to avoid code duplication just for complex number support.
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Computes the index of the matrix component with the largest absolute value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # extern crate num_complex;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use num_complex::Complex;
|
||||
/// # use nalgebra::Matrix2x3;
|
||||
/// let mat = Matrix2x3::new(Complex::new(11.0, 1.0), Complex::new(-12.0, 2.0), Complex::new(13.0, 3.0),
|
||||
/// Complex::new(21.0, 43.0), Complex::new(22.0, 5.0), Complex::new(-23.0, 0.0));
|
||||
/// assert_eq!(mat.icamax_full(), (1, 0));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn icamax_full(&self) -> (usize, usize) {
|
||||
assert!(!self.is_empty(), "The input matrix must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.get_unchecked((0, 0)).norm1() };
|
||||
let mut the_ij = (0, 0);
|
||||
|
||||
for j in 0..self.ncols() {
|
||||
for i in 0..self.nrows() {
|
||||
let val = unsafe { self.get_unchecked((i, j)).norm1() };
|
||||
|
||||
if val > the_max {
|
||||
the_max = val;
|
||||
the_ij = (i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
the_ij
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Computes the index of the matrix component with the largest absolute value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Matrix2x3;
|
||||
/// let mat = Matrix2x3::new(11, -12, 13,
|
||||
/// 21, 22, -23);
|
||||
/// assert_eq!(mat.iamax_full(), (1, 2));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn iamax_full(&self) -> (usize, usize) {
|
||||
assert!(!self.is_empty(), "The input matrix must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.get_unchecked((0, 0)).abs() };
|
||||
let mut the_ij = (0, 0);
|
||||
|
||||
for j in 0..self.ncols() {
|
||||
for i in 0..self.nrows() {
|
||||
let val = unsafe { self.get_unchecked((i, j)).abs() };
|
||||
|
||||
if val > the_max {
|
||||
the_max = val;
|
||||
the_ij = (i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
the_ij
|
||||
}
|
||||
}
|
||||
|
||||
/// # Dot/scalar product
|
||||
impl<N, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where
|
||||
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
||||
@ -562,6 +311,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
/// # BLAS functions
|
||||
impl<N, D: Dim, S> Vector<N, D, S>
|
||||
where
|
||||
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
||||
@ -675,7 +425,7 @@ where
|
||||
return;
|
||||
}
|
||||
|
||||
// FIXME: avoid bound checks.
|
||||
// TODO: avoid bound checks.
|
||||
let col2 = a.column(0);
|
||||
let val = unsafe { x.vget_unchecked(0).inlined_clone() };
|
||||
self.axcpy(alpha.inlined_clone(), &col2, val, beta);
|
||||
@ -722,7 +472,7 @@ where
|
||||
return;
|
||||
}
|
||||
|
||||
// FIXME: avoid bound checks.
|
||||
// TODO: avoid bound checks.
|
||||
let col2 = a.column(0);
|
||||
let val = unsafe { x.vget_unchecked(0).inlined_clone() };
|
||||
self.axpy(alpha.inlined_clone() * val, &col2, beta);
|
||||
@ -992,7 +742,7 @@ where
|
||||
);
|
||||
|
||||
for j in 0..ncols1 {
|
||||
// FIXME: avoid bound checks.
|
||||
// TODO: avoid bound checks.
|
||||
let val = unsafe { conjugate(y.vget_unchecked(j).inlined_clone()) };
|
||||
self.column_mut(j)
|
||||
.axpy(alpha.inlined_clone() * val, x, beta.inlined_clone());
|
||||
@ -1208,7 +958,7 @@ where
|
||||
}
|
||||
|
||||
for j1 in 0..ncols1 {
|
||||
// FIXME: avoid bound checks.
|
||||
// TODO: avoid bound checks.
|
||||
self.column_mut(j1).gemv(
|
||||
alpha.inlined_clone(),
|
||||
a,
|
||||
@ -1270,7 +1020,7 @@ where
|
||||
);
|
||||
|
||||
for j1 in 0..ncols1 {
|
||||
// FIXME: avoid bound checks.
|
||||
// TODO: avoid bound checks.
|
||||
self.column_mut(j1).gemv_tr(
|
||||
alpha.inlined_clone(),
|
||||
a,
|
||||
@ -1332,7 +1082,7 @@ where
|
||||
);
|
||||
|
||||
for j1 in 0..ncols1 {
|
||||
// FIXME: avoid bound checks.
|
||||
// TODO: avoid bound checks.
|
||||
self.column_mut(j1).gemv_ad(alpha, a, &b.column(j1), beta);
|
||||
}
|
||||
}
|
||||
@ -1369,7 +1119,7 @@ where
|
||||
for j in 0..dim1 {
|
||||
let val = unsafe { conjugate(y.vget_unchecked(j).inlined_clone()) };
|
||||
let subdim = Dynamic::new(dim1 - j);
|
||||
// FIXME: avoid bound checks.
|
||||
// TODO: avoid bound checks.
|
||||
self.generic_slice_mut((j, j), (subdim, U1)).axpy(
|
||||
alpha.inlined_clone() * val,
|
||||
&x.rows_range(j..),
|
||||
|
@ -21,6 +21,7 @@ use crate::geometry::{
|
||||
|
||||
use simba::scalar::{ClosedAdd, ClosedMul, RealField};
|
||||
|
||||
/// # Translation and scaling in any dimension
|
||||
impl<N, D: DimName> MatrixN<N, D>
|
||||
where
|
||||
N: Scalar + Zero + One,
|
||||
@ -65,6 +66,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
/// # 2D transformations as a Matrix3
|
||||
impl<N: RealField> Matrix3<N> {
|
||||
/// Builds a 2 dimensional homogeneous rotation matrix from an angle in radian.
|
||||
#[inline]
|
||||
@ -93,6 +95,7 @@ impl<N: RealField> Matrix3<N> {
|
||||
}
|
||||
}
|
||||
|
||||
/// # 3D transformations as a Matrix4
|
||||
impl<N: RealField> Matrix4<N> {
|
||||
/// Builds a 3D homogeneous rotation matrix from an axis and an angle (multiplied together).
|
||||
///
|
||||
@ -200,6 +203,7 @@ impl<N: RealField> Matrix4<N> {
|
||||
}
|
||||
}
|
||||
|
||||
/// # Append/prepend translation and scaling
|
||||
impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: Storage<N, D, D>>
|
||||
SquareMatrix<N, D, S>
|
||||
{
|
||||
@ -293,15 +297,12 @@ impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: Storage<N, D
|
||||
res.prepend_translation_mut(shift);
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: StorageMut<N, D, D>>
|
||||
SquareMatrix<N, D, S>
|
||||
{
|
||||
/// Computes in-place the transformation equal to `self` followed by an uniform scaling factor.
|
||||
#[inline]
|
||||
pub fn append_scaling_mut(&mut self, scaling: N)
|
||||
where
|
||||
S: StorageMut<N, D, D>,
|
||||
D: DimNameSub<U1>,
|
||||
{
|
||||
let mut to_scale = self.fixed_rows_mut::<DimNameDiff<D, U1>>(0);
|
||||
@ -312,6 +313,7 @@ impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: StorageMut<N
|
||||
#[inline]
|
||||
pub fn prepend_scaling_mut(&mut self, scaling: N)
|
||||
where
|
||||
S: StorageMut<N, D, D>,
|
||||
D: DimNameSub<U1>,
|
||||
{
|
||||
let mut to_scale = self.fixed_columns_mut::<DimNameDiff<D, U1>>(0);
|
||||
@ -322,6 +324,7 @@ impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: StorageMut<N
|
||||
#[inline]
|
||||
pub fn append_nonuniform_scaling_mut<SB>(&mut self, scaling: &Vector<N, DimNameDiff<D, U1>, SB>)
|
||||
where
|
||||
S: StorageMut<N, D, D>,
|
||||
D: DimNameSub<U1>,
|
||||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||||
{
|
||||
@ -337,6 +340,7 @@ impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: StorageMut<N
|
||||
&mut self,
|
||||
scaling: &Vector<N, DimNameDiff<D, U1>, SB>,
|
||||
) where
|
||||
S: StorageMut<N, D, D>,
|
||||
D: DimNameSub<U1>,
|
||||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||||
{
|
||||
@ -350,6 +354,7 @@ impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: StorageMut<N
|
||||
#[inline]
|
||||
pub fn append_translation_mut<SB>(&mut self, shift: &Vector<N, DimNameDiff<D, U1>, SB>)
|
||||
where
|
||||
S: StorageMut<N, D, D>,
|
||||
D: DimNameSub<U1>,
|
||||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||||
{
|
||||
@ -366,6 +371,7 @@ impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: StorageMut<N
|
||||
pub fn prepend_translation_mut<SB>(&mut self, shift: &Vector<N, DimNameDiff<D, U1>, SB>)
|
||||
where
|
||||
D: DimNameSub<U1>,
|
||||
S: StorageMut<N, D, D>,
|
||||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||||
DefaultAllocator: Allocator<N, DimNameDiff<D, U1>>,
|
||||
{
|
||||
@ -382,6 +388,7 @@ impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: StorageMut<N
|
||||
}
|
||||
}
|
||||
|
||||
/// # Transformation of vectors and points
|
||||
impl<N: RealField, D: DimNameSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>
|
||||
|
@ -11,6 +11,7 @@ use crate::base::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstr
|
||||
use crate::base::dimension::Dim;
|
||||
use crate::base::storage::{Storage, StorageMut};
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixSum, Scalar};
|
||||
use crate::ClosedAdd;
|
||||
|
||||
/// The type of the result of a matrix component-wise operation.
|
||||
pub type MatrixComponentOp<N, R1, C1, R2, C2> = MatrixSum<N, R1, C1, R2, C2>;
|
||||
@ -41,12 +42,11 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
res
|
||||
}
|
||||
|
||||
// FIXME: add other operators like component_ln, component_pow, etc. ?
|
||||
// TODO: add other operators like component_ln, component_pow, etc. ?
|
||||
}
|
||||
|
||||
macro_rules! component_binop_impl(
|
||||
($($binop: ident, $binop_mut: ident, $binop_assign: ident, $cmpy: ident, $Trait: ident . $op: ident . $op_assign: ident, $desc:expr, $desc_cmpy:expr, $desc_mut:expr);* $(;)*) => {$(
|
||||
impl<N: Scalar, R1: Dim, C1: Dim, SA: Storage<N, R1, C1>> Matrix<N, R1, C1, SA> {
|
||||
#[doc = $desc]
|
||||
#[inline]
|
||||
pub fn $binop<R2, C2, SB>(&self, rhs: &Matrix<N, R2, C2, SB>) -> MatrixComponentOp<N, R1, C1, R2, C2>
|
||||
@ -69,9 +69,7 @@ macro_rules! component_binop_impl(
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, R1: Dim, C1: Dim, SA: StorageMut<N, R1, C1>> Matrix<N, R1, C1, SA> {
|
||||
// componentwise binop plus Y.
|
||||
#[doc = $desc_cmpy]
|
||||
#[inline]
|
||||
@ -79,6 +77,7 @@ macro_rules! component_binop_impl(
|
||||
where N: $Trait + Zero + Mul<N, Output = N> + Add<N, Output = N>,
|
||||
R2: Dim, C2: Dim,
|
||||
R3: Dim, C3: Dim,
|
||||
SA: StorageMut<N, R1, C1>,
|
||||
SB: Storage<N, R2, C2>,
|
||||
SC: Storage<N, R3, C3>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> +
|
||||
@ -114,6 +113,7 @@ macro_rules! component_binop_impl(
|
||||
where N: $Trait,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
SA: StorageMut<N, R1, C1>,
|
||||
SB: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
|
||||
|
||||
@ -135,15 +135,17 @@ macro_rules! component_binop_impl(
|
||||
where N: $Trait,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
SA: StorageMut<N, R1, C1>,
|
||||
SB: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
|
||||
self.$binop_assign(rhs)
|
||||
}
|
||||
}
|
||||
)*}
|
||||
);
|
||||
|
||||
component_binop_impl!(
|
||||
/// # Componentwise operations
|
||||
impl<N: Scalar, R1: Dim, C1: Dim, SA: Storage<N, R1, C1>> Matrix<N, R1, C1, SA> {
|
||||
component_binop_impl!(
|
||||
component_mul, component_mul_mut, component_mul_assign, cmpy, ClosedMul.mul.mul_assign,
|
||||
r"
|
||||
Componentwise matrix or vector multiplication.
|
||||
@ -234,33 +236,62 @@ component_binop_impl!(
|
||||
assert_eq!(a, expected);
|
||||
```
|
||||
";
|
||||
// FIXME: add other operators like bitshift, etc. ?
|
||||
);
|
||||
// TODO: add other operators like bitshift, etc. ?
|
||||
);
|
||||
|
||||
/*
|
||||
* inf/sup
|
||||
*/
|
||||
impl<N, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where
|
||||
N: Scalar + SimdPartialOrd,
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
/// Computes the infimum (aka. componentwise min) of two matrices/vectors.
|
||||
#[inline]
|
||||
pub fn inf(&self, other: &Self) -> MatrixMN<N, R, C> {
|
||||
pub fn inf(&self, other: &Self) -> MatrixMN<N, R1, C1>
|
||||
where
|
||||
N: SimdPartialOrd,
|
||||
DefaultAllocator: Allocator<N, R1, C1>,
|
||||
{
|
||||
self.zip_map(other, |a, b| a.simd_min(b))
|
||||
}
|
||||
|
||||
/// Computes the supremum (aka. componentwise max) of two matrices/vectors.
|
||||
#[inline]
|
||||
pub fn sup(&self, other: &Self) -> MatrixMN<N, R, C> {
|
||||
pub fn sup(&self, other: &Self) -> MatrixMN<N, R1, C1>
|
||||
where
|
||||
N: SimdPartialOrd,
|
||||
DefaultAllocator: Allocator<N, R1, C1>,
|
||||
{
|
||||
self.zip_map(other, |a, b| a.simd_max(b))
|
||||
}
|
||||
|
||||
/// Computes the (infimum, supremum) of two matrices/vectors.
|
||||
#[inline]
|
||||
pub fn inf_sup(&self, other: &Self) -> (MatrixMN<N, R, C>, MatrixMN<N, R, C>) {
|
||||
// FIXME: can this be optimized?
|
||||
pub fn inf_sup(&self, other: &Self) -> (MatrixMN<N, R1, C1>, MatrixMN<N, R1, C1>)
|
||||
where
|
||||
N: SimdPartialOrd,
|
||||
DefaultAllocator: Allocator<N, R1, C1>,
|
||||
{
|
||||
// TODO: can this be optimized?
|
||||
(self.inf(other), self.sup(other))
|
||||
}
|
||||
|
||||
/// Adds a scalar to `self`.
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use add_scalar_mut()?"]
|
||||
pub fn add_scalar(&self, rhs: N) -> MatrixMN<N, R1, C1>
|
||||
where
|
||||
N: ClosedAdd,
|
||||
DefaultAllocator: Allocator<N, R1, C1>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.add_scalar_mut(rhs);
|
||||
res
|
||||
}
|
||||
|
||||
/// Adds a scalar to `self` in-place.
|
||||
#[inline]
|
||||
pub fn add_scalar_mut(&mut self, rhs: N)
|
||||
where
|
||||
N: ClosedAdd,
|
||||
SA: StorageMut<N, R1, C1>,
|
||||
{
|
||||
for e in self.iter_mut() {
|
||||
*e += rhs.inlined_clone()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -22,11 +22,12 @@ use crate::base::dimension::{Dim, DimName, Dynamic, U1, U2, U3, U4, U5, U6};
|
||||
use crate::base::storage::Storage;
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar, Unit, Vector, VectorN};
|
||||
|
||||
/*
|
||||
*
|
||||
* Generic constructors.
|
||||
*
|
||||
*/
|
||||
/// # Generic constructors
|
||||
/// This set of matrix and vector construction functions are all generic
|
||||
/// with-regard to the matrix dimensions. They all expect to be given
|
||||
/// the dimension as inputs.
|
||||
///
|
||||
/// These functions should only be used when working on dimension-generic code.
|
||||
impl<N: Scalar, R: Dim, C: Dim> MatrixMN<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
@ -209,7 +210,7 @@ where
|
||||
);
|
||||
}
|
||||
|
||||
// FIXME: optimize that.
|
||||
// TODO: optimize that.
|
||||
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| {
|
||||
rows[i][(0, j)].inlined_clone()
|
||||
})
|
||||
@ -251,7 +252,7 @@ where
|
||||
);
|
||||
}
|
||||
|
||||
// FIXME: optimize that.
|
||||
// TODO: optimize that.
|
||||
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| {
|
||||
columns[j][i].inlined_clone()
|
||||
})
|
||||
@ -350,9 +351,6 @@ where
|
||||
*/
|
||||
macro_rules! impl_constructors(
|
||||
($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
|
||||
impl<N: Scalar, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*>
|
||||
where DefaultAllocator: Allocator<N $(, $Dims)*> {
|
||||
|
||||
/// Creates a new uninitialized matrix or vector.
|
||||
#[inline]
|
||||
pub unsafe fn new_uninitialized($($args: usize),*) -> Self {
|
||||
@ -577,48 +575,66 @@ macro_rules! impl_constructors(
|
||||
) -> Self {
|
||||
Self::from_distribution_generic($($gargs, )* distribution, rng)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*>
|
||||
where
|
||||
DefaultAllocator: Allocator<N $(, $Dims)*>,
|
||||
Standard: Distribution<N> {
|
||||
|
||||
/// Creates a matrix filled with random values.
|
||||
#[inline]
|
||||
#[cfg(feature = "std")]
|
||||
pub fn new_random($($args: usize),*) -> Self {
|
||||
pub fn new_random($($args: usize),*) -> Self
|
||||
where Standard: Distribution<N> {
|
||||
Self::new_random_generic($($gargs),*)
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
// FIXME: this is not very pretty. We could find a better call syntax.
|
||||
impl_constructors!(R, C; // Arguments for Matrix<N, ..., S>
|
||||
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
|
||||
R::name(), C::name(); // Arguments for `_generic` constructors.
|
||||
); // Arguments for non-generic constructors.
|
||||
/// # Constructors of statically-sized vectors or statically-sized matrices
|
||||
impl<N: Scalar, R: DimName, C: DimName> MatrixMN<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
// TODO: this is not very pretty. We could find a better call syntax.
|
||||
impl_constructors!(R, C; // Arguments for Matrix<N, ..., S>
|
||||
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
|
||||
R::name(), C::name(); // Arguments for `_generic` constructors.
|
||||
); // Arguments for non-generic constructors.
|
||||
}
|
||||
|
||||
impl_constructors!(R, Dynamic;
|
||||
/// # Constructors of matrices with a dynamic number of columns
|
||||
impl<N: Scalar, R: DimName> MatrixMN<N, R, Dynamic>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic>,
|
||||
{
|
||||
impl_constructors!(R, Dynamic;
|
||||
=> R: DimName;
|
||||
R::name(), Dynamic::new(ncols);
|
||||
ncols);
|
||||
}
|
||||
|
||||
impl_constructors!(Dynamic, C;
|
||||
/// # Constructors of dynamic vectors and matrices with a dynamic number of rows
|
||||
impl<N: Scalar, C: DimName> MatrixMN<N, Dynamic, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C>,
|
||||
{
|
||||
impl_constructors!(Dynamic, C;
|
||||
=> C: DimName;
|
||||
Dynamic::new(nrows), C::name();
|
||||
nrows);
|
||||
}
|
||||
|
||||
impl_constructors!(Dynamic, Dynamic;
|
||||
/// # Constructors of fully dynamic matrices
|
||||
impl<N: Scalar> MatrixMN<N, Dynamic, Dynamic>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, Dynamic>,
|
||||
{
|
||||
impl_constructors!(Dynamic, Dynamic;
|
||||
;
|
||||
Dynamic::new(nrows), Dynamic::new(ncols);
|
||||
nrows, ncols);
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Constructors that don't necessarily require all dimensions
|
||||
* to be specified whon one dimension is already known.
|
||||
* to be specified when one dimension is already known.
|
||||
*
|
||||
*/
|
||||
macro_rules! impl_constructors_from_data(
|
||||
@ -711,7 +727,7 @@ macro_rules! impl_constructors_from_data(
|
||||
}
|
||||
);
|
||||
|
||||
// FIXME: this is not very pretty. We could find a better call syntax.
|
||||
// TODO: this is not very pretty. We could find a better call syntax.
|
||||
impl_constructors_from_data!(data; R, C; // Arguments for Matrix<N, ..., S>
|
||||
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
|
||||
R::name(), C::name(); // Arguments for `_generic` constructors.
|
||||
|
@ -3,11 +3,8 @@ use crate::base::matrix_slice::{SliceStorage, SliceStorageMut};
|
||||
use crate::base::{MatrixSliceMN, MatrixSliceMutMN, Scalar};
|
||||
|
||||
use num_rational::Ratio;
|
||||
/*
|
||||
*
|
||||
* Slice constructors.
|
||||
*
|
||||
*/
|
||||
|
||||
/// # Creating matrix slices from `&[T]`
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
||||
MatrixSliceMN<'a, N, R, C, RStride, CStride>
|
||||
{
|
||||
@ -59,6 +56,89 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim> MatrixSliceMN<'a, N, R, C> {
|
||||
/// Creates, without bound-checking, a matrix slice from an array and with dimensions specified by generic types instances.
|
||||
///
|
||||
/// This method is unsafe because the input data array is not checked to contain enough elements.
|
||||
/// The generic types `R` and `C` can either be type-level integers or integers wrapped with `Dynamic::new()`.
|
||||
#[inline]
|
||||
pub unsafe fn from_slice_generic_unchecked(
|
||||
data: &'a [N],
|
||||
start: usize,
|
||||
nrows: R,
|
||||
ncols: C,
|
||||
) -> Self {
|
||||
Self::from_slice_with_strides_generic_unchecked(data, start, nrows, ncols, U1, nrows)
|
||||
}
|
||||
|
||||
/// Creates a matrix slice from an array and with dimensions and strides specified by generic types instances.
|
||||
///
|
||||
/// Panics if the input data array dose not contain enough elements.
|
||||
/// The generic types `R` and `C` can either be type-level integers or integers wrapped with `Dynamic::new()`.
|
||||
#[inline]
|
||||
pub fn from_slice_generic(data: &'a [N], nrows: R, ncols: C) -> Self {
|
||||
Self::from_slice_with_strides_generic(data, nrows, ncols, U1, nrows)
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! impl_constructors(
|
||||
($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
|
||||
impl<'a, N: Scalar, $($DimIdent: $DimBound),*> MatrixSliceMN<'a, N, $($Dims),*> {
|
||||
/// Creates a new matrix slice from the given data array.
|
||||
///
|
||||
/// Panics if `data` does not contain enough elements.
|
||||
#[inline]
|
||||
pub fn from_slice(data: &'a [N], $($args: usize),*) -> Self {
|
||||
Self::from_slice_generic(data, $($gargs),*)
|
||||
}
|
||||
|
||||
/// Creates, without bound checking, a new matrix slice from the given data array.
|
||||
#[inline]
|
||||
pub unsafe fn from_slice_unchecked(data: &'a [N], start: usize, $($args: usize),*) -> Self {
|
||||
Self::from_slice_generic_unchecked(data, start, $($gargs),*)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, $($DimIdent: $DimBound, )*> MatrixSliceMN<'a, N, $($Dims,)* Dynamic, Dynamic> {
|
||||
/// Creates a new matrix slice with the specified strides from the given data array.
|
||||
///
|
||||
/// Panics if `data` does not contain enough elements.
|
||||
#[inline]
|
||||
pub fn from_slice_with_strides(data: &'a [N], $($args: usize,)* rstride: usize, cstride: usize) -> Self {
|
||||
Self::from_slice_with_strides_generic(data, $($gargs,)* Dynamic::new(rstride), Dynamic::new(cstride))
|
||||
}
|
||||
|
||||
/// Creates, without bound checking, a new matrix slice with the specified strides from the given data array.
|
||||
#[inline]
|
||||
pub unsafe fn from_slice_with_strides_unchecked(data: &'a [N], start: usize, $($args: usize,)* rstride: usize, cstride: usize) -> Self {
|
||||
Self::from_slice_with_strides_generic_unchecked(data, start, $($gargs,)* Dynamic::new(rstride), Dynamic::new(cstride))
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
// TODO: this is not very pretty. We could find a better call syntax.
|
||||
impl_constructors!(R, C; // Arguments for Matrix<N, ..., S>
|
||||
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
|
||||
R::name(), C::name(); // Arguments for `_generic` constructors.
|
||||
); // Arguments for non-generic constructors.
|
||||
|
||||
impl_constructors!(R, Dynamic;
|
||||
=> R: DimName;
|
||||
R::name(), Dynamic::new(ncols);
|
||||
ncols);
|
||||
|
||||
impl_constructors!(Dynamic, C;
|
||||
=> C: DimName;
|
||||
Dynamic::new(nrows), C::name();
|
||||
nrows);
|
||||
|
||||
impl_constructors!(Dynamic, Dynamic;
|
||||
;
|
||||
Dynamic::new(nrows), Dynamic::new(ncols);
|
||||
nrows, ncols);
|
||||
|
||||
/// # Creating mutable matrix slices from `&mut [T]`
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
||||
MatrixSliceMutMN<'a, N, R, C, RStride, CStride>
|
||||
{
|
||||
@ -132,31 +212,6 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim> MatrixSliceMN<'a, N, R, C> {
|
||||
/// Creates, without bound-checking, a matrix slice from an array and with dimensions specified by generic types instances.
|
||||
///
|
||||
/// This method is unsafe because the input data array is not checked to contain enough elements.
|
||||
/// The generic types `R` and `C` can either be type-level integers or integers wrapped with `Dynamic::new()`.
|
||||
#[inline]
|
||||
pub unsafe fn from_slice_generic_unchecked(
|
||||
data: &'a [N],
|
||||
start: usize,
|
||||
nrows: R,
|
||||
ncols: C,
|
||||
) -> Self {
|
||||
Self::from_slice_with_strides_generic_unchecked(data, start, nrows, ncols, U1, nrows)
|
||||
}
|
||||
|
||||
/// Creates a matrix slice from an array and with dimensions and strides specified by generic types instances.
|
||||
///
|
||||
/// Panics if the input data array dose not contain enough elements.
|
||||
/// The generic types `R` and `C` can either be type-level integers or integers wrapped with `Dynamic::new()`.
|
||||
#[inline]
|
||||
pub fn from_slice_generic(data: &'a [N], nrows: R, ncols: C) -> Self {
|
||||
Self::from_slice_with_strides_generic(data, nrows, ncols, U1, nrows)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim> MatrixSliceMutMN<'a, N, R, C> {
|
||||
/// Creates, without bound-checking, a mutable matrix slice from an array and with dimensions specified by generic types instances.
|
||||
///
|
||||
@ -182,63 +237,6 @@ impl<'a, N: Scalar, R: Dim, C: Dim> MatrixSliceMutMN<'a, N, R, C> {
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! impl_constructors(
|
||||
($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
|
||||
impl<'a, N: Scalar, $($DimIdent: $DimBound),*> MatrixSliceMN<'a, N, $($Dims),*> {
|
||||
/// Creates a new matrix slice from the given data array.
|
||||
///
|
||||
/// Panics if `data` does not contain enough elements.
|
||||
#[inline]
|
||||
pub fn from_slice(data: &'a [N], $($args: usize),*) -> Self {
|
||||
Self::from_slice_generic(data, $($gargs),*)
|
||||
}
|
||||
|
||||
/// Creates, without bound checking, a new matrix slice from the given data array.
|
||||
#[inline]
|
||||
pub unsafe fn from_slice_unchecked(data: &'a [N], start: usize, $($args: usize),*) -> Self {
|
||||
Self::from_slice_generic_unchecked(data, start, $($gargs),*)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, $($DimIdent: $DimBound, )*> MatrixSliceMN<'a, N, $($Dims,)* Dynamic, Dynamic> {
|
||||
/// Creates a new matrix slice with the specified strides from the given data array.
|
||||
///
|
||||
/// Panics if `data` does not contain enough elements.
|
||||
#[inline]
|
||||
pub fn from_slice_with_strides(data: &'a [N], $($args: usize,)* rstride: usize, cstride: usize) -> Self {
|
||||
Self::from_slice_with_strides_generic(data, $($gargs,)* Dynamic::new(rstride), Dynamic::new(cstride))
|
||||
}
|
||||
|
||||
/// Creates, without bound checking, a new matrix slice with the specified strides from the given data array.
|
||||
#[inline]
|
||||
pub unsafe fn from_slice_with_strides_unchecked(data: &'a [N], start: usize, $($args: usize,)* rstride: usize, cstride: usize) -> Self {
|
||||
Self::from_slice_with_strides_generic_unchecked(data, start, $($gargs,)* Dynamic::new(rstride), Dynamic::new(cstride))
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
// FIXME: this is not very pretty. We could find a better call syntax.
|
||||
impl_constructors!(R, C; // Arguments for Matrix<N, ..., S>
|
||||
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
|
||||
R::name(), C::name(); // Arguments for `_generic` constructors.
|
||||
); // Arguments for non-generic constructors.
|
||||
|
||||
impl_constructors!(R, Dynamic;
|
||||
=> R: DimName;
|
||||
R::name(), Dynamic::new(ncols);
|
||||
ncols);
|
||||
|
||||
impl_constructors!(Dynamic, C;
|
||||
=> C: DimName;
|
||||
Dynamic::new(nrows), C::name();
|
||||
nrows);
|
||||
|
||||
impl_constructors!(Dynamic, Dynamic;
|
||||
;
|
||||
Dynamic::new(nrows), Dynamic::new(ncols);
|
||||
nrows, ncols);
|
||||
|
||||
macro_rules! impl_constructors_mut(
|
||||
($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
|
||||
impl<'a, N: Scalar, $($DimIdent: $DimBound),*> MatrixSliceMutMN<'a, N, $($Dims),*> {
|
||||
@ -277,7 +275,7 @@ macro_rules! impl_constructors_mut(
|
||||
}
|
||||
);
|
||||
|
||||
// FIXME: this is not very pretty. We could find a better call syntax.
|
||||
// TODO: this is not very pretty. We could find a better call syntax.
|
||||
impl_constructors_mut!(R, C; // Arguments for Matrix<N, ..., S>
|
||||
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
|
||||
R::name(), C::name(); // Arguments for `_generic` constructors.
|
||||
|
@ -29,7 +29,7 @@ use crate::base::{
|
||||
use crate::base::{SliceStorage, SliceStorageMut};
|
||||
use crate::constraint::DimEq;
|
||||
|
||||
// FIXME: too bad this won't work allo slice conversions.
|
||||
// TODO: too bad this won't work allo slice conversions.
|
||||
impl<N1, N2, R1, C1, R2, C2> SubsetOf<MatrixMN<N2, R2, C2>> for MatrixMN<N1, R1, C1>
|
||||
where
|
||||
R1: Dim,
|
||||
|
@ -196,7 +196,7 @@ pub trait DimName: Dim {
|
||||
/// The name of this dimension, i.e., the singleton `Self`.
|
||||
fn name() -> Self;
|
||||
|
||||
// FIXME: this is not a very idiomatic name.
|
||||
// TODO: this is not a very idiomatic name.
|
||||
/// The value of this dimension.
|
||||
#[inline]
|
||||
fn dim() -> usize {
|
||||
|
@ -18,6 +18,7 @@ use crate::base::storage::{ReshapableStorage, Storage, StorageMut};
|
||||
use crate::base::DMatrix;
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, RowVector, Scalar, Vector};
|
||||
|
||||
/// # Rows and columns extraction
|
||||
impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Extracts the upper triangular part of this matrix (including the diagonal).
|
||||
#[inline]
|
||||
@ -63,7 +64,7 @@ impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
|
||||
for j in 0..ncols.value() {
|
||||
// FIXME: use unchecked column indexing
|
||||
// TODO: use unchecked column indexing
|
||||
let mut res = res.column_mut(j);
|
||||
let src = self.column(j);
|
||||
|
||||
@ -99,54 +100,8 @@ impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
/// # Set rows, columns, and diagonal
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Sets all the elements of this matrix to `val`.
|
||||
#[inline]
|
||||
pub fn fill(&mut self, val: N) {
|
||||
for e in self.iter_mut() {
|
||||
*e = val.inlined_clone()
|
||||
}
|
||||
}
|
||||
|
||||
/// Fills `self` with the identity matrix.
|
||||
#[inline]
|
||||
pub fn fill_with_identity(&mut self)
|
||||
where
|
||||
N: Zero + One,
|
||||
{
|
||||
self.fill(N::zero());
|
||||
self.fill_diagonal(N::one());
|
||||
}
|
||||
|
||||
/// Sets all the diagonal elements of this matrix to `val`.
|
||||
#[inline]
|
||||
pub fn fill_diagonal(&mut self, val: N) {
|
||||
let (nrows, ncols) = self.shape();
|
||||
let n = cmp::min(nrows, ncols);
|
||||
|
||||
for i in 0..n {
|
||||
unsafe { *self.get_unchecked_mut((i, i)) = val.inlined_clone() }
|
||||
}
|
||||
}
|
||||
|
||||
/// Sets all the elements of the selected row to `val`.
|
||||
#[inline]
|
||||
pub fn fill_row(&mut self, i: usize, val: N) {
|
||||
assert!(i < self.nrows(), "Row index out of bounds.");
|
||||
for j in 0..self.ncols() {
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
|
||||
}
|
||||
}
|
||||
|
||||
/// Sets all the elements of the selected column to `val`.
|
||||
#[inline]
|
||||
pub fn fill_column(&mut self, j: usize, val: N) {
|
||||
assert!(j < self.ncols(), "Row index out of bounds.");
|
||||
for i in 0..self.nrows() {
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
|
||||
}
|
||||
}
|
||||
|
||||
/// Fills the diagonal of this matrix with the content of the given vector.
|
||||
#[inline]
|
||||
pub fn set_diagonal<R2: Dim, S2>(&mut self, diag: &Vector<N, R2, S2>)
|
||||
@ -198,6 +153,56 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
{
|
||||
self.column_mut(i).copy_from(column);
|
||||
}
|
||||
}
|
||||
|
||||
/// # In-place filling
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Sets all the elements of this matrix to `val`.
|
||||
#[inline]
|
||||
pub fn fill(&mut self, val: N) {
|
||||
for e in self.iter_mut() {
|
||||
*e = val.inlined_clone()
|
||||
}
|
||||
}
|
||||
|
||||
/// Fills `self` with the identity matrix.
|
||||
#[inline]
|
||||
pub fn fill_with_identity(&mut self)
|
||||
where
|
||||
N: Zero + One,
|
||||
{
|
||||
self.fill(N::zero());
|
||||
self.fill_diagonal(N::one());
|
||||
}
|
||||
|
||||
/// Sets all the diagonal elements of this matrix to `val`.
|
||||
#[inline]
|
||||
pub fn fill_diagonal(&mut self, val: N) {
|
||||
let (nrows, ncols) = self.shape();
|
||||
let n = cmp::min(nrows, ncols);
|
||||
|
||||
for i in 0..n {
|
||||
unsafe { *self.get_unchecked_mut((i, i)) = val.inlined_clone() }
|
||||
}
|
||||
}
|
||||
|
||||
/// Sets all the elements of the selected row to `val`.
|
||||
#[inline]
|
||||
pub fn fill_row(&mut self, i: usize, val: N) {
|
||||
assert!(i < self.nrows(), "Row index out of bounds.");
|
||||
for j in 0..self.ncols() {
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
|
||||
}
|
||||
}
|
||||
|
||||
/// Sets all the elements of the selected column to `val`.
|
||||
#[inline]
|
||||
pub fn fill_column(&mut self, j: usize, val: N) {
|
||||
assert!(j < self.ncols(), "Row index out of bounds.");
|
||||
for i in 0..self.nrows() {
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
|
||||
}
|
||||
}
|
||||
|
||||
/// Sets all the elements of the lower-triangular part of this matrix to `val`.
|
||||
///
|
||||
@ -225,41 +230,13 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
#[inline]
|
||||
pub fn fill_upper_triangle(&mut self, val: N, shift: usize) {
|
||||
for j in shift..self.ncols() {
|
||||
// FIXME: is there a more efficient way to avoid the min ?
|
||||
// TODO: is there a more efficient way to avoid the min ?
|
||||
// (necessary for rectangular matrices)
|
||||
for i in 0..cmp::min(j + 1 - shift, self.nrows()) {
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Swaps two rows in-place.
|
||||
#[inline]
|
||||
pub fn swap_rows(&mut self, irow1: usize, irow2: usize) {
|
||||
assert!(irow1 < self.nrows() && irow2 < self.nrows());
|
||||
|
||||
if irow1 != irow2 {
|
||||
// FIXME: optimize that.
|
||||
for i in 0..self.ncols() {
|
||||
unsafe { self.swap_unchecked((irow1, i), (irow2, i)) }
|
||||
}
|
||||
}
|
||||
// Otherwise do nothing.
|
||||
}
|
||||
|
||||
/// Swaps two columns in-place.
|
||||
#[inline]
|
||||
pub fn swap_columns(&mut self, icol1: usize, icol2: usize) {
|
||||
assert!(icol1 < self.ncols() && icol2 < self.ncols());
|
||||
|
||||
if icol1 != icol2 {
|
||||
// FIXME: optimize that.
|
||||
for i in 0..self.nrows() {
|
||||
unsafe { self.swap_unchecked((i, icol1), (i, icol2)) }
|
||||
}
|
||||
}
|
||||
// Otherwise do nothing.
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
|
||||
@ -295,11 +272,43 @@ impl<N: Scalar, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
|
||||
}
|
||||
}
|
||||
|
||||
/// # In-place swapping
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Swaps two rows in-place.
|
||||
#[inline]
|
||||
pub fn swap_rows(&mut self, irow1: usize, irow2: usize) {
|
||||
assert!(irow1 < self.nrows() && irow2 < self.nrows());
|
||||
|
||||
if irow1 != irow2 {
|
||||
// TODO: optimize that.
|
||||
for i in 0..self.ncols() {
|
||||
unsafe { self.swap_unchecked((irow1, i), (irow2, i)) }
|
||||
}
|
||||
}
|
||||
// Otherwise do nothing.
|
||||
}
|
||||
|
||||
/// Swaps two columns in-place.
|
||||
#[inline]
|
||||
pub fn swap_columns(&mut self, icol1: usize, icol2: usize) {
|
||||
assert!(icol1 < self.ncols() && icol2 < self.ncols());
|
||||
|
||||
if icol1 != icol2 {
|
||||
// TODO: optimize that.
|
||||
for i in 0..self.nrows() {
|
||||
unsafe { self.swap_unchecked((i, icol1), (i, icol2)) }
|
||||
}
|
||||
}
|
||||
// Otherwise do nothing.
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* FIXME: specialize all the following for slices.
|
||||
* TODO: specialize all the following for slices.
|
||||
*
|
||||
*/
|
||||
/// # Rows and columns removal
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/*
|
||||
*
|
||||
@ -531,7 +540,10 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// # Rows and columns insertion
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/*
|
||||
*
|
||||
* Columns insertion.
|
||||
@ -689,13 +701,10 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Resizing.
|
||||
*
|
||||
*/
|
||||
|
||||
/// # Resizing and reshaping
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Resizes this matrix so that it contains `new_nrows` rows and `new_ncols` columns.
|
||||
///
|
||||
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
|
||||
@ -811,14 +820,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
res
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N, R, C, S> Matrix<N, R, C, S>
|
||||
where
|
||||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
{
|
||||
/// Reshapes `self` such that it has dimensions `new_nrows × new_ncols`.
|
||||
///
|
||||
/// This will reinterpret `self` as if it is a matrix with `new_nrows` rows and `new_ncols`
|
||||
@ -887,6 +889,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
/// # In-place resizing
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
impl<N: Scalar> DMatrix<N> {
|
||||
/// Resizes this matrix in-place.
|
||||
|
@ -390,7 +390,7 @@ pub trait MatrixIndexMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>>:
|
||||
}
|
||||
}
|
||||
|
||||
/// # Indexing Operations
|
||||
/// # Slicing based on ranges
|
||||
/// ## Indices to Individual Elements
|
||||
/// ### Two-Dimensional Indices
|
||||
/// ```
|
||||
|
122
src/base/interpolation.rs
Normal file
122
src/base/interpolation.rs
Normal file
@ -0,0 +1,122 @@
|
||||
use crate::storage::Storage;
|
||||
use crate::{
|
||||
Allocator, DefaultAllocator, Dim, One, RealField, Scalar, Unit, Vector, VectorN, Zero,
|
||||
};
|
||||
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub};
|
||||
|
||||
/// # Interpolation
|
||||
impl<N: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Storage<N, D>>
|
||||
Vector<N, D, S>
|
||||
{
|
||||
/// Returns `self * (1.0 - t) + rhs * t`, i.e., the linear blend of the vectors x and y using the scalar value a.
|
||||
///
|
||||
/// The value for a is not restricted to the range `[0, 1]`.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let x = Vector3::new(1.0, 2.0, 3.0);
|
||||
/// let y = Vector3::new(10.0, 20.0, 30.0);
|
||||
/// assert_eq!(x.lerp(&y, 0.1), Vector3::new(1.9, 3.8, 5.7));
|
||||
/// ```
|
||||
pub fn lerp<S2: Storage<N, D>>(&self, rhs: &Vector<N, D, S2>, t: N) -> VectorN<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.axpy(t.inlined_clone(), rhs, N::one() - t);
|
||||
res
|
||||
}
|
||||
|
||||
/// Computes the spherical linear interpolation between two non-zero vectors.
|
||||
///
|
||||
/// The result is a unit vector.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::{Unit, Vector2};
|
||||
///
|
||||
/// let v1 =Vector2::new(1.0, 2.0);
|
||||
/// let v2 = Vector2::new(2.0, -3.0);
|
||||
///
|
||||
/// let v = v1.slerp(&v2, 1.0);
|
||||
///
|
||||
/// assert_eq!(v, v2.normalize());
|
||||
/// ```
|
||||
pub fn slerp<S2: Storage<N, D>>(&self, rhs: &Vector<N, D, S2>, t: N) -> VectorN<N, D>
|
||||
where
|
||||
N: RealField,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
let me = Unit::new_normalize(self.clone_owned());
|
||||
let rhs = Unit::new_normalize(rhs.clone_owned());
|
||||
me.slerp(&rhs, t).into_inner()
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
|
||||
/// Computes the spherical linear interpolation between two unit vectors.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::{Unit, Vector2};
|
||||
///
|
||||
/// let v1 = Unit::new_normalize(Vector2::new(1.0, 2.0));
|
||||
/// let v2 = Unit::new_normalize(Vector2::new(2.0, -3.0));
|
||||
///
|
||||
/// let v = v1.slerp(&v2, 1.0);
|
||||
///
|
||||
/// assert_eq!(v, v2);
|
||||
/// ```
|
||||
pub fn slerp<S2: Storage<N, D>>(
|
||||
&self,
|
||||
rhs: &Unit<Vector<N, D, S2>>,
|
||||
t: N,
|
||||
) -> Unit<VectorN<N, D>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
// TODO: the result is wrong when self and rhs are collinear with opposite direction.
|
||||
self.try_slerp(rhs, t, N::default_epsilon())
|
||||
.unwrap_or(Unit::new_unchecked(self.clone_owned()))
|
||||
}
|
||||
|
||||
/// Computes the spherical linear interpolation between two unit vectors.
|
||||
///
|
||||
/// Returns `None` if the two vectors are almost collinear and with opposite direction
|
||||
/// (in this case, there is an infinity of possible results).
|
||||
pub fn try_slerp<S2: Storage<N, D>>(
|
||||
&self,
|
||||
rhs: &Unit<Vector<N, D, S2>>,
|
||||
t: N,
|
||||
epsilon: N,
|
||||
) -> Option<Unit<VectorN<N, D>>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
let c_hang = self.dot(rhs);
|
||||
|
||||
// self == other
|
||||
if c_hang >= N::one() {
|
||||
return Some(Unit::new_unchecked(self.clone_owned()));
|
||||
}
|
||||
|
||||
let hang = c_hang.acos();
|
||||
let s_hang = (N::one() - c_hang * c_hang).sqrt();
|
||||
|
||||
// TODO: what if s_hang is 0.0 ? The result is not well-defined.
|
||||
if relative_eq!(s_hang, N::zero(), epsilon = epsilon) {
|
||||
None
|
||||
} else {
|
||||
let ta = ((N::one() - t) * hang).sin() / s_hang;
|
||||
let tb = (t * hang).sin() / s_hang;
|
||||
let mut res = self.scale(ta);
|
||||
res.axpy(tb, &**rhs, N::one());
|
||||
|
||||
Some(Unit::new_unchecked(res))
|
||||
}
|
||||
}
|
||||
}
|
@ -19,7 +19,7 @@ macro_rules! iterator {
|
||||
_phantoms: PhantomData<($Ref, R, C, S)>,
|
||||
}
|
||||
|
||||
// FIXME: we need to specialize for the case where the matrix storage is owned (in which
|
||||
// TODO: we need to specialize for the case where the matrix storage is owned (in which
|
||||
// case the iterator is trivial because it does not have any stride).
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> $Name<'a, N, R, C, S> {
|
||||
/// Creates a new iterator for the given matrix storage.
|
||||
|
@ -54,7 +54,80 @@ pub type MatrixCross<N, R1, C1, R2, C2> =
|
||||
|
||||
/// The most generic column-major matrix (and vector) type.
|
||||
///
|
||||
/// It combines four type parameters:
|
||||
/// # Methods summary
|
||||
/// Because `Matrix` is the most generic types used as a common representation of all matrices and
|
||||
/// vectors of **nalgebra** this documentation page contains every single matrix/vector-related
|
||||
/// method. In order to make browsing this page simpler, the next subsections contain direct links
|
||||
/// to groups of methods related to a specific topic.
|
||||
///
|
||||
/// #### Vector and matrix construction
|
||||
/// - [Constructors of statically-sized vectors or statically-sized matrices](#constructors-of-statically-sized-vectors-or-statically-sized-matrices)
|
||||
/// (`Vector3`, `Matrix3x6`…)
|
||||
/// - [Constructors of fully dynamic matrices](#constructors-of-fully-dynamic-matrices) (`DMatrix`)
|
||||
/// - [Constructors of dynamic vectors and matrices with a dynamic number of rows](#constructors-of-dynamic-vectors-and-matrices-with-a-dynamic-number-of-rows)
|
||||
/// (`DVector`, `MatrixXx3`…)
|
||||
/// - [Constructors of matrices with a dynamic number of columns](#constructors-of-matrices-with-a-dynamic-number-of-columns)
|
||||
/// (`Matrix2xX`…)
|
||||
/// - [Generic constructors](#generic-constructors)
|
||||
/// (For code generic wrt. the vectors or matrices dimensions.)
|
||||
///
|
||||
/// #### Computer graphics utilities for transformations
|
||||
/// - [2D transformations as a Matrix3 <span style="float:right;">`new_rotation`…</span>](#2d-transformations-as-a-matrix3)
|
||||
/// - [3D transformations as a Matrix4 <span style="float:right;">`new_rotation`, `new_perspective`, `look_at_rh`…</span>](#3d-transformations-as-a-matrix4)
|
||||
/// - [Translation and scaling in any dimension <span style="float:right;">`new_scaling`, `new_translation`…</span>](#translation-and-scaling-in-any-dimension)
|
||||
/// - [Append/prepend translation and scaling <span style="float:right;">`append_scaling`, `prepend_translation_mut`…</span>](#appendprepend-translation-and-scaling)
|
||||
/// - [Transformation of vectors and points <span style="float:right;">`transform_vector`, `transform_point`…</span>](#transformation-of-vectors-and-points)
|
||||
///
|
||||
/// #### Common math operations
|
||||
/// - [Componentwise operations <span style="float:right;">`component_mul`, `component_div`, `inf`…</span>](#componentwise-operations)
|
||||
/// - [Special multiplications <span style="float:right;">`tr_mul`, `ad_mul`, `kronecker`…</span>](#special-multiplications)
|
||||
/// - [Dot/scalar product <span style="float:right;">`dot`, `dotc`, `tr_dot`…</span>](#dotscalar-product)
|
||||
/// - [Cross product <span style="float:right;">`cross`, `perp`…</span>](#cross-product)
|
||||
/// - [Magnitude and norms <span style="float:right;">`norm`, `normalize`, `metric_distance`…</span>](#magnitude-and-norms)
|
||||
/// - [In-place normalization <span style="float:right;">`normalize_mut`, `try_normalize_mut`…</span>](#in-place-normalization)
|
||||
/// - [Interpolation <span style="float:right;">`lerp`, `slerp`…</span>](#interpolation)
|
||||
/// - [BLAS functions <span style="float:right;">`gemv`, `gemm`, `syger`…</span>](#blas-functions)
|
||||
/// - [Swizzling <span style="float:right;">`xx`, `yxz`…</span>](#swizzling)
|
||||
///
|
||||
/// #### Statistics
|
||||
/// - [Common operations <span style="float:right;">`row_sum`, `column_mean`, `variance`…</span>](#common-statistics-operations)
|
||||
/// - [Find the min and max components <span style="float:right;">`min`, `max`, `amin`, `amax`, `camin`, `cmax`…</span>](#find-the-min-and-max-components)
|
||||
/// - [Find the min and max components (vector-specific methods) <span style="float:right;">`argmin`, `argmax`, `icamin`, `icamax`…</span>](#find-the-min-and-max-components-vector-specific-methods)
|
||||
///
|
||||
/// #### Iteration, map, and fold
|
||||
/// - [Iteration on components, rows, and columns <span style="float:right;">`iter`, `column_iter`…</span>](#iteration-on-components-rows-and-columns)
|
||||
/// - [Elementwise mapping and folding <span style="float:right;">`map`, `fold`, `zip_map`…</span>](#elementwise-mapping-and-folding)
|
||||
/// - [Folding or columns and rows <span style="float:right;">`compress_rows`, `compress_columns`…</span>](#folding-on-columns-and-rows)
|
||||
///
|
||||
/// #### Vector and matrix slicing
|
||||
/// - [Creating matrix slices from `&[T]` <span style="float:right;">`from_slice`, `from_slice_with_strides`…</span>](#creating-matrix-slices-from-t)
|
||||
/// - [Creating mutable matrix slices from `&mut [T]` <span style="float:right;">`from_slice_mut`, `from_slice_with_strides_mut`…</span>](#creating-mutable-matrix-slices-from-mut-t)
|
||||
/// - [Slicing based on index and length <span style="float:right;">`row`, `columns`, `slice`…</span>](#slicing-based-on-index-and-length)
|
||||
/// - [Mutable slicing based on index and length <span style="float:right;">`row_mut`, `columns_mut`, `slice_mut`…</span>](#mutable-slicing-based-on-index-and-length)
|
||||
/// - [Slicing based on ranges <span style="float:right;">`rows_range`, `columns_range`…</span>](#slicing-based-on-ranges)
|
||||
/// - [Mutable slicing based on ranges <span style="float:right;">`rows_range_mut`, `columns_range_mut`…</span>](#mutable-slicing-based-on-ranges)
|
||||
///
|
||||
/// #### In-place modification of a single matrix or vector
|
||||
/// - [In-place filling <span style="float:right;">`fill`, `fill_diagonal`, `fill_with_identity`…</span>](#in-place-filling)
|
||||
/// - [In-place swapping <span style="float:right;">`swap`, `swap_columns`…</span>](#in-place-swapping)
|
||||
/// - [Set rows, columns, and diagonal <span style="float:right;">`set_column`, `set_diagonal`…</span>](#set-rows-columns-and-diagonal)
|
||||
///
|
||||
/// #### Vector and matrix size modification
|
||||
/// - [Rows and columns insertion <span style="float:right;">`insert_row`, `insert_column`…</span>](#rows-and-columns-insertion)
|
||||
/// - [Rows and columns removal <span style="float:right;">`remove_row`, `remove column`…</span>](#rows-and-columns-removal)
|
||||
/// - [Rows and columns extraction <span style="float:right;">`select_rows`, `select_columns`…</span>](#rows-and-columns-extraction)
|
||||
/// - [Resizing and reshaping <span style="float:right;">`resize`, `reshape_generic`…</span>](#resizing-and-reshaping)
|
||||
/// - [In-place resizing <span style="float:right;">`resize_mut`, `resize_vertically_mut`…</span>](#in-place-resizing)
|
||||
///
|
||||
/// #### Matrix decomposition
|
||||
/// - [Rectangular matrix decomposition <span style="float:right;">`qr`, `lu`, `svd`…</span>](#rectangular-matrix-decomposition)
|
||||
/// - [Square matrix decomposition <span style="float:right;">`cholesky`, `symmetric_eigen`…</span>](#square-matrix-decomposition)
|
||||
///
|
||||
/// #### Vector basis computation
|
||||
/// - [Basis and orthogonalization <span style="float:right;">`orthonormal_subspace_basis`, `orthonormalize`…</span>](#basis-and-orthogonalization)
|
||||
///
|
||||
/// # Type parameters
|
||||
/// The generic `Matrix` type has four type parameters:
|
||||
/// - `N`: for the matrix components scalar type.
|
||||
/// - `R`: for the matrix number of rows.
|
||||
/// - `C`: for the matrix number of columns.
|
||||
@ -78,8 +151,29 @@ pub type MatrixCross<N, R1, C1, R2, C2> =
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct Matrix<N: Scalar, R: Dim, C: Dim, S> {
|
||||
/// The data storage that contains all the matrix components and informations about its number
|
||||
/// of rows and column (if needed).
|
||||
/// The data storage that contains all the matrix components. Disappointed?
|
||||
///
|
||||
/// Well, if you came here to see how you can access the matrix components,
|
||||
/// you may be in luck: you can access the individual components of all vectors with compile-time
|
||||
/// dimensions <= 6 using field notation like this:
|
||||
/// `vec.x`, `vec.y`, `vec.z`, `vec.w`, `vec.a`, `vec.b`. Reference and assignation work too:
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let mut vec = Vector3::new(1.0, 2.0, 3.0);
|
||||
/// vec.x = 10.0;
|
||||
/// vec.y += 30.0;
|
||||
/// assert_eq!(vec.x, 10.0);
|
||||
/// assert_eq!(vec.y + 100.0, 132.0);
|
||||
/// ```
|
||||
/// Similarly, for matrices with compile-time dimensions <= 6, you can use field notation
|
||||
/// like this: `mat.m11`, `mat.m42`, etc. The first digit identifies the row to address
|
||||
/// and the second digit identifies the column to address. So `mat.m13` identifies the component
|
||||
/// at the first row and third column (note that the count of rows and columns start at 1 instead
|
||||
/// of 0 here. This is so we match the mathematical notation).
|
||||
///
|
||||
/// For all matrices and vectors, independently from their size, individual components can
|
||||
/// be accessed and modified using indexing: `vec[20]`, `mat[(20, 19)]`. Here the indexing
|
||||
/// starts at 0 as you would expect.
|
||||
pub data: S,
|
||||
|
||||
_phantoms: PhantomData<(N, R, C)>,
|
||||
@ -274,58 +368,6 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
(srows.value(), scols.value())
|
||||
}
|
||||
|
||||
/// Iterates through this matrix coordinates in column-major order.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Matrix2x3;
|
||||
/// let mat = Matrix2x3::new(11, 12, 13,
|
||||
/// 21, 22, 23);
|
||||
/// let mut it = mat.iter();
|
||||
/// assert_eq!(*it.next().unwrap(), 11);
|
||||
/// assert_eq!(*it.next().unwrap(), 21);
|
||||
/// assert_eq!(*it.next().unwrap(), 12);
|
||||
/// assert_eq!(*it.next().unwrap(), 22);
|
||||
/// assert_eq!(*it.next().unwrap(), 13);
|
||||
/// assert_eq!(*it.next().unwrap(), 23);
|
||||
/// assert!(it.next().is_none());
|
||||
#[inline]
|
||||
pub fn iter(&self) -> MatrixIter<N, R, C, S> {
|
||||
MatrixIter::new(&self.data)
|
||||
}
|
||||
|
||||
/// Iterate through the rows of this matrix.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Matrix2x3;
|
||||
/// let mut a = Matrix2x3::new(1, 2, 3,
|
||||
/// 4, 5, 6);
|
||||
/// for (i, row) in a.row_iter().enumerate() {
|
||||
/// assert_eq!(row, a.row(i))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn row_iter(&self) -> RowIter<N, R, C, S> {
|
||||
RowIter::new(self)
|
||||
}
|
||||
|
||||
/// Iterate through the columns of this matrix.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Matrix2x3;
|
||||
/// let mut a = Matrix2x3::new(1, 2, 3,
|
||||
/// 4, 5, 6);
|
||||
/// for (i, column) in a.column_iter().enumerate() {
|
||||
/// assert_eq!(column, a.column(i))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn column_iter(&self) -> ColumnIter<N, R, C, S> {
|
||||
ColumnIter::new(self)
|
||||
}
|
||||
|
||||
/// Computes the row and column coordinates of the i-th element of this matrix seen as a
|
||||
/// vector.
|
||||
///
|
||||
@ -418,7 +460,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
Matrix::from_data(self.data.into_owned())
|
||||
}
|
||||
|
||||
// FIXME: this could probably benefit from specialization.
|
||||
// TODO: this could probably benefit from specialization.
|
||||
// XXX: bad name.
|
||||
/// Moves this matrix into one that owns its data. The actual type of the result depends on
|
||||
/// matrix storage combination rules for addition.
|
||||
@ -434,7 +476,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
// We can just return `self.into_owned()`.
|
||||
|
||||
unsafe {
|
||||
// FIXME: check that those copies are optimized away by the compiler.
|
||||
// TODO: check that those copies are optimized away by the compiler.
|
||||
let owned = self.into_owned();
|
||||
let res = mem::transmute_copy(&owned);
|
||||
mem::forget(owned);
|
||||
@ -471,7 +513,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
let mut res: MatrixSum<N, R, C, R2, C2> =
|
||||
unsafe { Matrix::new_uninitialized_generic(nrows, ncols) };
|
||||
|
||||
// FIXME: use copy_from
|
||||
// TODO: use copy_from
|
||||
for j in 0..res.ncols() {
|
||||
for i in 0..res.nrows() {
|
||||
unsafe {
|
||||
@ -483,6 +525,51 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
res
|
||||
}
|
||||
|
||||
/// Transposes `self` and store the result into `out`.
|
||||
#[inline]
|
||||
pub fn transpose_to<R2, C2, SB>(&self, out: &mut Matrix<N, R2, C2, SB>)
|
||||
where
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
SB: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,
|
||||
{
|
||||
let (nrows, ncols) = self.shape();
|
||||
assert!(
|
||||
(ncols, nrows) == out.shape(),
|
||||
"Incompatible shape for transpose-copy."
|
||||
);
|
||||
|
||||
// TODO: optimize that.
|
||||
for i in 0..nrows {
|
||||
for j in 0..ncols {
|
||||
unsafe {
|
||||
*out.get_unchecked_mut((j, i)) = self.get_unchecked((i, j)).inlined_clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Transposes `self`.
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use transpose_mut()?"]
|
||||
pub fn transpose(&self) -> MatrixMN<N, C, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C, R>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
||||
unsafe {
|
||||
let mut res = Matrix::new_uninitialized_generic(ncols, nrows);
|
||||
self.transpose_to(&mut res);
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// # Elementwise mapping and folding
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Returns a matrix containing the result of `f` applied to each of its entries.
|
||||
#[inline]
|
||||
pub fn map<N2: Scalar, F: FnMut(N) -> N2>(&self, mut f: F) -> MatrixMN<N2, R, C>
|
||||
@ -687,63 +774,166 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
res
|
||||
}
|
||||
|
||||
/// Transposes `self` and store the result into `out`.
|
||||
/// Replaces each component of `self` by the result of a closure `f` applied on it.
|
||||
#[inline]
|
||||
pub fn transpose_to<R2, C2, SB>(&self, out: &mut Matrix<N, R2, C2, SB>)
|
||||
pub fn apply<F: FnMut(N) -> N>(&mut self, mut f: F)
|
||||
where
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
SB: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
let (nrows, ncols) = self.shape();
|
||||
assert!(
|
||||
(ncols, nrows) == out.shape(),
|
||||
"Incompatible shape for transpose-copy."
|
||||
|
||||
for j in 0..ncols {
|
||||
for i in 0..nrows {
|
||||
unsafe {
|
||||
let e = self.data.get_unchecked_mut(i, j);
|
||||
*e = f(e.inlined_clone())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Replaces each component of `self` by the result of a closure `f` applied on its components
|
||||
/// joined with the components from `rhs`.
|
||||
#[inline]
|
||||
pub fn zip_apply<N2, R2, C2, S2>(
|
||||
&mut self,
|
||||
rhs: &Matrix<N2, R2, C2, S2>,
|
||||
mut f: impl FnMut(N, N2) -> N,
|
||||
) where
|
||||
S: StorageMut<N, R, C>,
|
||||
N2: Scalar,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N2, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
{
|
||||
let (nrows, ncols) = self.shape();
|
||||
|
||||
assert_eq!(
|
||||
(nrows, ncols),
|
||||
rhs.shape(),
|
||||
"Matrix simultaneous traversal error: dimension mismatch."
|
||||
);
|
||||
|
||||
// FIXME: optimize that.
|
||||
for i in 0..nrows {
|
||||
for j in 0..ncols {
|
||||
for i in 0..nrows {
|
||||
unsafe {
|
||||
*out.get_unchecked_mut((j, i)) = self.get_unchecked((i, j)).inlined_clone();
|
||||
let e = self.data.get_unchecked_mut(i, j);
|
||||
let rhs = rhs.get_unchecked((i, j)).inlined_clone();
|
||||
*e = f(e.inlined_clone(), rhs)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Transposes `self`.
|
||||
/// Replaces each component of `self` by the result of a closure `f` applied on its components
|
||||
/// joined with the components from `b` and `c`.
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use transpose_mut()?"]
|
||||
pub fn transpose(&self) -> MatrixMN<N, C, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C, R>,
|
||||
pub fn zip_zip_apply<N2, R2, C2, S2, N3, R3, C3, S3>(
|
||||
&mut self,
|
||||
b: &Matrix<N2, R2, C2, S2>,
|
||||
c: &Matrix<N3, R3, C3, S3>,
|
||||
mut f: impl FnMut(N, N2, N3) -> N,
|
||||
) where
|
||||
S: StorageMut<N, R, C>,
|
||||
N2: Scalar,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N2, R2, C2>,
|
||||
N3: Scalar,
|
||||
R3: Dim,
|
||||
C3: Dim,
|
||||
S3: Storage<N3, R3, C3>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
let (nrows, ncols) = self.shape();
|
||||
|
||||
assert_eq!(
|
||||
(nrows, ncols),
|
||||
b.shape(),
|
||||
"Matrix simultaneous traversal error: dimension mismatch."
|
||||
);
|
||||
assert_eq!(
|
||||
(nrows, ncols),
|
||||
c.shape(),
|
||||
"Matrix simultaneous traversal error: dimension mismatch."
|
||||
);
|
||||
|
||||
for j in 0..ncols {
|
||||
for i in 0..nrows {
|
||||
unsafe {
|
||||
let mut res = Matrix::new_uninitialized_generic(ncols, nrows);
|
||||
self.transpose_to(&mut res);
|
||||
|
||||
res
|
||||
let e = self.data.get_unchecked_mut(i, j);
|
||||
let b = b.get_unchecked((i, j)).inlined_clone();
|
||||
let c = c.get_unchecked((i, j)).inlined_clone();
|
||||
*e = f(e.inlined_clone(), b, c)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Mutably iterates through this matrix coordinates.
|
||||
/// # Iteration on components, rows, and columns
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Iterates through this matrix coordinates in column-major order.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Matrix2x3;
|
||||
/// let mat = Matrix2x3::new(11, 12, 13,
|
||||
/// 21, 22, 23);
|
||||
/// let mut it = mat.iter();
|
||||
/// assert_eq!(*it.next().unwrap(), 11);
|
||||
/// assert_eq!(*it.next().unwrap(), 21);
|
||||
/// assert_eq!(*it.next().unwrap(), 12);
|
||||
/// assert_eq!(*it.next().unwrap(), 22);
|
||||
/// assert_eq!(*it.next().unwrap(), 13);
|
||||
/// assert_eq!(*it.next().unwrap(), 23);
|
||||
/// assert!(it.next().is_none());
|
||||
#[inline]
|
||||
pub fn iter_mut(&mut self) -> MatrixIterMut<N, R, C, S> {
|
||||
MatrixIterMut::new(&mut self.data)
|
||||
pub fn iter(&self) -> MatrixIter<N, R, C, S> {
|
||||
MatrixIter::new(&self.data)
|
||||
}
|
||||
|
||||
/// Returns a mutable pointer to the start of the matrix.
|
||||
/// Iterate through the rows of this matrix.
|
||||
///
|
||||
/// If the matrix is not empty, this pointer is guaranteed to be aligned
|
||||
/// and non-null.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Matrix2x3;
|
||||
/// let mut a = Matrix2x3::new(1, 2, 3,
|
||||
/// 4, 5, 6);
|
||||
/// for (i, row) in a.row_iter().enumerate() {
|
||||
/// assert_eq!(row, a.row(i))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn as_mut_ptr(&mut self) -> *mut N {
|
||||
self.data.ptr_mut()
|
||||
pub fn row_iter(&self) -> RowIter<N, R, C, S> {
|
||||
RowIter::new(self)
|
||||
}
|
||||
|
||||
/// Iterate through the columns of this matrix.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Matrix2x3;
|
||||
/// let mut a = Matrix2x3::new(1, 2, 3,
|
||||
/// 4, 5, 6);
|
||||
/// for (i, column) in a.column_iter().enumerate() {
|
||||
/// assert_eq!(column, a.column(i))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn column_iter(&self) -> ColumnIter<N, R, C, S> {
|
||||
ColumnIter::new(self)
|
||||
}
|
||||
|
||||
/// Mutably iterates through this matrix coordinates.
|
||||
#[inline]
|
||||
pub fn iter_mut(&mut self) -> MatrixIterMut<N, R, C, S>
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
MatrixIterMut::new(&mut self.data)
|
||||
}
|
||||
|
||||
/// Mutably iterates through this matrix rows.
|
||||
@ -762,7 +952,10 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// assert_eq!(a, expected);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn row_iter_mut(&mut self) -> RowIterMut<N, R, C, S> {
|
||||
pub fn row_iter_mut(&mut self) -> RowIterMut<N, R, C, S>
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
RowIterMut::new(self)
|
||||
}
|
||||
|
||||
@ -782,9 +975,23 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// assert_eq!(a, expected);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn column_iter_mut(&mut self) -> ColumnIterMut<N, R, C, S> {
|
||||
pub fn column_iter_mut(&mut self) -> ColumnIterMut<N, R, C, S>
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
ColumnIterMut::new(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Returns a mutable pointer to the start of the matrix.
|
||||
///
|
||||
/// If the matrix is not empty, this pointer is guaranteed to be aligned
|
||||
/// and non-null.
|
||||
#[inline]
|
||||
pub fn as_mut_ptr(&mut self) -> *mut N {
|
||||
self.data.ptr_mut()
|
||||
}
|
||||
|
||||
/// Swaps two entries without bound-checking.
|
||||
#[inline]
|
||||
@ -878,106 +1085,13 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: rename `apply` to `apply_mut` and `apply_into` to `apply`?
|
||||
// TODO: rename `apply` to `apply_mut` and `apply_into` to `apply`?
|
||||
/// Returns `self` with each of its components replaced by the result of a closure `f` applied on it.
|
||||
#[inline]
|
||||
pub fn apply_into<F: FnMut(N) -> N>(mut self, f: F) -> Self {
|
||||
self.apply(f);
|
||||
self
|
||||
}
|
||||
|
||||
/// Replaces each component of `self` by the result of a closure `f` applied on it.
|
||||
#[inline]
|
||||
pub fn apply<F: FnMut(N) -> N>(&mut self, mut f: F) {
|
||||
let (nrows, ncols) = self.shape();
|
||||
|
||||
for j in 0..ncols {
|
||||
for i in 0..nrows {
|
||||
unsafe {
|
||||
let e = self.data.get_unchecked_mut(i, j);
|
||||
*e = f(e.inlined_clone())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Replaces each component of `self` by the result of a closure `f` applied on its components
|
||||
/// joined with the components from `rhs`.
|
||||
#[inline]
|
||||
pub fn zip_apply<N2, R2, C2, S2>(
|
||||
&mut self,
|
||||
rhs: &Matrix<N2, R2, C2, S2>,
|
||||
mut f: impl FnMut(N, N2) -> N,
|
||||
) where
|
||||
N2: Scalar,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N2, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
{
|
||||
let (nrows, ncols) = self.shape();
|
||||
|
||||
assert_eq!(
|
||||
(nrows, ncols),
|
||||
rhs.shape(),
|
||||
"Matrix simultaneous traversal error: dimension mismatch."
|
||||
);
|
||||
|
||||
for j in 0..ncols {
|
||||
for i in 0..nrows {
|
||||
unsafe {
|
||||
let e = self.data.get_unchecked_mut(i, j);
|
||||
let rhs = rhs.get_unchecked((i, j)).inlined_clone();
|
||||
*e = f(e.inlined_clone(), rhs)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Replaces each component of `self` by the result of a closure `f` applied on its components
|
||||
/// joined with the components from `b` and `c`.
|
||||
#[inline]
|
||||
pub fn zip_zip_apply<N2, R2, C2, S2, N3, R3, C3, S3>(
|
||||
&mut self,
|
||||
b: &Matrix<N2, R2, C2, S2>,
|
||||
c: &Matrix<N3, R3, C3, S3>,
|
||||
mut f: impl FnMut(N, N2, N3) -> N,
|
||||
) where
|
||||
N2: Scalar,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N2, R2, C2>,
|
||||
N3: Scalar,
|
||||
R3: Dim,
|
||||
C3: Dim,
|
||||
S3: Storage<N3, R3, C3>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
{
|
||||
let (nrows, ncols) = self.shape();
|
||||
|
||||
assert_eq!(
|
||||
(nrows, ncols),
|
||||
b.shape(),
|
||||
"Matrix simultaneous traversal error: dimension mismatch."
|
||||
);
|
||||
assert_eq!(
|
||||
(nrows, ncols),
|
||||
c.shape(),
|
||||
"Matrix simultaneous traversal error: dimension mismatch."
|
||||
);
|
||||
|
||||
for j in 0..ncols {
|
||||
for i in 0..nrows {
|
||||
unsafe {
|
||||
let e = self.data.get_unchecked_mut(i, j);
|
||||
let b = b.get_unchecked((i, j)).inlined_clone();
|
||||
let c = c.get_unchecked((i, j)).inlined_clone();
|
||||
*e = f(e.inlined_clone(), b, c)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
|
||||
@ -1050,7 +1164,7 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
"Incompatible shape for transpose-copy."
|
||||
);
|
||||
|
||||
// FIXME: optimize that.
|
||||
// TODO: optimize that.
|
||||
for i in 0..nrows {
|
||||
for j in 0..ncols {
|
||||
unsafe {
|
||||
@ -1627,6 +1741,7 @@ fn lower_exp() {
|
||||
)
|
||||
}
|
||||
|
||||
/// # Cross product
|
||||
impl<N: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: Storage<N, R, C>>
|
||||
Matrix<N, R, C, S>
|
||||
{
|
||||
@ -1655,7 +1770,7 @@ impl<N: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: Storage<N
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: use specialization instead of an assertion.
|
||||
// TODO: use specialization instead of an assertion.
|
||||
/// The 3D cross product between two vectors.
|
||||
///
|
||||
/// Panics if the shape is not 3D vector. In the future, this will be implemented only for
|
||||
@ -1679,7 +1794,7 @@ impl<N: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: Storage<N
|
||||
|
||||
if shape.0 == 3 {
|
||||
unsafe {
|
||||
// FIXME: soooo ugly!
|
||||
// TODO: soooo ugly!
|
||||
let nrows = SameShapeR::<R, R2>::from_usize(3);
|
||||
let ncols = SameShapeC::<C, C2>::from_usize(1);
|
||||
let mut res = Matrix::new_uninitialized_generic(nrows, ncols);
|
||||
@ -1703,7 +1818,7 @@ impl<N: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: Storage<N
|
||||
}
|
||||
} else {
|
||||
unsafe {
|
||||
// FIXME: ugly!
|
||||
// TODO: ugly!
|
||||
let nrows = SameShapeR::<R, R2>::from_usize(1);
|
||||
let ncols = SameShapeC::<C, C2>::from_usize(3);
|
||||
let mut res = Matrix::new_uninitialized_generic(nrows, ncols);
|
||||
@ -1772,96 +1887,6 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Storage<N, D>>
|
||||
Vector<N, D, S>
|
||||
{
|
||||
/// Returns `self * (1.0 - t) + rhs * t`, i.e., the linear blend of the vectors x and y using the scalar value a.
|
||||
///
|
||||
/// The value for a is not restricted to the range `[0, 1]`.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let x = Vector3::new(1.0, 2.0, 3.0);
|
||||
/// let y = Vector3::new(10.0, 20.0, 30.0);
|
||||
/// assert_eq!(x.lerp(&y, 0.1), Vector3::new(1.9, 3.8, 5.7));
|
||||
/// ```
|
||||
pub fn lerp<S2: Storage<N, D>>(&self, rhs: &Vector<N, D, S2>, t: N) -> VectorN<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.axpy(t.inlined_clone(), rhs, N::one() - t);
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
|
||||
/// Computes the spherical linear interpolation between two unit vectors.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::{Unit, Vector2};
|
||||
///
|
||||
/// let v1 = Unit::new_normalize(Vector2::new(1.0, 2.0));
|
||||
/// let v2 = Unit::new_normalize(Vector2::new(2.0, -3.0));
|
||||
///
|
||||
/// let v = v1.slerp(&v2, 1.0);
|
||||
///
|
||||
/// assert_eq!(v, v2);
|
||||
/// ```
|
||||
pub fn slerp<S2: Storage<N, D>>(
|
||||
&self,
|
||||
rhs: &Unit<Vector<N, D, S2>>,
|
||||
t: N,
|
||||
) -> Unit<VectorN<N, D>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
// FIXME: the result is wrong when self and rhs are collinear with opposite direction.
|
||||
self.try_slerp(rhs, t, N::default_epsilon())
|
||||
.unwrap_or(Unit::new_unchecked(self.clone_owned()))
|
||||
}
|
||||
|
||||
/// Computes the spherical linear interpolation between two unit vectors.
|
||||
///
|
||||
/// Returns `None` if the two vectors are almost collinear and with opposite direction
|
||||
/// (in this case, there is an infinity of possible results).
|
||||
pub fn try_slerp<S2: Storage<N, D>>(
|
||||
&self,
|
||||
rhs: &Unit<Vector<N, D, S2>>,
|
||||
t: N,
|
||||
epsilon: N,
|
||||
) -> Option<Unit<VectorN<N, D>>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
let c_hang = self.dot(rhs);
|
||||
|
||||
// self == other
|
||||
if c_hang >= N::one() {
|
||||
return Some(Unit::new_unchecked(self.clone_owned()));
|
||||
}
|
||||
|
||||
let hang = c_hang.acos();
|
||||
let s_hang = (N::one() - c_hang * c_hang).sqrt();
|
||||
|
||||
// FIXME: what if s_hang is 0.0 ? The result is not well-defined.
|
||||
if relative_eq!(s_hang, N::zero(), epsilon = epsilon) {
|
||||
None
|
||||
} else {
|
||||
let ta = ((N::one() - t) * hang).sin() / s_hang;
|
||||
let tb = (t * hang).sin() / s_hang;
|
||||
let mut res = self.scale(ta);
|
||||
res.axpy(tb, &**rhs, N::one());
|
||||
|
||||
Some(Unit::new_unchecked(res))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N, R: Dim, C: Dim, S> AbsDiffEq for Unit<Matrix<N, R, C, S>>
|
||||
where
|
||||
N: Scalar + AbsDiffEq,
|
||||
|
@ -214,7 +214,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: specialization will greatly simplify this implementation in the future.
|
||||
// TODO: specialization will greatly simplify this implementation in the future.
|
||||
// In particular:
|
||||
// − use `x()` instead of `::canonical_basis_element`
|
||||
// − use `::new(x, y, z)` instead of `::from_slice`
|
||||
@ -244,7 +244,7 @@ where
|
||||
.try_normalize_mut(<N as ComplexField>::RealField::zero())
|
||||
.is_some()
|
||||
{
|
||||
// FIXME: this will be efficient on dynamically-allocated vectors but for
|
||||
// TODO: this will be efficient on dynamically-allocated vectors but for
|
||||
// statically-allocated ones, `.clone_from` would be better.
|
||||
vs.swap(nbasis_elements, i);
|
||||
nbasis_elements += 1;
|
||||
@ -264,7 +264,7 @@ where
|
||||
where
|
||||
F: FnMut(&Self) -> bool,
|
||||
{
|
||||
// FIXME: is this necessary?
|
||||
// TODO: is this necessary?
|
||||
assert!(
|
||||
vs.len() <= Self::dimension(),
|
||||
"The given set of vectors has no chance of being a free family."
|
||||
|
@ -274,11 +274,6 @@ macro_rules! matrix_slice_impl(
|
||||
$generic_slice_with_steps: ident,
|
||||
$rows_range_pair: ident,
|
||||
$columns_range_pair: ident) => {
|
||||
/// A matrix slice.
|
||||
pub type $MatrixSlice<'a, N, R, C, RStride, CStride>
|
||||
= Matrix<N, R, C, $SliceStorage<'a, N, R, C, RStride, CStride>>;
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: $Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/*
|
||||
*
|
||||
* Row slicing.
|
||||
@ -631,10 +626,18 @@ macro_rules! matrix_slice_impl(
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
matrix_slice_impl!(
|
||||
/// A matrix slice.
|
||||
pub type MatrixSlice<'a, N, R, C, RStride, CStride> =
|
||||
Matrix<N, R, C, SliceStorage<'a, N, R, C, RStride, CStride>>;
|
||||
/// A mutable matrix slice.
|
||||
pub type MatrixSliceMut<'a, N, R, C, RStride, CStride> =
|
||||
Matrix<N, R, C, SliceStorageMut<'a, N, R, C, RStride, CStride>>;
|
||||
|
||||
/// # Slicing based on index and length
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
matrix_slice_impl!(
|
||||
self: &Self, MatrixSlice, SliceStorage, Storage.get_address_unchecked(), &self.data;
|
||||
row,
|
||||
row_part,
|
||||
@ -660,8 +663,11 @@ matrix_slice_impl!(
|
||||
generic_slice_with_steps,
|
||||
rows_range_pair,
|
||||
columns_range_pair);
|
||||
}
|
||||
|
||||
matrix_slice_impl!(
|
||||
/// # Mutable slicing based on index and length
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
matrix_slice_impl!(
|
||||
self: &mut Self, MatrixSliceMut, SliceStorageMut, StorageMut.get_address_unchecked_mut(), &mut self.data;
|
||||
row_mut,
|
||||
row_part_mut,
|
||||
@ -687,6 +693,7 @@ matrix_slice_impl!(
|
||||
generic_slice_with_steps_mut,
|
||||
rows_range_pair_mut,
|
||||
columns_range_pair_mut);
|
||||
}
|
||||
|
||||
/// A range with a size that may be known at compile-time.
|
||||
///
|
||||
@ -803,6 +810,8 @@ impl<D: Dim> SliceRange<D> for RangeFull {
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: see how much of this overlaps with the general indexing
|
||||
// methods from indexing.rs.
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Slices a sub-matrix containing the rows indexed by the range `rows` and the columns indexed
|
||||
/// by the range `cols`.
|
||||
@ -842,6 +851,8 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: see how much of this overlaps with the general indexing
|
||||
// methods from indexing.rs.
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Slices a mutable sub-matrix containing the rows indexed by the range `rows` and the columns
|
||||
/// indexed by the range `cols`.
|
||||
|
390
src/base/min_max.rs
Normal file
390
src/base/min_max.rs
Normal file
@ -0,0 +1,390 @@
|
||||
use crate::storage::Storage;
|
||||
use crate::{ComplexField, Dim, Matrix, Scalar, SimdComplexField, SimdPartialOrd, Vector};
|
||||
use num::{Signed, Zero};
|
||||
use simba::simd::SimdSigned;
|
||||
|
||||
/// # Find the min and max components
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Returns the absolute value of the component with the largest absolute value.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).amax(), 3.0);
|
||||
/// assert_eq!(Vector3::new(-1.0, -2.0, -3.0).amax(), 3.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn amax(&self) -> N
|
||||
where
|
||||
N: Zero + SimdSigned + SimdPartialOrd,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.unwrap_or(&N::zero()).simd_abs(),
|
||||
|a, b| a.simd_max(b.simd_abs()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the the 1-norm of the complex component with the largest 1-norm.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Vector3, Complex};
|
||||
/// assert_eq!(Vector3::new(
|
||||
/// Complex::new(-3.0, -2.0),
|
||||
/// Complex::new(1.0, 2.0),
|
||||
/// Complex::new(1.0, 3.0)).camax(), 5.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn camax(&self) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.unwrap_or(&N::zero()).simd_norm1(),
|
||||
|a, b| a.simd_max(b.simd_norm1()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the component with the largest value.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).max(), 3.0);
|
||||
/// assert_eq!(Vector3::new(-1.0, -2.0, -3.0).max(), -1.0);
|
||||
/// assert_eq!(Vector3::new(5u32, 2, 3).max(), 5);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn max(&self) -> N
|
||||
where
|
||||
N: SimdPartialOrd + Zero,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.inlined_clone()).unwrap_or(N::zero()),
|
||||
|a, b| a.simd_max(b.inlined_clone()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the absolute value of the component with the smallest absolute value.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// assert_eq!(Vector3::new(-1.0, 2.0, -3.0).amin(), 1.0);
|
||||
/// assert_eq!(Vector3::new(10.0, 2.0, 30.0).amin(), 2.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn amin(&self) -> N
|
||||
where
|
||||
N: Zero + SimdPartialOrd + SimdSigned,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.simd_abs()).unwrap_or(N::zero()),
|
||||
|a, b| a.simd_min(b.simd_abs()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the the 1-norm of the complex component with the smallest 1-norm.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Vector3, Complex};
|
||||
/// assert_eq!(Vector3::new(
|
||||
/// Complex::new(-3.0, -2.0),
|
||||
/// Complex::new(1.0, 2.0),
|
||||
/// Complex::new(1.0, 3.0)).camin(), 3.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn camin(&self) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| {
|
||||
e.map(|e| e.simd_norm1())
|
||||
.unwrap_or(N::SimdRealField::zero())
|
||||
},
|
||||
|a, b| a.simd_min(b.simd_norm1()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the component with the smallest value.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).min(), -1.0);
|
||||
/// assert_eq!(Vector3::new(1.0, 2.0, 3.0).min(), 1.0);
|
||||
/// assert_eq!(Vector3::new(5u32, 2, 3).min(), 2);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn min(&self) -> N
|
||||
where
|
||||
N: SimdPartialOrd + Zero,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.inlined_clone()).unwrap_or(N::zero()),
|
||||
|a, b| a.simd_min(b.inlined_clone()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Computes the index of the matrix component with the largest absolute value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # extern crate num_complex;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use num_complex::Complex;
|
||||
/// # use nalgebra::Matrix2x3;
|
||||
/// let mat = Matrix2x3::new(Complex::new(11.0, 1.0), Complex::new(-12.0, 2.0), Complex::new(13.0, 3.0),
|
||||
/// Complex::new(21.0, 43.0), Complex::new(22.0, 5.0), Complex::new(-23.0, 0.0));
|
||||
/// assert_eq!(mat.icamax_full(), (1, 0));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn icamax_full(&self) -> (usize, usize)
|
||||
where
|
||||
N: ComplexField,
|
||||
{
|
||||
assert!(!self.is_empty(), "The input matrix must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.get_unchecked((0, 0)).norm1() };
|
||||
let mut the_ij = (0, 0);
|
||||
|
||||
for j in 0..self.ncols() {
|
||||
for i in 0..self.nrows() {
|
||||
let val = unsafe { self.get_unchecked((i, j)).norm1() };
|
||||
|
||||
if val > the_max {
|
||||
the_max = val;
|
||||
the_ij = (i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
the_ij
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Computes the index of the matrix component with the largest absolute value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Matrix2x3;
|
||||
/// let mat = Matrix2x3::new(11, -12, 13,
|
||||
/// 21, 22, -23);
|
||||
/// assert_eq!(mat.iamax_full(), (1, 2));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn iamax_full(&self) -> (usize, usize) {
|
||||
assert!(!self.is_empty(), "The input matrix must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.get_unchecked((0, 0)).abs() };
|
||||
let mut the_ij = (0, 0);
|
||||
|
||||
for j in 0..self.ncols() {
|
||||
for i in 0..self.nrows() {
|
||||
let val = unsafe { self.get_unchecked((i, j)).abs() };
|
||||
|
||||
if val > the_max {
|
||||
the_max = val;
|
||||
the_ij = (i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
the_ij
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: find a way to avoid code duplication just for complex number support.
|
||||
/// # Find the min and max components (vector-specific methods)
|
||||
impl<N: Scalar, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
|
||||
/// Computes the index of the vector component with the largest complex or real absolute value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # extern crate num_complex;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use num_complex::Complex;
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(Complex::new(11.0, 3.0), Complex::new(-15.0, 0.0), Complex::new(13.0, 5.0));
|
||||
/// assert_eq!(vec.icamax(), 2);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn icamax(&self) -> usize
|
||||
where
|
||||
N: ComplexField,
|
||||
{
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.vget_unchecked(0).norm1() };
|
||||
let mut the_i = 0;
|
||||
|
||||
for i in 1..self.nrows() {
|
||||
let val = unsafe { self.vget_unchecked(i).norm1() };
|
||||
|
||||
if val > the_max {
|
||||
the_max = val;
|
||||
the_i = i;
|
||||
}
|
||||
}
|
||||
|
||||
the_i
|
||||
}
|
||||
|
||||
/// Computes the index and value of the vector component with the largest value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(11, -15, 13);
|
||||
/// assert_eq!(vec.argmax(), (2, 13));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn argmax(&self) -> (usize, N)
|
||||
where
|
||||
N: PartialOrd,
|
||||
{
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.vget_unchecked(0) };
|
||||
let mut the_i = 0;
|
||||
|
||||
for i in 1..self.nrows() {
|
||||
let val = unsafe { self.vget_unchecked(i) };
|
||||
|
||||
if val > the_max {
|
||||
the_max = val;
|
||||
the_i = i;
|
||||
}
|
||||
}
|
||||
|
||||
(the_i, the_max.inlined_clone())
|
||||
}
|
||||
|
||||
/// Computes the index of the vector component with the largest value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(11, -15, 13);
|
||||
/// assert_eq!(vec.imax(), 2);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn imax(&self) -> usize
|
||||
where
|
||||
N: PartialOrd,
|
||||
{
|
||||
self.argmax().0
|
||||
}
|
||||
|
||||
/// Computes the index of the vector component with the largest absolute value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(11, -15, 13);
|
||||
/// assert_eq!(vec.iamax(), 1);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn iamax(&self) -> usize
|
||||
where
|
||||
N: PartialOrd + Signed,
|
||||
{
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.vget_unchecked(0).abs() };
|
||||
let mut the_i = 0;
|
||||
|
||||
for i in 1..self.nrows() {
|
||||
let val = unsafe { self.vget_unchecked(i).abs() };
|
||||
|
||||
if val > the_max {
|
||||
the_max = val;
|
||||
the_i = i;
|
||||
}
|
||||
}
|
||||
|
||||
the_i
|
||||
}
|
||||
|
||||
/// Computes the index and value of the vector component with the smallest value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(11, -15, 13);
|
||||
/// assert_eq!(vec.argmin(), (1, -15));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn argmin(&self) -> (usize, N)
|
||||
where
|
||||
N: PartialOrd,
|
||||
{
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_min = unsafe { self.vget_unchecked(0) };
|
||||
let mut the_i = 0;
|
||||
|
||||
for i in 1..self.nrows() {
|
||||
let val = unsafe { self.vget_unchecked(i) };
|
||||
|
||||
if val < the_min {
|
||||
the_min = val;
|
||||
the_i = i;
|
||||
}
|
||||
}
|
||||
|
||||
(the_i, the_min.inlined_clone())
|
||||
}
|
||||
|
||||
/// Computes the index of the vector component with the smallest value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(11, -15, 13);
|
||||
/// assert_eq!(vec.imin(), 1);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn imin(&self) -> usize
|
||||
where
|
||||
N: PartialOrd,
|
||||
{
|
||||
self.argmin().0
|
||||
}
|
||||
|
||||
/// Computes the index of the vector component with the smallest absolute value.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// let vec = Vector3::new(11, -15, 13);
|
||||
/// assert_eq!(vec.iamin(), 0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn iamin(&self) -> usize
|
||||
where
|
||||
N: PartialOrd + Signed,
|
||||
{
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_min = unsafe { self.vget_unchecked(0).abs() };
|
||||
let mut the_i = 0;
|
||||
|
||||
for i in 1..self.nrows() {
|
||||
let val = unsafe { self.vget_unchecked(i).abs() };
|
||||
|
||||
if val < the_min {
|
||||
the_min = val;
|
||||
the_i = i;
|
||||
}
|
||||
}
|
||||
|
||||
the_i
|
||||
}
|
||||
}
|
@ -36,6 +36,8 @@ mod vec_storage;
|
||||
|
||||
#[doc(hidden)]
|
||||
pub mod helper;
|
||||
mod interpolation;
|
||||
mod min_max;
|
||||
|
||||
pub use self::matrix::*;
|
||||
pub use self::norm::*;
|
||||
|
@ -12,7 +12,7 @@ use crate::{ComplexField, Scalar, SimdComplexField, Unit};
|
||||
use simba::scalar::ClosedNeg;
|
||||
use simba::simd::{SimdOption, SimdPartialOrd};
|
||||
|
||||
// FIXME: this should be be a trait on alga?
|
||||
// TODO: this should be be a trait on alga?
|
||||
/// A trait for abstract matrix norms.
|
||||
///
|
||||
/// This may be moved to the alga crate in the future.
|
||||
@ -154,10 +154,14 @@ impl<N: SimdComplexField> Norm<N> for UniformNorm {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// # Magnitude and norms
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// The squared L2 norm of this vector.
|
||||
#[inline]
|
||||
pub fn norm_squared(&self) -> N::SimdRealField {
|
||||
pub fn norm_squared(&self) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
let mut res = N::SimdRealField::zero();
|
||||
|
||||
for i in 0..self.ncols() {
|
||||
@ -172,7 +176,10 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
///
|
||||
/// Use `.apply_norm` to apply a custom norm.
|
||||
#[inline]
|
||||
pub fn norm(&self) -> N::SimdRealField {
|
||||
pub fn norm(&self) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
self.norm_squared().simd_sqrt()
|
||||
}
|
||||
|
||||
@ -182,6 +189,7 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
#[inline]
|
||||
pub fn metric_distance<R2, C2, S2>(&self, rhs: &Matrix<N, R2, C2, S2>) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N, R2, C2>,
|
||||
@ -203,7 +211,10 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
/// assert_eq!(v.apply_norm(&EuclideanNorm), v.norm());
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn apply_norm(&self, norm: &impl Norm<N>) -> N::SimdRealField {
|
||||
pub fn apply_norm(&self, norm: &impl Norm<N>) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
norm.norm(self)
|
||||
}
|
||||
|
||||
@ -228,6 +239,7 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
norm: &impl Norm<N>,
|
||||
) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N, R2, C2>,
|
||||
@ -242,7 +254,10 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
///
|
||||
/// This function is simply implemented as a call to `norm()`
|
||||
#[inline]
|
||||
pub fn magnitude(&self) -> N::SimdRealField {
|
||||
pub fn magnitude(&self) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
self.norm()
|
||||
}
|
||||
|
||||
@ -252,7 +267,10 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
///
|
||||
/// This function is simply implemented as a call to `norm_squared()`
|
||||
#[inline]
|
||||
pub fn magnitude_squared(&self) -> N::SimdRealField {
|
||||
pub fn magnitude_squared(&self) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
self.norm_squared()
|
||||
}
|
||||
|
||||
@ -260,6 +278,7 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
#[inline]
|
||||
pub fn set_magnitude(&mut self, magnitude: N::SimdRealField)
|
||||
where
|
||||
N: SimdComplexField,
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
let n = self.norm();
|
||||
@ -271,6 +290,7 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
#[must_use = "Did you mean to use normalize_mut()?"]
|
||||
pub fn normalize(&self) -> MatrixMN<N, R, C>
|
||||
where
|
||||
N: SimdComplexField,
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
self.unscale(self.norm())
|
||||
@ -278,7 +298,10 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
|
||||
/// The Lp norm of this matrix.
|
||||
#[inline]
|
||||
pub fn lp_norm(&self, p: i32) -> N::SimdRealField {
|
||||
pub fn lp_norm(&self, p: i32) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
self.apply_norm(&LpNorm(p))
|
||||
}
|
||||
|
||||
@ -289,6 +312,7 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
#[must_use = "Did you mean to use simd_try_normalize_mut()?"]
|
||||
pub fn simd_try_normalize(&self, min_norm: N::SimdRealField) -> SimdOption<MatrixMN<N, R, C>>
|
||||
where
|
||||
N: SimdComplexField,
|
||||
N::Element: Scalar,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
@ -297,9 +321,7 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
||||
let val = self.unscale(n);
|
||||
SimdOption::new(val, le)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Sets the magnitude of this vector unless it is smaller than `min_magnitude`.
|
||||
///
|
||||
/// If `self.magnitude()` is smaller than `min_magnitude`, it will be left unchanged.
|
||||
@ -307,6 +329,7 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
#[inline]
|
||||
pub fn try_set_magnitude(&mut self, magnitude: N::RealField, min_magnitude: N::RealField)
|
||||
where
|
||||
N: ComplexField,
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
let n = self.norm();
|
||||
@ -323,6 +346,7 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
#[must_use = "Did you mean to use try_normalize_mut()?"]
|
||||
pub fn try_normalize(&self, min_norm: N::RealField) -> Option<MatrixMN<N, R, C>>
|
||||
where
|
||||
N: ComplexField,
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
let n = self.norm();
|
||||
@ -335,12 +359,16 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: SimdComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// # In-place normalization
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Normalizes this matrix in-place and returns its norm.
|
||||
///
|
||||
/// The components of the matrix cannot be SIMD types (see `simd_try_normalize_mut` instead).
|
||||
#[inline]
|
||||
pub fn normalize_mut(&mut self) -> N::SimdRealField {
|
||||
pub fn normalize_mut(&mut self) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
let n = self.norm();
|
||||
self.unscale_mut(n);
|
||||
|
||||
@ -357,6 +385,7 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C
|
||||
min_norm: N::SimdRealField,
|
||||
) -> SimdOption<N::SimdRealField>
|
||||
where
|
||||
N: SimdComplexField,
|
||||
N::Element: Scalar,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
@ -365,14 +394,15 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C
|
||||
self.apply(|e| e.simd_unscale(n).select(le, e));
|
||||
SimdOption::new(n, le)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`.
|
||||
///
|
||||
/// If the normalization succeeded, returns the old norm of this matrix.
|
||||
#[inline]
|
||||
pub fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option<N::RealField> {
|
||||
pub fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option<N::RealField>
|
||||
where
|
||||
N: ComplexField,
|
||||
{
|
||||
let n = self.norm();
|
||||
|
||||
if n <= min_norm {
|
||||
@ -423,10 +453,11 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: specialization will greatly simplify this implementation in the future.
|
||||
// TODO: specialization will greatly simplify this implementation in the future.
|
||||
// In particular:
|
||||
// − use `x()` instead of `::canonical_basis_element`
|
||||
// − use `::new(x, y, z)` instead of `::from_slice`
|
||||
/// # Basis and orthogonalization
|
||||
impl<N: ComplexField, D: DimName> VectorN<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
@ -461,7 +492,7 @@ where
|
||||
}
|
||||
|
||||
if vs[i].try_normalize_mut(N::RealField::zero()).is_some() {
|
||||
// FIXME: this will be efficient on dynamically-allocated vectors but for
|
||||
// TODO: this will be efficient on dynamically-allocated vectors but for
|
||||
// statically-allocated ones, `.clone_from` would be better.
|
||||
vs.swap(nbasis_elements, i);
|
||||
nbasis_elements += 1;
|
||||
@ -479,13 +510,13 @@ where
|
||||
/// Applies the given closure to each element of the orthonormal basis of the subspace
|
||||
/// orthogonal to free family of vectors `vs`. If `vs` is not a free family, the result is
|
||||
/// unspecified.
|
||||
// FIXME: return an iterator instead when `-> impl Iterator` will be supported by Rust.
|
||||
// TODO: return an iterator instead when `-> impl Iterator` will be supported by Rust.
|
||||
#[inline]
|
||||
pub fn orthonormal_subspace_basis<F>(vs: &[Self], mut f: F)
|
||||
where
|
||||
F: FnMut(&Self) -> bool,
|
||||
{
|
||||
// FIXME: is this necessary?
|
||||
// TODO: is this necessary?
|
||||
assert!(
|
||||
vs.len() <= D::dim(),
|
||||
"The given set of vectors has no chance of being a free family."
|
||||
|
156
src/base/ops.rs
156
src/base/ops.rs
@ -158,7 +158,7 @@ macro_rules! componentwise_binop_impl(
|
||||
assert_eq!(self.shape(), out.shape(), "Matrix addition/subtraction output dimensions mismatch.");
|
||||
|
||||
// This is the most common case and should be deduced at compile-time.
|
||||
// FIXME: use specialization instead?
|
||||
// TODO: use specialization instead?
|
||||
if self.data.is_contiguous() && rhs.data.is_contiguous() && out.data.is_contiguous() {
|
||||
let arr1 = self.data.as_slice();
|
||||
let arr2 = rhs.data.as_slice();
|
||||
@ -191,7 +191,7 @@ macro_rules! componentwise_binop_impl(
|
||||
assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
|
||||
|
||||
// This is the most common case and should be deduced at compile-time.
|
||||
// FIXME: use specialization instead?
|
||||
// TODO: use specialization instead?
|
||||
if self.data.is_contiguous() && rhs.data.is_contiguous() {
|
||||
let arr1 = self.data.as_mut_slice();
|
||||
let arr2 = rhs.data.as_slice();
|
||||
@ -221,7 +221,7 @@ macro_rules! componentwise_binop_impl(
|
||||
assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
|
||||
|
||||
// This is the most common case and should be deduced at compile-time.
|
||||
// FIXME: use specialization instead?
|
||||
// TODO: use specialization instead?
|
||||
if self.data.is_contiguous() && rhs.data.is_contiguous() {
|
||||
let arr1 = self.data.as_slice();
|
||||
let arr2 = rhs.data.as_mut_slice();
|
||||
@ -633,7 +633,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: this is too restrictive:
|
||||
// TODO: this is too restrictive:
|
||||
// − we can't use `a *= b` when `a` is a mutable slice.
|
||||
// − we can't use `a *= b` when C2 is not equal to C1.
|
||||
impl<N, R1, C1, R2, SA, SB> MulAssign<Matrix<N, R2, C1, SB>> for Matrix<N, R1, C1, SA>
|
||||
@ -662,7 +662,7 @@ where
|
||||
SB: Storage<N, R2, C1>,
|
||||
SA: ContiguousStorageMut<N, R1, C1> + Clone,
|
||||
ShapeConstraint: AreMultipliable<R1, C1, R2, C1>,
|
||||
// FIXME: this is too restrictive. See comments for the non-ref version.
|
||||
// TODO: this is too restrictive. See comments for the non-ref version.
|
||||
DefaultAllocator: Allocator<N, R1, C1, Buffer = SA>,
|
||||
{
|
||||
#[inline]
|
||||
@ -671,7 +671,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
// Transpose-multiplication.
|
||||
/// # Special multiplications.
|
||||
impl<N, R1: Dim, C1: Dim, SA> Matrix<N, R1, C1, SA>
|
||||
where
|
||||
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
|
||||
@ -843,31 +843,6 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + ClosedAdd, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Adds a scalar to `self`.
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use add_scalar_mut()?"]
|
||||
pub fn add_scalar(&self, rhs: N) -> MatrixMN<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.add_scalar_mut(rhs);
|
||||
res
|
||||
}
|
||||
|
||||
/// Adds a scalar to `self` in-place.
|
||||
#[inline]
|
||||
pub fn add_scalar_mut(&mut self, rhs: N)
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
for e in self.iter_mut() {
|
||||
*e += rhs.inlined_clone()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N, D: DimName> iter::Product for MatrixN<N, D>
|
||||
where
|
||||
N: Scalar + Zero + One + ClosedMul + ClosedAdd,
|
||||
@ -887,122 +862,3 @@ where
|
||||
iter.fold(Matrix::one(), |acc, x| acc * x)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Returns the absolute value of the component with the largest absolute value.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).amax(), 3.0);
|
||||
/// assert_eq!(Vector3::new(-1.0, -2.0, -3.0).amax(), 3.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn amax(&self) -> N
|
||||
where
|
||||
N: Zero + SimdSigned + SimdPartialOrd,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.unwrap_or(&N::zero()).simd_abs(),
|
||||
|a, b| a.simd_max(b.simd_abs()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the the 1-norm of the complex component with the largest 1-norm.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Vector3, Complex};
|
||||
/// assert_eq!(Vector3::new(
|
||||
/// Complex::new(-3.0, -2.0),
|
||||
/// Complex::new(1.0, 2.0),
|
||||
/// Complex::new(1.0, 3.0)).camax(), 5.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn camax(&self) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.unwrap_or(&N::zero()).simd_norm1(),
|
||||
|a, b| a.simd_max(b.simd_norm1()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the component with the largest value.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).max(), 3.0);
|
||||
/// assert_eq!(Vector3::new(-1.0, -2.0, -3.0).max(), -1.0);
|
||||
/// assert_eq!(Vector3::new(5u32, 2, 3).max(), 5);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn max(&self) -> N
|
||||
where
|
||||
N: SimdPartialOrd + Zero,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.inlined_clone()).unwrap_or(N::zero()),
|
||||
|a, b| a.simd_max(b.inlined_clone()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the absolute value of the component with the smallest absolute value.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// assert_eq!(Vector3::new(-1.0, 2.0, -3.0).amin(), 1.0);
|
||||
/// assert_eq!(Vector3::new(10.0, 2.0, 30.0).amin(), 2.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn amin(&self) -> N
|
||||
where
|
||||
N: Zero + SimdPartialOrd + SimdSigned,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.simd_abs()).unwrap_or(N::zero()),
|
||||
|a, b| a.simd_min(b.simd_abs()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the the 1-norm of the complex component with the smallest 1-norm.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Vector3, Complex};
|
||||
/// assert_eq!(Vector3::new(
|
||||
/// Complex::new(-3.0, -2.0),
|
||||
/// Complex::new(1.0, 2.0),
|
||||
/// Complex::new(1.0, 3.0)).camin(), 3.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn camin(&self) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| {
|
||||
e.map(|e| e.simd_norm1())
|
||||
.unwrap_or(N::SimdRealField::zero())
|
||||
},
|
||||
|a, b| a.simd_min(b.simd_norm1()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the component with the smallest value.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Vector3;
|
||||
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).min(), -1.0);
|
||||
/// assert_eq!(Vector3::new(1.0, 2.0, 3.0).min(), 1.0);
|
||||
/// assert_eq!(Vector3::new(5u32, 2, 3).min(), 2);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn min(&self) -> N
|
||||
where
|
||||
N: SimdPartialOrd + Zero,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.inlined_clone()).unwrap_or(N::zero()),
|
||||
|a, b| a.simd_min(b.inlined_clone()),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
@ -24,7 +24,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
nrows == ncols
|
||||
}
|
||||
|
||||
// FIXME: RelativeEq prevents us from using those methods on integer matrices…
|
||||
// TODO: RelativeEq prevents us from using those methods on integer matrices…
|
||||
/// Indicated if this is the identity matrix within a relative error of `eps`.
|
||||
///
|
||||
/// If the matrix is diagonal, this checks that diagonal elements (i.e. at coordinates `(i, i)`
|
||||
@ -64,7 +64,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
// Off-diagonal elements of the sub-square matrix.
|
||||
for i in 1..d {
|
||||
for j in 0..i {
|
||||
// FIXME: use unsafe indexing.
|
||||
// TODO: use unsafe indexing.
|
||||
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps)
|
||||
|| !relative_eq!(self[(j, i)], N::zero(), epsilon = eps)
|
||||
{
|
||||
@ -118,7 +118,7 @@ where
|
||||
/// Returns `true` if this matrix is invertible.
|
||||
#[inline]
|
||||
pub fn is_invertible(&self) -> bool {
|
||||
// FIXME: improve this?
|
||||
// TODO: improve this?
|
||||
self.clone_owned().try_inverse().is_some()
|
||||
}
|
||||
}
|
||||
|
@ -4,6 +4,7 @@ use crate::{DefaultAllocator, Dim, Matrix, RowVectorN, Scalar, VectorN, VectorSl
|
||||
use num::Zero;
|
||||
use simba::scalar::{ClosedAdd, Field, SupersetOf};
|
||||
|
||||
/// # Folding on columns and rows
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Returns a row vector where each element is the result of the application of `f` on the
|
||||
/// corresponding column of the original matrix.
|
||||
@ -19,7 +20,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
let mut res = unsafe { RowVectorN::new_uninitialized_generic(U1, ncols) };
|
||||
|
||||
for i in 0..ncols.value() {
|
||||
// FIXME: avoid bound checking of column.
|
||||
// TODO: avoid bound checking of column.
|
||||
unsafe {
|
||||
*res.get_unchecked_mut((0, i)) = f(self.column(i));
|
||||
}
|
||||
@ -44,7 +45,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
let mut res = unsafe { VectorN::new_uninitialized_generic(ncols, U1) };
|
||||
|
||||
for i in 0..ncols.value() {
|
||||
// FIXME: avoid bound checking of column.
|
||||
// TODO: avoid bound checking of column.
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(i) = f(self.column(i));
|
||||
}
|
||||
@ -73,7 +74,8 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + ClosedAdd + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// # Common statistics operations
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/*
|
||||
*
|
||||
* Sum computation.
|
||||
@ -91,7 +93,10 @@ impl<N: Scalar + ClosedAdd + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N
|
||||
/// assert_eq!(m.sum(), 21.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn sum(&self) -> N {
|
||||
pub fn sum(&self) -> N
|
||||
where
|
||||
N: ClosedAdd + Zero,
|
||||
{
|
||||
self.iter().cloned().fold(N::zero(), |a, b| a + b)
|
||||
}
|
||||
|
||||
@ -115,6 +120,7 @@ impl<N: Scalar + ClosedAdd + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N
|
||||
#[inline]
|
||||
pub fn row_sum(&self) -> RowVectorN<N, C>
|
||||
where
|
||||
N: ClosedAdd + Zero,
|
||||
DefaultAllocator: Allocator<N, U1, C>,
|
||||
{
|
||||
self.compress_rows(|col| col.sum())
|
||||
@ -138,6 +144,7 @@ impl<N: Scalar + ClosedAdd + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N
|
||||
#[inline]
|
||||
pub fn row_sum_tr(&self) -> VectorN<N, C>
|
||||
where
|
||||
N: ClosedAdd + Zero,
|
||||
DefaultAllocator: Allocator<N, C>,
|
||||
{
|
||||
self.compress_rows_tr(|col| col.sum())
|
||||
@ -161,6 +168,7 @@ impl<N: Scalar + ClosedAdd + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N
|
||||
#[inline]
|
||||
pub fn column_sum(&self) -> VectorN<N, R>
|
||||
where
|
||||
N: ClosedAdd + Zero,
|
||||
DefaultAllocator: Allocator<N, R>,
|
||||
{
|
||||
let nrows = self.data.shape().0;
|
||||
@ -168,9 +176,7 @@ impl<N: Scalar + ClosedAdd + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N
|
||||
*out += col;
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/*
|
||||
*
|
||||
* Variance computation.
|
||||
@ -189,7 +195,10 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
/// assert_relative_eq!(m.variance(), 35.0 / 12.0, epsilon = 1.0e-8);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn variance(&self) -> N {
|
||||
pub fn variance(&self) -> N
|
||||
where
|
||||
N: Field + SupersetOf<f64>,
|
||||
{
|
||||
if self.len() == 0 {
|
||||
N::zero()
|
||||
} else {
|
||||
@ -217,6 +226,7 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
#[inline]
|
||||
pub fn row_variance(&self) -> RowVectorN<N, C>
|
||||
where
|
||||
N: Field + SupersetOf<f64>,
|
||||
DefaultAllocator: Allocator<N, U1, C>,
|
||||
{
|
||||
self.compress_rows(|col| col.variance())
|
||||
@ -236,6 +246,7 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
#[inline]
|
||||
pub fn row_variance_tr(&self) -> VectorN<N, C>
|
||||
where
|
||||
N: Field + SupersetOf<f64>,
|
||||
DefaultAllocator: Allocator<N, C>,
|
||||
{
|
||||
self.compress_rows_tr(|col| col.variance())
|
||||
@ -256,6 +267,7 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
#[inline]
|
||||
pub fn column_variance(&self) -> VectorN<N, R>
|
||||
where
|
||||
N: Field + SupersetOf<f64>,
|
||||
DefaultAllocator: Allocator<N, R>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
@ -292,7 +304,10 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
/// assert_eq!(m.mean(), 3.5);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn mean(&self) -> N {
|
||||
pub fn mean(&self) -> N
|
||||
where
|
||||
N: Field + SupersetOf<f64>,
|
||||
{
|
||||
if self.len() == 0 {
|
||||
N::zero()
|
||||
} else {
|
||||
@ -316,6 +331,7 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
#[inline]
|
||||
pub fn row_mean(&self) -> RowVectorN<N, C>
|
||||
where
|
||||
N: Field + SupersetOf<f64>,
|
||||
DefaultAllocator: Allocator<N, U1, C>,
|
||||
{
|
||||
self.compress_rows(|col| col.mean())
|
||||
@ -335,6 +351,7 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
#[inline]
|
||||
pub fn row_mean_tr(&self) -> VectorN<N, C>
|
||||
where
|
||||
N: Field + SupersetOf<f64>,
|
||||
DefaultAllocator: Allocator<N, C>,
|
||||
{
|
||||
self.compress_rows_tr(|col| col.mean())
|
||||
@ -354,6 +371,7 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
#[inline]
|
||||
pub fn column_mean(&self) -> VectorN<N, R>
|
||||
where
|
||||
N: Field + SupersetOf<f64>,
|
||||
DefaultAllocator: Allocator<N, R>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
@ -15,7 +15,7 @@ use crate::base::Scalar;
|
||||
pub type SameShapeStorage<N, R1, C1, R2, C2> =
|
||||
<DefaultAllocator as Allocator<N, SameShapeR<R1, R2>, SameShapeC<C1, C2>>>::Buffer;
|
||||
|
||||
// FIXME: better name than Owned ?
|
||||
// TODO: better name than Owned ?
|
||||
/// The owned data storage that can be allocated from `S`.
|
||||
pub type Owned<N, R, C = U1> = <DefaultAllocator as Allocator<N, R, C>>::Buffer;
|
||||
|
||||
@ -29,7 +29,7 @@ pub type CStride<N, R, C = U1> =
|
||||
|
||||
/// The trait shared by all matrix data storage.
|
||||
///
|
||||
/// FIXME: doc
|
||||
/// TODO: doc
|
||||
///
|
||||
/// Note that `Self` must always have a number of elements compatible with the matrix length (given
|
||||
/// by `R` and `C` if they are known at compile-time). For example, implementors of this trait
|
||||
@ -60,7 +60,7 @@ pub unsafe trait Storage<N: Scalar, R: Dim, C: Dim = U1>: Debug + Sized {
|
||||
///
|
||||
/// ```.ignore
|
||||
/// let lindex = self.linear_index(irow, icol);
|
||||
/// assert!(*self.get_unchecked(irow, icol) == *self.get_unchecked_linear(lindex)
|
||||
/// assert!(*self.get_unchecked(irow, icol) == *self.get_unchecked_linear(lindex))
|
||||
/// ```
|
||||
#[inline]
|
||||
fn linear_index(&self, irow: usize, icol: usize) -> usize {
|
||||
|
@ -5,22 +5,21 @@ use typenum::{self, Cmp, Greater};
|
||||
macro_rules! impl_swizzle {
|
||||
($( where $BaseDim: ident: $( $name: ident() -> $Result: ident[$($i: expr),+] ),+ ;)* ) => {
|
||||
$(
|
||||
impl<N: Scalar, D: DimName, S: Storage<N, D>> Vector<N, D, S>
|
||||
where D::Value: Cmp<typenum::$BaseDim, Output=Greater>
|
||||
{
|
||||
$(
|
||||
/// Builds a new vector from components of `self`.
|
||||
#[inline]
|
||||
pub fn $name(&self) -> $Result<N> {
|
||||
pub fn $name(&self) -> $Result<N>
|
||||
where D::Value: Cmp<typenum::$BaseDim, Output=Greater> {
|
||||
$Result::new($(self[$i].inlined_clone()),*)
|
||||
}
|
||||
)*
|
||||
}
|
||||
)*
|
||||
}
|
||||
}
|
||||
|
||||
impl_swizzle!(
|
||||
/// # Swizzling
|
||||
impl<N: Scalar, D: DimName, S: Storage<N, D>> Vector<N, D, S> {
|
||||
impl_swizzle!(
|
||||
where U0: xx() -> Vector2[0, 0],
|
||||
xxx() -> Vector3[0, 0, 0];
|
||||
|
||||
@ -59,4 +58,5 @@ impl_swizzle!(
|
||||
zzx() -> Vector3[2, 2, 0],
|
||||
zzy() -> Vector3[2, 2, 1],
|
||||
zzz() -> Vector3[2, 2, 2];
|
||||
);
|
||||
);
|
||||
}
|
||||
|
@ -237,7 +237,7 @@ where T::RealField: RelativeEq
|
||||
// }
|
||||
// }
|
||||
*/
|
||||
// FIXME:re-enable this impl when specialization is possible.
|
||||
// TODO:re-enable this impl when specialization is possible.
|
||||
// Currently, it is disabled so that we can have a nice output for the `UnitQuaternion` display.
|
||||
/*
|
||||
impl<T: fmt::Display> fmt::Display for Unit<T> {
|
||||
|
@ -13,7 +13,7 @@ use crate::geometry::{
|
||||
AbstractRotation, Isometry, Point, Rotation, Translation, UnitComplex, UnitQuaternion,
|
||||
};
|
||||
|
||||
// FIXME: there are several cloning of rotations that we could probably get rid of (but we didn't
|
||||
// TODO: there are several cloning of rotations that we could probably get rid of (but we didn't
|
||||
// yet because that would require to add a bound like `where for<'a, 'b> &'a R: Mul<&'b R, Output = R>`
|
||||
// which is quite ugly.
|
||||
|
||||
@ -151,7 +151,7 @@ isometry_binop_impl_all!(
|
||||
|
||||
#[allow(clippy::suspicious_arithmetic_impl)]
|
||||
Isometry::from_parts(Translation::from(&self.translation.vector + shift),
|
||||
self.rotation.clone() * rhs.rotation.clone()) // FIXME: too bad we have to clone.
|
||||
self.rotation.clone() * rhs.rotation.clone()) // TODO: too bad we have to clone.
|
||||
};
|
||||
);
|
||||
|
||||
@ -209,7 +209,7 @@ md_assign_impl_all!(
|
||||
DivAssign, div_assign where N: SimdRealField for N::Element: SimdRealField;
|
||||
(D, U1), (D, D) for D: DimName;
|
||||
self: Isometry<N, D, Rotation<N, D>>, rhs: Rotation<N, D>;
|
||||
// FIXME: don't invert explicitly?
|
||||
// TODO: don't invert explicitly?
|
||||
[val] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
);
|
||||
@ -226,7 +226,7 @@ md_assign_impl_all!(
|
||||
DivAssign, div_assign where N: SimdRealField for N::Element: SimdRealField;
|
||||
(U3, U3), (U3, U3) for;
|
||||
self: Isometry<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>;
|
||||
// FIXME: don't invert explicitly?
|
||||
// TODO: don't invert explicitly?
|
||||
[val] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
);
|
||||
@ -243,7 +243,7 @@ md_assign_impl_all!(
|
||||
DivAssign, div_assign where N: SimdRealField for N::Element: SimdRealField;
|
||||
(U2, U2), (U2, U2) for;
|
||||
self: Isometry<N, U2, UnitComplex<N>>, rhs: UnitComplex<N>;
|
||||
// FIXME: don't invert explicitly?
|
||||
// TODO: don't invert explicitly?
|
||||
[val] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
);
|
||||
@ -261,7 +261,7 @@ isometry_binop_impl_all!(
|
||||
// Isometry × Vector
|
||||
isometry_binop_impl_all!(
|
||||
Mul, mul;
|
||||
// FIXME: because of `transform_vector`, we cant use a generic storage type for the rhs vector,
|
||||
// TODO: because of `transform_vector`, we cant use a generic storage type for the rhs vector,
|
||||
// i.e., right: Vector<N, D, S> where S: Storage<N, D>.
|
||||
self: Isometry<N, D, R>, right: VectorN<N, D>, Output = VectorN<N, D>;
|
||||
[val val] => self.rotation.transform_vector(&right);
|
||||
@ -273,7 +273,7 @@ isometry_binop_impl_all!(
|
||||
// Isometry × Unit<Vector>
|
||||
isometry_binop_impl_all!(
|
||||
Mul, mul;
|
||||
// FIXME: because of `transform_vector`, we cant use a generic storage type for the rhs vector,
|
||||
// TODO: because of `transform_vector`, we cant use a generic storage type for the rhs vector,
|
||||
// i.e., right: Vector<N, D, S> where S: Storage<N, D>.
|
||||
self: Isometry<N, D, R>, right: Unit<VectorN<N, D>>, Output = Unit<VectorN<N, D>>;
|
||||
[val val] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref()));
|
||||
@ -390,7 +390,7 @@ isometry_from_composition_impl_all!(
|
||||
self: Isometry<N, D, Rotation<N, D>>, rhs: Rotation<N, D>,
|
||||
Output = Isometry<N, D, Rotation<N, D>>;
|
||||
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // FIXME: do not clone.
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // TODO: do not clone.
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
|
||||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
|
||||
);
|
||||
@ -417,7 +417,7 @@ isometry_from_composition_impl_all!(
|
||||
self: Isometry<N, D, Rotation<N, D>>, rhs: Rotation<N, D>,
|
||||
Output = Isometry<N, D, Rotation<N, D>>;
|
||||
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // FIXME: do not clone.
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // TODO: do not clone.
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
|
||||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
|
||||
);
|
||||
@ -428,7 +428,7 @@ isometry_from_composition_impl_all!(
|
||||
(D, D), (D, U1) for D: DimName;
|
||||
self: Rotation<N, D>, right: Isometry<N, D, Rotation<N, D>>,
|
||||
Output = Isometry<N, D, Rotation<N, D>>;
|
||||
// FIXME: don't call inverse explicitly?
|
||||
// TODO: don't call inverse explicitly?
|
||||
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||||
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||||
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||||
@ -442,7 +442,7 @@ isometry_from_composition_impl_all!(
|
||||
self: Isometry<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>,
|
||||
Output = Isometry<N, U3, UnitQuaternion<N>>;
|
||||
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // FIXME: do not clone.
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // TODO: do not clone.
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
|
||||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
|
||||
);
|
||||
@ -469,7 +469,7 @@ isometry_from_composition_impl_all!(
|
||||
self: Isometry<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>,
|
||||
Output = Isometry<N, U3, UnitQuaternion<N>>;
|
||||
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // FIXME: do not clone.
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // TODO: do not clone.
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
|
||||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
|
||||
);
|
||||
@ -480,7 +480,7 @@ isometry_from_composition_impl_all!(
|
||||
(U4, U1), (U3, U1);
|
||||
self: UnitQuaternion<N>, right: Isometry<N, U3, UnitQuaternion<N>>,
|
||||
Output = Isometry<N, U3, UnitQuaternion<N>>;
|
||||
// FIXME: don't call inverse explicitly?
|
||||
// TODO: don't call inverse explicitly?
|
||||
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||||
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||||
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||||
@ -516,7 +516,7 @@ isometry_from_composition_impl_all!(
|
||||
self: Isometry<N, U2, UnitComplex<N>>, rhs: UnitComplex<N>,
|
||||
Output = Isometry<N, U2, UnitComplex<N>>;
|
||||
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // FIXME: do not clone.
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // TODO: do not clone.
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
|
||||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
|
||||
);
|
||||
@ -528,7 +528,7 @@ isometry_from_composition_impl_all!(
|
||||
self: Isometry<N, U2, UnitComplex<N>>, rhs: UnitComplex<N>,
|
||||
Output = Isometry<N, U2, UnitComplex<N>>;
|
||||
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // FIXME: do not clone.
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // TODO: do not clone.
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
|
||||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
|
||||
);
|
||||
|
@ -22,7 +22,7 @@ mod rotation_alias;
|
||||
mod rotation_construction;
|
||||
mod rotation_conversion;
|
||||
mod rotation_ops;
|
||||
mod rotation_simba; // FIXME: implement Rotation methods.
|
||||
mod rotation_simba; // TODO: implement Rotation methods.
|
||||
mod rotation_specialization;
|
||||
|
||||
mod quaternion;
|
||||
|
@ -1,6 +1,6 @@
|
||||
#![macro_use]
|
||||
|
||||
// FIXME: merge with `md_impl`.
|
||||
// TODO: merge with `md_impl`.
|
||||
/// Macro for the implementation of multiplication and division.
|
||||
macro_rules! md_impl(
|
||||
(
|
||||
@ -140,7 +140,7 @@ macro_rules! md_assign_impl_all(
|
||||
}
|
||||
);
|
||||
|
||||
// FIXME: merge with `as_impl`.
|
||||
// TODO: merge with `as_impl`.
|
||||
/// Macro for the implementation of addition and subtraction.
|
||||
macro_rules! add_sub_impl(
|
||||
($Op: ident, $op: ident, $bound: ident;
|
||||
@ -164,7 +164,7 @@ macro_rules! add_sub_impl(
|
||||
}
|
||||
);
|
||||
|
||||
// FIXME: merge with `md_assign_impl`.
|
||||
// TODO: merge with `md_assign_impl`.
|
||||
/// Macro for the implementation of assignment-addition and assignment-subtraction.
|
||||
macro_rules! add_sub_assign_impl(
|
||||
($Op: ident, $op: ident, $bound: ident;
|
||||
|
@ -392,7 +392,7 @@ impl<N: RealField> Orthographic3<N> {
|
||||
(-N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)]
|
||||
}
|
||||
|
||||
// FIXME: when we get specialization, specialize the Mul impl instead.
|
||||
// TODO: when we get specialization, specialize the Mul impl instead.
|
||||
/// Projects a point. Faster than matrix multiplication.
|
||||
///
|
||||
/// # Example
|
||||
@ -463,7 +463,7 @@ impl<N: RealField> Orthographic3<N> {
|
||||
)
|
||||
}
|
||||
|
||||
// FIXME: when we get specialization, specialize the Mul impl instead.
|
||||
// TODO: when we get specialization, specialize the Mul impl instead.
|
||||
/// Projects a vector. Faster than matrix multiplication.
|
||||
///
|
||||
/// Vectors are not affected by the translation part of the projection.
|
||||
|
@ -186,9 +186,9 @@ impl<N: RealField> Perspective3<N> {
|
||||
(self.matrix[(2, 3)] - ratio * self.matrix[(2, 3)]) / crate::convert(2.0)
|
||||
}
|
||||
|
||||
// FIXME: add a method to retrieve znear and zfar simultaneously?
|
||||
// TODO: add a method to retrieve znear and zfar simultaneously?
|
||||
|
||||
// FIXME: when we get specialization, specialize the Mul impl instead.
|
||||
// TODO: when we get specialization, specialize the Mul impl instead.
|
||||
/// Projects a point. Faster than matrix multiplication.
|
||||
#[inline]
|
||||
pub fn project_point(&self, p: &Point3<N>) -> Point3<N> {
|
||||
@ -212,7 +212,7 @@ impl<N: RealField> Perspective3<N> {
|
||||
)
|
||||
}
|
||||
|
||||
// FIXME: when we get specialization, specialize the Mul impl instead.
|
||||
// TODO: when we get specialization, specialize the Mul impl instead.
|
||||
/// Projects a vector. Faster than matrix multiplication.
|
||||
#[inline]
|
||||
pub fn project_vector<SB>(&self, p: &Vector<N, U3, SB>) -> Vector3<N>
|
||||
|
@ -39,7 +39,7 @@ where
|
||||
|
||||
#[inline]
|
||||
fn is_in_subset(m: &Point<N2, D>) -> bool {
|
||||
// FIXME: is there a way to reuse the `.is_in_subset` from the matrix implementation of
|
||||
// TODO: is there a way to reuse the `.is_in_subset` from the matrix implementation of
|
||||
// SubsetOf?
|
||||
m.iter().all(|e| e.is_in_subset())
|
||||
}
|
||||
|
@ -107,7 +107,7 @@ add_sub_impl!(Sub, sub, ClosedSub;
|
||||
add_sub_impl!(Sub, sub, ClosedSub;
|
||||
(D1, U1), (D2, U1) -> (D1) for D1: DimName, D2: Dim, SB: Storage<N, D2>;
|
||||
self: &'a Point<N, D1>, right: Vector<N, D2, SB>, Output = Point<N, D1>;
|
||||
Self::Output::from(&self.coords - &right); 'a); // FIXME: should not be a ref to `right`.
|
||||
Self::Output::from(&self.coords - &right); 'a); // TODO: should not be a ref to `right`.
|
||||
|
||||
add_sub_impl!(Sub, sub, ClosedSub;
|
||||
(D1, U1), (D2, U1) -> (D1) for D1: DimName, D2: Dim, SB: Storage<N, D2>;
|
||||
@ -128,7 +128,7 @@ add_sub_impl!(Add, add, ClosedAdd;
|
||||
add_sub_impl!(Add, add, ClosedAdd;
|
||||
(D1, U1), (D2, U1) -> (D1) for D1: DimName, D2: Dim, SB: Storage<N, D2>;
|
||||
self: &'a Point<N, D1>, right: Vector<N, D2, SB>, Output = Point<N, D1>;
|
||||
Self::Output::from(&self.coords + &right); 'a); // FIXME: should not be a ref to `right`.
|
||||
Self::Output::from(&self.coords + &right); 'a); // TODO: should not be a ref to `right`.
|
||||
|
||||
add_sub_impl!(Add, add, ClosedAdd;
|
||||
(D1, U1), (D2, U1) -> (D1) for D1: DimName, D2: Dim, SB: Storage<N, D2>;
|
||||
|
@ -1519,7 +1519,7 @@ where
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn inverse_transform_point(&self, pt: &Point3<N>) -> Point3<N> {
|
||||
// FIXME: would it be useful performancewise not to call inverse explicitly (i-e. implement
|
||||
// TODO: would it be useful performancewise not to call inverse explicitly (i-e. implement
|
||||
// the inverse transformation explicitly here) ?
|
||||
self.inverse() * pt
|
||||
}
|
||||
|
@ -69,7 +69,7 @@ impl<N: SimdRealField> Quaternion<N> {
|
||||
/// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
|
||||
/// ```
|
||||
#[inline]
|
||||
// FIXME: take a reference to `vector`?
|
||||
// TODO: take a reference to `vector`?
|
||||
pub fn from_parts<SB>(scalar: N, vector: Vector<N, U3, SB>) -> Self
|
||||
where
|
||||
SB: Storage<N, U3>,
|
||||
@ -100,7 +100,7 @@ impl<N: SimdRealField> Quaternion<N> {
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: merge with the previous block.
|
||||
// TODO: merge with the previous block.
|
||||
impl<N: SimdRealField> Quaternion<N>
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
@ -108,7 +108,7 @@ where
|
||||
/// Creates a new quaternion from its polar decomposition.
|
||||
///
|
||||
/// Note that `axis` is assumed to be a unit vector.
|
||||
// FIXME: take a reference to `axis`?
|
||||
// TODO: take a reference to `axis`?
|
||||
pub fn from_polar_decomposition<SB>(scale: N, theta: N, axis: Unit<Vector<N, U3, SB>>) -> Self
|
||||
where
|
||||
SB: Storage<N, U3>,
|
||||
@ -422,7 +422,7 @@ where
|
||||
SB: Storage<N, U3>,
|
||||
SC: Storage<N, U3>,
|
||||
{
|
||||
// FIXME: code duplication with Rotation.
|
||||
// TODO: code duplication with Rotation.
|
||||
if let (Some(na), Some(nb)) = (
|
||||
Unit::try_new(a.clone_owned(), N::zero()),
|
||||
Unit::try_new(b.clone_owned(), N::zero()),
|
||||
@ -484,7 +484,7 @@ where
|
||||
SB: Storage<N, U3>,
|
||||
SC: Storage<N, U3>,
|
||||
{
|
||||
// FIXME: code duplication with Rotation.
|
||||
// TODO: code duplication with Rotation.
|
||||
let c = na.cross(&nb);
|
||||
|
||||
if let Some(axis) = Unit::try_new(c, N::default_epsilon()) {
|
||||
|
@ -45,8 +45,8 @@
|
||||
* UnitQuaternion ÷= UnitQuaternion
|
||||
* UnitQuaternion ÷= Rotation
|
||||
*
|
||||
* FIXME: Rotation ×= UnitQuaternion
|
||||
* FIXME: Rotation ÷= UnitQuaternion
|
||||
* TODO: Rotation ×= UnitQuaternion
|
||||
* TODO: Rotation ÷= UnitQuaternion
|
||||
*
|
||||
*/
|
||||
|
||||
@ -248,7 +248,7 @@ quaternion_op_impl!(
|
||||
(U4, U1), (U3, U3);
|
||||
self: &'a UnitQuaternion<N>, rhs: &'b Rotation<N, U3>,
|
||||
Output = UnitQuaternion<N> => U3, U3;
|
||||
// FIXME: can we avoid the conversion from a rotation matrix?
|
||||
// TODO: can we avoid the conversion from a rotation matrix?
|
||||
self * UnitQuaternion::<N>::from_rotation_matrix(rhs);
|
||||
'a, 'b);
|
||||
|
||||
@ -281,7 +281,7 @@ quaternion_op_impl!(
|
||||
(U4, U1), (U3, U3);
|
||||
self: &'a UnitQuaternion<N>, rhs: &'b Rotation<N, U3>,
|
||||
Output = UnitQuaternion<N> => U3, U3;
|
||||
// FIXME: can we avoid the conversion to a rotation matrix?
|
||||
// TODO: can we avoid the conversion to a rotation matrix?
|
||||
self / UnitQuaternion::<N>::from_rotation_matrix(rhs);
|
||||
'a, 'b);
|
||||
|
||||
@ -314,7 +314,7 @@ quaternion_op_impl!(
|
||||
(U3, U3), (U4, U1);
|
||||
self: &'a Rotation<N, U3>, rhs: &'b UnitQuaternion<N>,
|
||||
Output = UnitQuaternion<N> => U3, U3;
|
||||
// FIXME: can we avoid the conversion from a rotation matrix?
|
||||
// TODO: can we avoid the conversion from a rotation matrix?
|
||||
UnitQuaternion::<N>::from_rotation_matrix(self) * rhs;
|
||||
'a, 'b);
|
||||
|
||||
@ -347,7 +347,7 @@ quaternion_op_impl!(
|
||||
(U3, U3), (U4, U1);
|
||||
self: &'a Rotation<N, U3>, rhs: &'b UnitQuaternion<N>,
|
||||
Output = UnitQuaternion<N> => U3, U3;
|
||||
// FIXME: can we avoid the conversion from a rotation matrix?
|
||||
// TODO: can we avoid the conversion from a rotation matrix?
|
||||
UnitQuaternion::<N>::from_rotation_matrix(self) / rhs;
|
||||
'a, 'b);
|
||||
|
||||
@ -615,7 +615,7 @@ quaternion_op_impl!(
|
||||
self: Quaternion<N>, rhs: &'b Quaternion<N>;
|
||||
{
|
||||
let res = &*self * rhs;
|
||||
// FIXME: will this be optimized away?
|
||||
// TODO: will this be optimized away?
|
||||
self.coords.copy_from(&res.coords);
|
||||
};
|
||||
'b);
|
||||
|
@ -41,7 +41,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D>> Reflection<N, D, S> {
|
||||
&self.axis
|
||||
}
|
||||
|
||||
// FIXME: naming convention: reflect_to, reflect_assign ?
|
||||
// TODO: naming convention: reflect_to, reflect_assign ?
|
||||
/// Applies the reflection to the columns of `rhs`.
|
||||
pub fn reflect<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
|
||||
where
|
||||
@ -58,7 +58,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D>> Reflection<N, D, S> {
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: naming convention: reflect_to, reflect_assign ?
|
||||
// TODO: naming convention: reflect_to, reflect_assign ?
|
||||
/// Applies the reflection to the columns of `rhs`.
|
||||
pub fn reflect_with_sign<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>, sign: N)
|
||||
where
|
||||
|
@ -54,7 +54,7 @@ md_impl_all!(
|
||||
);
|
||||
|
||||
// Rotation ÷ Rotation
|
||||
// FIXME: instead of calling inverse explicitly, could we just add a `mul_tr` or `mul_inv` method?
|
||||
// TODO: instead of calling inverse explicitly, could we just add a `mul_tr` or `mul_inv` method?
|
||||
md_impl_all!(
|
||||
Div, div;
|
||||
(D, D), (D, D) for D: DimName;
|
||||
@ -105,7 +105,7 @@ md_impl_all!(
|
||||
);
|
||||
|
||||
// Rotation × Point
|
||||
// FIXME: we don't handle properly non-zero origins here. Do we want this to be the intended
|
||||
// TODO: we don't handle properly non-zero origins here. Do we want this to be the intended
|
||||
// behavior?
|
||||
md_impl_all!(
|
||||
Mul, mul;
|
||||
@ -133,7 +133,7 @@ md_impl_all!(
|
||||
);
|
||||
|
||||
// Rotation ×= Rotation
|
||||
// FIXME: try not to call `inverse()` explicitly.
|
||||
// TODO: try not to call `inverse()` explicitly.
|
||||
|
||||
md_assign_impl_all!(
|
||||
MulAssign, mul_assign;
|
||||
@ -152,8 +152,8 @@ md_assign_impl_all!(
|
||||
);
|
||||
|
||||
// Matrix *= Rotation
|
||||
// FIXME: try not to call `inverse()` explicitly.
|
||||
// FIXME: this shares the same limitations as for the current impl. of MulAssign for matrices.
|
||||
// TODO: try not to call `inverse()` explicitly.
|
||||
// TODO: this shares the same limitations as for the current impl. of MulAssign for matrices.
|
||||
// (In particular the number of matrix column must be equal to the number of rotation columns,
|
||||
// i.e., equal to the rotation dimension.
|
||||
|
||||
|
@ -706,7 +706,7 @@ where
|
||||
SB: Storage<N, U3>,
|
||||
SC: Storage<N, U3>,
|
||||
{
|
||||
// FIXME: code duplication with Rotation.
|
||||
// TODO: code duplication with Rotation.
|
||||
if let (Some(na), Some(nb)) = (a.try_normalize(N::zero()), b.try_normalize(N::zero())) {
|
||||
let c = na.cross(&nb);
|
||||
|
||||
|
@ -120,7 +120,7 @@ where
|
||||
.try_normalize_mut(N2::zero())
|
||||
.is_some()
|
||||
{
|
||||
// FIXME: could we avoid explicit the computation of the determinant?
|
||||
// TODO: could we avoid explicit the computation of the determinant?
|
||||
// (its sign is needed to see if the scaling factor is negative).
|
||||
if rot.determinant() < N2::zero() {
|
||||
rot.fixed_columns_mut::<U1>(0).neg_mut();
|
||||
@ -149,7 +149,7 @@ where
|
||||
|
||||
let mut scale = (na + nb + nc) / crate::convert(3.0); // We take the mean, for robustness.
|
||||
|
||||
// FIXME: could we avoid the explicit computation of the determinant?
|
||||
// TODO: could we avoid the explicit computation of the determinant?
|
||||
// (its sign is needed to see if the scaling factor is negative).
|
||||
if mm.fixed_slice::<D, D>(0, 0).determinant() < N2::zero() {
|
||||
mm.fixed_slice_mut::<D, U1>(0, 0).neg_mut();
|
||||
|
@ -13,7 +13,7 @@ use crate::geometry::{
|
||||
UnitQuaternion,
|
||||
};
|
||||
|
||||
// FIXME: there are several cloning of rotations that we could probably get rid of (but we didn't
|
||||
// TODO: there are several cloning of rotations that we could probably get rid of (but we didn't
|
||||
// yet because that would require to add a bound like `where for<'a, 'b> &'a R: Mul<&'b R, Output = R>`
|
||||
// which is quite ugly.
|
||||
|
||||
@ -191,7 +191,7 @@ similarity_binop_assign_impl_all!(
|
||||
DivAssign, div_assign;
|
||||
self: Similarity<N, D, R>, rhs: Similarity<N, D, R>;
|
||||
[val] => *self /= &rhs;
|
||||
// FIXME: don't invert explicitly.
|
||||
// TODO: don't invert explicitly.
|
||||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
);
|
||||
|
||||
@ -212,7 +212,7 @@ similarity_binop_assign_impl_all!(
|
||||
DivAssign, div_assign;
|
||||
self: Similarity<N, D, R>, rhs: Isometry<N, D, R>;
|
||||
[val] => *self /= &rhs;
|
||||
// FIXME: don't invert explicitly.
|
||||
// TODO: don't invert explicitly.
|
||||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
);
|
||||
|
||||
@ -230,7 +230,7 @@ md_assign_impl_all!(
|
||||
DivAssign, div_assign where N: SimdRealField for N::Element: SimdRealField;
|
||||
(D, U1), (D, D) for D: DimName;
|
||||
self: Similarity<N, D, Rotation<N, D>>, rhs: Rotation<N, D>;
|
||||
// FIXME: don't invert explicitly?
|
||||
// TODO: don't invert explicitly?
|
||||
[val] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
);
|
||||
@ -247,7 +247,7 @@ md_assign_impl_all!(
|
||||
DivAssign, div_assign where N: SimdRealField for N::Element: SimdRealField;
|
||||
(U3, U3), (U3, U3) for;
|
||||
self: Similarity<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>;
|
||||
// FIXME: don't invert explicitly?
|
||||
// TODO: don't invert explicitly?
|
||||
[val] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
);
|
||||
@ -264,7 +264,7 @@ md_assign_impl_all!(
|
||||
DivAssign, div_assign where N: SimdRealField for N::Element: SimdRealField;
|
||||
(U2, U2), (U2, U2) for;
|
||||
self: Similarity<N, U2, UnitComplex<N>>, rhs: UnitComplex<N>;
|
||||
// FIXME: don't invert explicitly?
|
||||
// TODO: don't invert explicitly?
|
||||
[val] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
|
||||
);
|
||||
@ -495,7 +495,7 @@ similarity_from_composition_impl_all!(
|
||||
(D, D), (D, U1) for D: DimName;
|
||||
self: Rotation<N, D>, right: Similarity<N, D, Rotation<N, D>>,
|
||||
Output = Similarity<N, D, Rotation<N, D>>;
|
||||
// FIXME: don't call inverse explicitly?
|
||||
// TODO: don't call inverse explicitly?
|
||||
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||||
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||||
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||||
@ -556,7 +556,7 @@ similarity_from_composition_impl_all!(
|
||||
(U4, U1), (U3, U1);
|
||||
self: UnitQuaternion<N>, right: Similarity<N, U3, UnitQuaternion<N>>,
|
||||
Output = Similarity<N, U3, UnitQuaternion<N>>;
|
||||
// FIXME: don't call inverse explicitly?
|
||||
// TODO: don't call inverse explicitly?
|
||||
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||||
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||||
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
|
||||
|
@ -165,7 +165,7 @@ where
|
||||
_phantom: PhantomData<C>,
|
||||
}
|
||||
|
||||
// FIXME
|
||||
// TODO
|
||||
// impl<N: RealField + hash::Hash, D: DimNameAdd<U1> + hash::Hash, C: TCategory> hash::Hash for Transform<N, D, C>
|
||||
// where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||||
// Owned<N, DimNameSum<D, U1>, DimNameSum<D, U1>>: hash::Hash {
|
||||
@ -411,7 +411,7 @@ where
|
||||
where
|
||||
C: SubTCategoryOf<TProjective>,
|
||||
{
|
||||
// FIXME: specialize for TAffine?
|
||||
// TODO: specialize for TAffine?
|
||||
Transform::from_matrix_unchecked(self.matrix.try_inverse().unwrap())
|
||||
}
|
||||
|
||||
|
@ -129,7 +129,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: we need to implement an SVD for this.
|
||||
// TODO: we need to implement an SVD for this.
|
||||
//
|
||||
// impl<N, D: DimNameAdd<U1>, C> AffineTransformation<Point<N, D>> for Transform<N, D, C>
|
||||
// where N: RealField,
|
||||
|
@ -27,7 +27,7 @@ use crate::geometry::{
|
||||
* Transform × Similarity
|
||||
* Transform × Transform
|
||||
* Transform × UnitQuaternion
|
||||
* FIXME: Transform × UnitComplex
|
||||
* TODO: Transform × UnitComplex
|
||||
* Transform × Translation
|
||||
* Transform × Vector
|
||||
* Transform × Point
|
||||
@ -37,21 +37,21 @@ use crate::geometry::{
|
||||
* Similarity × Transform
|
||||
* Translation × Transform
|
||||
* UnitQuaternion × Transform
|
||||
* FIXME: UnitComplex × Transform
|
||||
* TODO: UnitComplex × Transform
|
||||
*
|
||||
* FIXME: Transform ÷ Isometry
|
||||
* TODO: Transform ÷ Isometry
|
||||
* Transform ÷ Rotation
|
||||
* FIXME: Transform ÷ Similarity
|
||||
* TODO: Transform ÷ Similarity
|
||||
* Transform ÷ Transform
|
||||
* Transform ÷ UnitQuaternion
|
||||
* Transform ÷ Translation
|
||||
*
|
||||
* FIXME: Isometry ÷ Transform
|
||||
* TODO: Isometry ÷ Transform
|
||||
* Rotation ÷ Transform
|
||||
* FIXME: Similarity ÷ Transform
|
||||
* TODO: Similarity ÷ Transform
|
||||
* Translation ÷ Transform
|
||||
* UnitQuaternion ÷ Transform
|
||||
* FIXME: UnitComplex ÷ Transform
|
||||
* TODO: UnitComplex ÷ Transform
|
||||
*
|
||||
*
|
||||
* (Assignment Operators)
|
||||
@ -62,15 +62,15 @@ use crate::geometry::{
|
||||
* Transform ×= Isometry
|
||||
* Transform ×= Rotation
|
||||
* Transform ×= UnitQuaternion
|
||||
* FIXME: Transform ×= UnitComplex
|
||||
* TODO: Transform ×= UnitComplex
|
||||
* Transform ×= Translation
|
||||
*
|
||||
* Transform ÷= Transform
|
||||
* FIXME: Transform ÷= Similarity
|
||||
* FIXME: Transform ÷= Isometry
|
||||
* TODO: Transform ÷= Similarity
|
||||
* TODO: Transform ÷= Isometry
|
||||
* Transform ÷= Rotation
|
||||
* Transform ÷= UnitQuaternion
|
||||
* FIXME: Transform ÷= UnitComplex
|
||||
* TODO: Transform ÷= UnitComplex
|
||||
*
|
||||
*/
|
||||
|
||||
@ -260,7 +260,7 @@ md_impl_all!(
|
||||
|
||||
/*
|
||||
*
|
||||
* FIXME: don't explicitly build the homogeneous translation matrix.
|
||||
* TODO: don't explicitly build the homogeneous translation matrix.
|
||||
* Directly apply the translation, just as in `Matrix::{append,prepend}_translation`. This has not
|
||||
* been done yet because of the `DimNameDiff` requirement (which is not automatically deduced from
|
||||
* `DimNameAdd` requirement).
|
||||
@ -452,7 +452,7 @@ md_assign_impl_all!(
|
||||
|
||||
/*
|
||||
*
|
||||
* FIXME: don't explicitly build the homogeneous translation matrix.
|
||||
* TODO: don't explicitly build the homogeneous translation matrix.
|
||||
* Directly apply the translation, just as in `Matrix::{append,prepend}_translation`. This has not
|
||||
* been done yet because of the `DimNameDiff` requirement (which is not automatically deduced from
|
||||
* `DimNameAdd` requirement).
|
||||
|
@ -34,7 +34,7 @@ add_sub_impl!(Mul, mul, ClosedAdd;
|
||||
#[allow(clippy::suspicious_arithmetic_impl)] { Translation::from(self.vector + right.vector) }; );
|
||||
|
||||
// Translation ÷ Translation
|
||||
// FIXME: instead of calling inverse explicitly, could we just add a `mul_tr` or `mul_inv` method?
|
||||
// TODO: instead of calling inverse explicitly, could we just add a `mul_tr` or `mul_inv` method?
|
||||
add_sub_impl!(Div, div, ClosedSub;
|
||||
(D, U1), (D, U1) -> (D) for D: DimName;
|
||||
self: &'a Translation<N, D>, right: &'b Translation<N, D>, Output = Translation<N, D>;
|
||||
@ -59,7 +59,7 @@ add_sub_impl!(Div, div, ClosedSub;
|
||||
#[allow(clippy::suspicious_arithmetic_impl)] { Translation::from(self.vector - right.vector) }; );
|
||||
|
||||
// Translation × Point
|
||||
// FIXME: we don't handle properly non-zero origins here. Do we want this to be the intended
|
||||
// TODO: we don't handle properly non-zero origins here. Do we want this to be the intended
|
||||
// behavior?
|
||||
add_sub_impl!(Mul, mul, ClosedAdd;
|
||||
(D, U1), (D, U1) -> (D) for D: DimName;
|
||||
|
@ -340,7 +340,7 @@ where
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn inverse_transform_point(&self, pt: &Point2<N>) -> Point2<N> {
|
||||
// FIXME: would it be useful performancewise not to call inverse explicitly (i-e. implement
|
||||
// TODO: would it be useful performancewise not to call inverse explicitly (i-e. implement
|
||||
// the inverse transformation explicitly here) ?
|
||||
self.inverse() * pt
|
||||
}
|
||||
|
@ -65,7 +65,7 @@ where
|
||||
///
|
||||
/// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
|
||||
/// ```
|
||||
// FIXME: deprecate this.
|
||||
// TODO: deprecate this.
|
||||
#[inline]
|
||||
pub fn from_angle(angle: N) -> Self {
|
||||
Self::new(angle)
|
||||
@ -127,7 +127,7 @@ where
|
||||
/// let complex = UnitComplex::from_rotation_matrix(&rot);
|
||||
/// assert_eq!(complex, UnitComplex::new(1.7));
|
||||
/// ```
|
||||
// FIXME: add UnitComplex::from(...) instead?
|
||||
// TODO: add UnitComplex::from(...) instead?
|
||||
#[inline]
|
||||
pub fn from_rotation_matrix(rotmat: &Rotation2<N>) -> Self {
|
||||
Self::new_unchecked(Complex::new(rotmat[(0, 0)], rotmat[(1, 0)]))
|
||||
@ -213,7 +213,7 @@ where
|
||||
SB: Storage<N, U2>,
|
||||
SC: Storage<N, U2>,
|
||||
{
|
||||
// FIXME: code duplication with Rotation.
|
||||
// TODO: code duplication with Rotation.
|
||||
if let (Some(na), Some(nb)) = (
|
||||
Unit::try_new(a.clone_owned(), N::zero()),
|
||||
Unit::try_new(b.clone_owned(), N::zero()),
|
||||
|
@ -9,14 +9,14 @@ use pest::Parser;
|
||||
#[grammar = "io/matrix_market.pest"]
|
||||
struct MatrixMarketParser;
|
||||
|
||||
// FIXME: return an Error instead of an Option.
|
||||
// TODO: return an Error instead of an Option.
|
||||
/// Parses a Matrix Market file at the given path, and returns the corresponding sparse matrix.
|
||||
pub fn cs_matrix_from_matrix_market<N: RealField, P: AsRef<Path>>(path: P) -> Option<CsMatrix<N>> {
|
||||
let file = fs::read_to_string(path).ok()?;
|
||||
cs_matrix_from_matrix_market_str(&file)
|
||||
}
|
||||
|
||||
// FIXME: return an Error instead of an Option.
|
||||
// TODO: return an Error instead of an Option.
|
||||
/// Parses a Matrix Market file described by the given string, and returns the corresponding sparse matrix.
|
||||
pub fn cs_matrix_from_matrix_market_str<N: RealField>(data: &str) -> Option<CsMatrix<N>> {
|
||||
let file = MatrixMarketParser::parse(Rule::Document, data)
|
||||
@ -43,7 +43,7 @@ pub fn cs_matrix_from_matrix_market_str<N: RealField>(data: &str) -> Option<CsMa
|
||||
cols.push(inner.next()?.as_str().parse::<usize>().ok()? - 1);
|
||||
data.push(crate::convert(inner.next()?.as_str().parse::<f64>().ok()?));
|
||||
}
|
||||
_ => return None, // FIXME: return an Err instead.
|
||||
_ => return None, // TODO: return an Err instead.
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -40,7 +40,7 @@ where
|
||||
+ Allocator<N, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
|
||||
{
|
||||
// FIXME: perhaps we should pack the axises into different vectors so that axises for `v_t` are
|
||||
// TODO: perhaps we should pack the axes into different vectors so that axes for `v_t` are
|
||||
// contiguous. This prevents some useless copies.
|
||||
uv: MatrixMN<N, R, C>,
|
||||
/// The diagonal elements of the decomposed matrix.
|
||||
@ -176,7 +176,7 @@ where
|
||||
+ Allocator<N, R, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>, C>,
|
||||
{
|
||||
// FIXME: optimize by calling a reallocator.
|
||||
// TODO: optimize by calling a reallocator.
|
||||
(self.u(), self.d(), self.v_t())
|
||||
}
|
||||
|
||||
@ -199,7 +199,7 @@ where
|
||||
}
|
||||
|
||||
/// Computes the orthogonal matrix `U` of this `U * D * V` decomposition.
|
||||
// FIXME: code duplication with householder::assemble_q.
|
||||
// TODO: code duplication with householder::assemble_q.
|
||||
// Except that we are returning a rectangular matrix here.
|
||||
pub fn u(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
|
||||
where
|
||||
@ -213,7 +213,7 @@ where
|
||||
|
||||
for i in (0..dim - shift).rev() {
|
||||
let axis = self.uv.slice_range(i + shift.., i);
|
||||
// FIXME: sometimes, the axis might have a zero magnitude.
|
||||
// TODO: sometimes, the axis might have a zero magnitude.
|
||||
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
|
||||
|
||||
let mut res_rows = res.slice_range_mut(i + shift.., i..);
|
||||
@ -248,7 +248,7 @@ where
|
||||
let axis = self.uv.slice_range(i, i + shift..);
|
||||
let mut axis_packed = axis_packed.rows_range_mut(i + shift..);
|
||||
axis_packed.tr_copy_from(&axis);
|
||||
// FIXME: sometimes, the axis might have a zero magnitude.
|
||||
// TODO: sometimes, the axis might have a zero magnitude.
|
||||
let refl = Reflection::new(Unit::new_unchecked(axis_packed), N::zero());
|
||||
|
||||
let mut res_rows = res.slice_range_mut(i.., i + shift..);
|
||||
@ -312,7 +312,7 @@ where
|
||||
// self.solve_upper_triangular_mut(b);
|
||||
// }
|
||||
//
|
||||
// // FIXME: duplicate code from the `solve` module.
|
||||
// // TODO: duplicate code from the `solve` module.
|
||||
// fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
|
||||
// where S2: StorageMut<N, R2, C2>,
|
||||
// ShapeConstraint: SameNumberOfRows<R2, D> {
|
||||
@ -339,7 +339,7 @@ where
|
||||
// pub fn inverse(&self) -> MatrixN<N, D> {
|
||||
// assert!(self.uv.is_square(), "Bidiagonal inverse: unable to compute the inverse of a non-square matrix.");
|
||||
//
|
||||
// // FIXME: is there a less naive method ?
|
||||
// // TODO: is there a less naive method ?
|
||||
// let (nrows, ncols) = self.uv.data.shape();
|
||||
// let mut res = MatrixN::identity_generic(nrows, ncols);
|
||||
// self.solve_mut(&mut res);
|
||||
@ -359,18 +359,3 @@ where
|
||||
// // res self.q_determinant()
|
||||
// // }
|
||||
// }
|
||||
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where
|
||||
DimMinimum<R, C>: DimSub<U1>,
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
+ Allocator<N, C>
|
||||
+ Allocator<N, R>
|
||||
+ Allocator<N, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
|
||||
{
|
||||
/// Computes the bidiagonalization using householder reflections.
|
||||
pub fn bidiagonalize(self) -> Bidiagonal<N, R, C> {
|
||||
Bidiagonal::new(self.into_owned())
|
||||
}
|
||||
}
|
||||
|
@ -6,7 +6,7 @@ use simba::scalar::ComplexField;
|
||||
use simba::simd::SimdComplexField;
|
||||
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix, Vector};
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Vector};
|
||||
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
use crate::dimension::{Dim, DimAdd, DimDiff, DimSub, DimSum, U1};
|
||||
use crate::storage::{Storage, StorageMut};
|
||||
@ -363,16 +363,3 @@ where
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Attempts to compute the Cholesky decomposition of this matrix.
|
||||
///
|
||||
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
|
||||
/// to be symmetric and only the lower-triangular part is read.
|
||||
pub fn cholesky(self) -> Option<Cholesky<N, D>> {
|
||||
Cholesky::new(self.into_owned())
|
||||
}
|
||||
}
|
||||
|
232
src/linalg/decomposition.rs
Normal file
232
src/linalg/decomposition.rs
Normal file
@ -0,0 +1,232 @@
|
||||
use crate::storage::Storage;
|
||||
use crate::{
|
||||
Allocator, Bidiagonal, Cholesky, ComplexField, DefaultAllocator, Dim, DimDiff, DimMin,
|
||||
DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, Schur, SymmetricEigen, SymmetricTridiagonal,
|
||||
LU, QR, SVD, U1,
|
||||
};
|
||||
|
||||
/// # Rectangular matrix decomposition
|
||||
///
|
||||
/// This section contains the methods for computing some common decompositions of rectangular
|
||||
/// matrices with real or complex components. The following are currently supported:
|
||||
///
|
||||
/// | Decomposition | Factors | Details |
|
||||
/// | -------------------------|---------------------|--------------|
|
||||
/// | QR | `Q * R` | `Q` is an unitary matrix, and `R` is upper-triangular. |
|
||||
/// | LU with partial pivoting | `P⁻¹ * L * U` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` is a permutation matrix. |
|
||||
/// | LU with full pivoting | `P⁻¹ * L * U ~ Q⁻¹` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` and `Q` are permutation matrices. |
|
||||
/// | SVD | `U * Σ * Vᵀ` | `U` and `V` are two orthogonal matrices and `Σ` is a diagonal matrix containing the singular values. |
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Computes the bidiagonalization using householder reflections.
|
||||
pub fn bidiagonalize(self) -> Bidiagonal<N, R, C>
|
||||
where
|
||||
R: DimMin<C>,
|
||||
DimMinimum<R, C>: DimSub<U1>,
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
+ Allocator<N, C>
|
||||
+ Allocator<N, R>
|
||||
+ Allocator<N, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
|
||||
{
|
||||
Bidiagonal::new(self.into_owned())
|
||||
}
|
||||
|
||||
/// Computes the LU decomposition with full pivoting of `matrix`.
|
||||
///
|
||||
/// This effectively computes `P, L, U, Q` such that `P * matrix * Q = LU`.
|
||||
pub fn full_piv_lu(self) -> FullPivLU<N, R, C>
|
||||
where
|
||||
R: DimMin<C>,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
||||
{
|
||||
FullPivLU::new(self.into_owned())
|
||||
}
|
||||
|
||||
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
|
||||
pub fn lu(self) -> LU<N, R, C>
|
||||
where
|
||||
R: DimMin<C>,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
||||
{
|
||||
LU::new(self.into_owned())
|
||||
}
|
||||
|
||||
/// Computes the QR decomposition of this matrix.
|
||||
pub fn qr(self) -> QR<N, R, C>
|
||||
where
|
||||
R: DimMin<C>,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>>,
|
||||
{
|
||||
QR::new(self.into_owned())
|
||||
}
|
||||
|
||||
/// Computes the Singular Value Decomposition using implicit shift.
|
||||
pub fn svd(self, compute_u: bool, compute_v: bool) -> SVD<N, R, C>
|
||||
where
|
||||
R: DimMin<C>,
|
||||
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
+ Allocator<N, C>
|
||||
+ Allocator<N, R>
|
||||
+ Allocator<N, DimDiff<DimMinimum<R, C>, U1>>
|
||||
+ Allocator<N, DimMinimum<R, C>, C>
|
||||
+ Allocator<N, R, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>>
|
||||
+ Allocator<N::RealField, DimMinimum<R, C>>
|
||||
+ Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
|
||||
{
|
||||
SVD::new(self.into_owned(), compute_u, compute_v)
|
||||
}
|
||||
|
||||
/// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `compute_u` − set this to `true` to enable the computation of left-singular vectors.
|
||||
/// * `compute_v` − set this to `true` to enable the computation of right-singular vectors.
|
||||
/// * `eps` − tolerance used to determine when a value converged to 0.
|
||||
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
||||
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
||||
/// continues indefinitely until convergence.
|
||||
pub fn try_svd(
|
||||
self,
|
||||
compute_u: bool,
|
||||
compute_v: bool,
|
||||
eps: N::RealField,
|
||||
max_niter: usize,
|
||||
) -> Option<SVD<N, R, C>>
|
||||
where
|
||||
R: DimMin<C>,
|
||||
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
+ Allocator<N, C>
|
||||
+ Allocator<N, R>
|
||||
+ Allocator<N, DimDiff<DimMinimum<R, C>, U1>>
|
||||
+ Allocator<N, DimMinimum<R, C>, C>
|
||||
+ Allocator<N, R, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>>
|
||||
+ Allocator<N::RealField, DimMinimum<R, C>>
|
||||
+ Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
|
||||
{
|
||||
SVD::try_new(self.into_owned(), compute_u, compute_v, eps, max_niter)
|
||||
}
|
||||
}
|
||||
|
||||
/// # Square matrix decomposition
|
||||
///
|
||||
/// This section contains the methods for computing some common decompositions of square
|
||||
/// matrices with real or complex components. The following are currently supported:
|
||||
///
|
||||
/// | Decomposition | Factors | Details |
|
||||
/// | -------------------------|---------------------------|--------------|
|
||||
/// | Hessenberg | `Q * H * Qᵀ` | `Q` is a unitary matrix and `H` an upper-Hessenberg matrix. |
|
||||
/// | Cholesky | `L * Lᵀ` | `L` is a lower-triangular matrix. |
|
||||
/// | Schur decomposition | `Q * T * Qᵀ` | `Q` is an unitary matrix and `T` a quasi-upper-triangular matrix. |
|
||||
/// | Symmetric eigendecomposition | `Q ~ Λ ~ Qᵀ` | `Q` is an unitary matrix, and `Λ` is a real diagonal matrix. |
|
||||
/// | Symmetric tridiagonalization | `Q ~ T ~ Qᵀ` | `Q` is an unitary matrix, and `T` is a tridiagonal matrix. |
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> Matrix<N, D, D, S> {
|
||||
/// Attempts to compute the Cholesky decomposition of this matrix.
|
||||
///
|
||||
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
|
||||
/// to be symmetric and only the lower-triangular part is read.
|
||||
pub fn cholesky(self) -> Option<Cholesky<N, D>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
Cholesky::new(self.into_owned())
|
||||
}
|
||||
|
||||
/// Computes the Hessenberg decomposition of this matrix using householder reflections.
|
||||
pub fn hessenberg(self) -> Hessenberg<N, D>
|
||||
where
|
||||
D: DimSub<U1>,
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
Hessenberg::new(self.into_owned())
|
||||
}
|
||||
|
||||
/// Computes the Schur decomposition of a square matrix.
|
||||
pub fn schur(self) -> Schur<N, D>
|
||||
where
|
||||
D: DimSub<U1>, // For Hessenberg.
|
||||
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>>
|
||||
+ Allocator<N, DimDiff<D, U1>>
|
||||
+ Allocator<N, D, D>
|
||||
+ Allocator<N, D>,
|
||||
{
|
||||
Schur::new(self.into_owned())
|
||||
}
|
||||
|
||||
/// Attempts to compute the Schur decomposition of a square matrix.
|
||||
///
|
||||
/// If only eigenvalues are needed, it is more efficient to call the matrix method
|
||||
/// `.eigenvalues()` instead.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `eps` − tolerance used to determine when a value converged to 0.
|
||||
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
||||
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
||||
/// continues indefinitely until convergence.
|
||||
pub fn try_schur(self, eps: N::RealField, max_niter: usize) -> Option<Schur<N, D>>
|
||||
where
|
||||
D: DimSub<U1>, // For Hessenberg.
|
||||
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>>
|
||||
+ Allocator<N, DimDiff<D, U1>>
|
||||
+ Allocator<N, D, D>
|
||||
+ Allocator<N, D>,
|
||||
{
|
||||
Schur::try_new(self.into_owned(), eps, max_niter)
|
||||
}
|
||||
|
||||
/// Computes the eigendecomposition of this symmetric matrix.
|
||||
///
|
||||
/// Only the lower-triangular part (including the diagonal) of `m` is read.
|
||||
pub fn symmetric_eigen(self) -> SymmetricEigen<N, D>
|
||||
where
|
||||
D: DimSub<U1>,
|
||||
DefaultAllocator: Allocator<N, D, D>
|
||||
+ Allocator<N, DimDiff<D, U1>>
|
||||
+ Allocator<N::RealField, D>
|
||||
+ Allocator<N::RealField, DimDiff<D, U1>>,
|
||||
{
|
||||
SymmetricEigen::new(self.into_owned())
|
||||
}
|
||||
|
||||
/// Computes the eigendecomposition of the given symmetric matrix with user-specified
|
||||
/// convergence parameters.
|
||||
///
|
||||
/// Only the lower-triangular part (including the diagonal) of `m` is read.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `eps` − tolerance used to determine when a value converged to 0.
|
||||
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
||||
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
||||
/// continues indefinitely until convergence.
|
||||
pub fn try_symmetric_eigen(
|
||||
self,
|
||||
eps: N::RealField,
|
||||
max_niter: usize,
|
||||
) -> Option<SymmetricEigen<N, D>>
|
||||
where
|
||||
D: DimSub<U1>,
|
||||
DefaultAllocator: Allocator<N, D, D>
|
||||
+ Allocator<N, DimDiff<D, U1>>
|
||||
+ Allocator<N::RealField, D>
|
||||
+ Allocator<N::RealField, DimDiff<D, U1>>,
|
||||
{
|
||||
SymmetricEigen::try_new(self.into_owned(), eps, max_niter)
|
||||
}
|
||||
|
||||
/// Computes the tridiagonalization of this symmetric matrix.
|
||||
///
|
||||
/// Only the lower-triangular part (including the diagonal) of `m` is read.
|
||||
pub fn symmetric_tridiagonalize(self) -> SymmetricTridiagonal<N, D>
|
||||
where
|
||||
D: DimSub<U1>,
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
SymmetricTridiagonal::new(self.into_owned())
|
||||
}
|
||||
}
|
@ -257,15 +257,3 @@ where
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
||||
{
|
||||
/// Computes the LU decomposition with full pivoting of `matrix`.
|
||||
///
|
||||
/// This effectively computes `P, L, U, Q` such that `P * matrix * Q = LU`.
|
||||
pub fn full_piv_lu(self) -> FullPivLU<N, R, C> {
|
||||
FullPivLU::new(self.into_owned())
|
||||
}
|
||||
}
|
||||
|
@ -147,7 +147,7 @@ impl<N: ComplexField> GivensRotation<N> {
|
||||
let s = self.s;
|
||||
let c = self.c;
|
||||
|
||||
// FIXME: can we optimize that to iterate on one column at a time ?
|
||||
// TODO: can we optimize that to iterate on one column at a time ?
|
||||
for j in 0..lhs.nrows() {
|
||||
unsafe {
|
||||
let a = *lhs.get_unchecked((j, 0));
|
||||
|
@ -2,7 +2,7 @@
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, SquareMatrix, VectorN};
|
||||
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, VectorN};
|
||||
use crate::dimension::{DimDiff, DimSub, U1};
|
||||
use crate::storage::Storage;
|
||||
use simba::scalar::ComplexField;
|
||||
@ -107,7 +107,7 @@ where
|
||||
self.hess
|
||||
}
|
||||
|
||||
// FIXME: add a h that moves out of self.
|
||||
// TODO: add a h that moves out of self.
|
||||
/// Retrieves the upper trapezoidal submatrix `H` of this decomposition.
|
||||
///
|
||||
/// This is less efficient than `.unpack_h()` as it allocates a new matrix.
|
||||
@ -131,13 +131,3 @@ where
|
||||
&self.hess
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
/// Computes the Hessenberg decomposition of this matrix using householder reflections.
|
||||
pub fn hessenberg(self) -> Hessenberg<N, D> {
|
||||
Hessenberg::new(self.into_owned())
|
||||
}
|
||||
}
|
||||
|
@ -36,7 +36,7 @@ pub fn reflection_axis_mut<N: ComplexField, D: Dim, S: StorageMut<N, D>>(
|
||||
column.unscale_mut(factor.sqrt());
|
||||
(-signed_norm, true)
|
||||
} else {
|
||||
// FIXME: not sure why we don't have a - sign here.
|
||||
// TODO: not sure why we don't have a - sign here.
|
||||
(signed_norm, false)
|
||||
}
|
||||
}
|
||||
|
@ -379,13 +379,3 @@ pub fn gauss_step_swap<N, R: Dim, C: Dim, S>(
|
||||
.axpy(-pivot_row[k].inlined_clone(), &coeffs, N::one());
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
||||
{
|
||||
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
|
||||
pub fn lu(self) -> LU<N, R, C> {
|
||||
LU::new(self.into_owned())
|
||||
}
|
||||
}
|
||||
|
@ -5,9 +5,10 @@ mod bidiagonal;
|
||||
mod cholesky;
|
||||
mod convolution;
|
||||
mod determinant;
|
||||
// FIXME: this should not be needed. However, the exp uses
|
||||
// TODO: this should not be needed. However, the exp uses
|
||||
// explicit float operations on `f32` and `f64`. We need to
|
||||
// get rid of these to allow exp to be used on a no-std context.
|
||||
mod decomposition;
|
||||
#[cfg(feature = "std")]
|
||||
mod exp;
|
||||
mod full_piv_lu;
|
||||
@ -24,7 +25,7 @@ mod svd;
|
||||
mod symmetric_eigen;
|
||||
mod symmetric_tridiagonal;
|
||||
|
||||
//// FIXME: Not complete enough for publishing.
|
||||
//// TODO: Not complete enough for publishing.
|
||||
//// This handles only cases where each eigenvalue has multiplicity one.
|
||||
// mod eigen;
|
||||
|
||||
|
@ -108,7 +108,7 @@ where
|
||||
|
||||
for i in (0..dim).rev() {
|
||||
let axis = self.qr.slice_range(i.., i);
|
||||
// FIXME: sometimes, the axis might have a zero magnitude.
|
||||
// TODO: sometimes, the axis might have a zero magnitude.
|
||||
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
|
||||
|
||||
let mut res_rows = res.slice_range_mut(i.., i..);
|
||||
@ -140,7 +140,7 @@ where
|
||||
|
||||
/// Multiplies the provided matrix by the transpose of the `Q` matrix of this decomposition.
|
||||
pub fn q_tr_mul<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
|
||||
// FIXME: do we need a static constraint on the number of rows of rhs?
|
||||
// TODO: do we need a static constraint on the number of rows of rhs?
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
{
|
||||
@ -204,7 +204,7 @@ where
|
||||
self.solve_upper_triangular_mut(b)
|
||||
}
|
||||
|
||||
// FIXME: duplicate code from the `solve` module.
|
||||
// TODO: duplicate code from the `solve` module.
|
||||
fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Matrix<N, R2, C2, S2>,
|
||||
@ -248,7 +248,7 @@ where
|
||||
"QR inverse: unable to compute the inverse of a non-square matrix."
|
||||
);
|
||||
|
||||
// FIXME: is there a less naive method ?
|
||||
// TODO: is there a less naive method ?
|
||||
let (nrows, ncols) = self.qr.data.shape();
|
||||
let mut res = MatrixN::identity_generic(nrows, ncols);
|
||||
|
||||
@ -288,13 +288,3 @@ where
|
||||
// res self.q_determinant()
|
||||
// }
|
||||
}
|
||||
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>>,
|
||||
{
|
||||
/// Computes the QR decomposition of this matrix.
|
||||
pub fn qr(self) -> QR<N, R, C> {
|
||||
QR::new(self.into_owned())
|
||||
}
|
||||
}
|
||||
|
@ -115,7 +115,7 @@ where
|
||||
let mut t;
|
||||
|
||||
if compute_q {
|
||||
// FIXME: could we work without unpacking? Using only the internal representation of
|
||||
// TODO: could we work without unpacking? Using only the internal representation of
|
||||
// hessenberg decomposition.
|
||||
let (vecs, vals) = hess.unpack();
|
||||
q = Some(vecs);
|
||||
@ -496,26 +496,6 @@ where
|
||||
+ Allocator<N, D, D>
|
||||
+ Allocator<N, D>,
|
||||
{
|
||||
/// Computes the Schur decomposition of a square matrix.
|
||||
pub fn schur(self) -> Schur<N, D> {
|
||||
Schur::new(self.into_owned())
|
||||
}
|
||||
|
||||
/// Attempts to compute the Schur decomposition of a square matrix.
|
||||
///
|
||||
/// If only eigenvalues are needed, it is more efficient to call the matrix method
|
||||
/// `.eigenvalues()` instead.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `eps` − tolerance used to determine when a value converged to 0.
|
||||
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
||||
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
||||
/// continues indefinitely until convergence.
|
||||
pub fn try_schur(self, eps: N::RealField, max_niter: usize) -> Option<Schur<N, D>> {
|
||||
Schur::try_new(self.into_owned(), eps, max_niter)
|
||||
}
|
||||
|
||||
/// Computes the eigenvalues of this matrix.
|
||||
pub fn eigenvalues(&self) -> Option<VectorN<N, D>> {
|
||||
assert!(
|
||||
@ -527,7 +507,7 @@ where
|
||||
|
||||
// Special case for 2x2 matrices.
|
||||
if self.nrows() == 2 {
|
||||
// FIXME: can we avoid this slicing
|
||||
// TODO: can we avoid this slicing
|
||||
// (which is needed here just to transform D to U2)?
|
||||
let me = self.fixed_slice::<U2, U2>(0, 0);
|
||||
return match compute_2x2_eigvals(&me) {
|
||||
@ -540,7 +520,7 @@ where
|
||||
};
|
||||
}
|
||||
|
||||
// FIXME: add balancing?
|
||||
// TODO: add balancing?
|
||||
let schur = Schur::do_decompose(
|
||||
self.clone_owned(),
|
||||
&mut work,
|
||||
@ -558,7 +538,7 @@ where
|
||||
|
||||
/// Computes the eigenvalues of this matrix.
|
||||
pub fn complex_eigenvalues(&self) -> VectorN<NumComplex<N>, D>
|
||||
// FIXME: add balancing?
|
||||
// TODO: add balancing?
|
||||
where
|
||||
N: RealField,
|
||||
DefaultAllocator: Allocator<NumComplex<N>, D>,
|
||||
|
@ -97,7 +97,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
true
|
||||
}
|
||||
|
||||
// FIXME: add the same but for solving upper-triangular.
|
||||
// TODO: add the same but for solving upper-triangular.
|
||||
/// Solves the linear system `self . x = b` where `x` is the unknown and only the
|
||||
/// lower-triangular part of `self` is considered not-zero. The diagonal is never read as it is
|
||||
/// assumed to be equal to `diag`. Returns `false` and does not modify its inputs if `diag` is zero.
|
||||
@ -510,7 +510,7 @@ impl<N: SimdComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: add the same but for solving upper-triangular.
|
||||
// TODO: add the same but for solving upper-triangular.
|
||||
/// Solves the linear system `self . x = b` where `x` is the unknown and only the
|
||||
/// lower-triangular part of `self` is considered not-zero. The diagonal is never read as it is
|
||||
/// assumed to be equal to `diag`. Returns `false` and does not modify its inputs if `diag` is zero.
|
||||
|
@ -191,7 +191,7 @@ where
|
||||
}
|
||||
|
||||
let v = Vector2::new(subm[(0, 0)], subm[(1, 0)]);
|
||||
// FIXME: does the case `v.y == 0` ever happen?
|
||||
// TODO: does the case `v.y == 0` ever happen?
|
||||
let (rot2, norm2) = GivensRotation::cancel_y(&v)
|
||||
.unwrap_or((GivensRotation::identity(), subm[(0, 0)]));
|
||||
|
||||
@ -395,7 +395,7 @@ where
|
||||
off_diagonal[m] = N::RealField::zero();
|
||||
break;
|
||||
}
|
||||
// FIXME: write a test that enters this case.
|
||||
// TODO: write a test that enters this case.
|
||||
else if diagonal[m].norm1() <= eps {
|
||||
diagonal[m] = N::RealField::zero();
|
||||
Self::cancel_horizontal_off_diagonal_elt(
|
||||
@ -562,7 +562,7 @@ where
|
||||
///
|
||||
/// Any singular value smaller than `eps` is assumed to be zero.
|
||||
/// Returns `Err` if the singular vectors `U` and `V` have not been computed.
|
||||
// FIXME: make this more generic wrt the storage types and the dimensions for `b`.
|
||||
// TODO: make this more generic wrt the storage types and the dimensions for `b`.
|
||||
pub fn solve<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
@ -616,31 +616,6 @@ where
|
||||
+ Allocator<N::RealField, DimMinimum<R, C>>
|
||||
+ Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
|
||||
{
|
||||
/// Computes the Singular Value Decomposition using implicit shift.
|
||||
pub fn svd(self, compute_u: bool, compute_v: bool) -> SVD<N, R, C> {
|
||||
SVD::new(self.into_owned(), compute_u, compute_v)
|
||||
}
|
||||
|
||||
/// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `compute_u` − set this to `true` to enable the computation of left-singular vectors.
|
||||
/// * `compute_v` − set this to `true` to enable the computation of right-singular vectors.
|
||||
/// * `eps` − tolerance used to determine when a value converged to 0.
|
||||
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
||||
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
||||
/// continues indefinitely until convergence.
|
||||
pub fn try_svd(
|
||||
self,
|
||||
compute_u: bool,
|
||||
compute_v: bool,
|
||||
eps: N::RealField,
|
||||
max_niter: usize,
|
||||
) -> Option<SVD<N, R, C>> {
|
||||
SVD::try_new(self.into_owned(), compute_u, compute_v, eps, max_niter)
|
||||
}
|
||||
|
||||
/// Computes the singular values of this matrix.
|
||||
pub fn singular_values(&self) -> VectorN<N::RealField, DimMinimum<R, C>> {
|
||||
SVD::new(self.clone_owned(), false, false).singular_values
|
||||
|
@ -308,32 +308,6 @@ where
|
||||
+ Allocator<N::RealField, D>
|
||||
+ Allocator<N::RealField, DimDiff<D, U1>>,
|
||||
{
|
||||
/// Computes the eigendecomposition of this symmetric matrix.
|
||||
///
|
||||
/// Only the lower-triangular part (including the diagonal) of `m` is read.
|
||||
pub fn symmetric_eigen(self) -> SymmetricEigen<N, D> {
|
||||
SymmetricEigen::new(self.into_owned())
|
||||
}
|
||||
|
||||
/// Computes the eigendecomposition of the given symmetric matrix with user-specified
|
||||
/// convergence parameters.
|
||||
///
|
||||
/// Only the lower-triangular part (including the diagonal) of `m` is read.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `eps` − tolerance used to determine when a value converged to 0.
|
||||
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
||||
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
||||
/// continues indefinitely until convergence.
|
||||
pub fn try_symmetric_eigen(
|
||||
self,
|
||||
eps: N::RealField,
|
||||
max_niter: usize,
|
||||
) -> Option<SymmetricEigen<N, D>> {
|
||||
SymmetricEigen::try_new(self.into_owned(), eps, max_niter)
|
||||
}
|
||||
|
||||
/// Computes the eigenvalues of this symmetric matrix.
|
||||
///
|
||||
/// Only the lower-triangular part of the matrix is read.
|
||||
|
@ -2,7 +2,7 @@
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, SquareMatrix, VectorN};
|
||||
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, VectorN};
|
||||
use crate::dimension::{DimDiff, DimSub, U1};
|
||||
use crate::storage::Storage;
|
||||
use simba::scalar::ComplexField;
|
||||
@ -162,15 +162,3 @@ where
|
||||
&q * self.tri * q.adjoint()
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
/// Computes the tridiagonalization of this symmetric matrix.
|
||||
///
|
||||
/// Only the lower-triangular part (including the diagonal) of `m` is read.
|
||||
pub fn symmetric_tridiagonalize(self) -> SymmetricTridiagonal<N, D> {
|
||||
SymmetricTridiagonal::new(self.into_owned())
|
||||
}
|
||||
}
|
||||
|
@ -42,7 +42,7 @@ impl<'a, N: Clone> Iterator for ColumnEntries<'a, N> {
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: this structure exists for now only because impl trait
|
||||
// TODO: this structure exists for now only because impl trait
|
||||
// cannot be used for trait method return types.
|
||||
/// Trait for iterable compressed-column matrix storage.
|
||||
pub trait CsStorageIter<'a, N, R, C = U1> {
|
||||
|
@ -18,7 +18,7 @@ where
|
||||
// Decomposition result.
|
||||
l: CsMatrix<N, D, D>,
|
||||
// Used only for the pattern.
|
||||
// FIXME: store only the nonzero pattern instead.
|
||||
// TODO: store only the nonzero pattern instead.
|
||||
u: CsMatrix<N, D, D>,
|
||||
ok: bool,
|
||||
// Workspaces.
|
||||
@ -266,7 +266,7 @@ where
|
||||
marks.clear();
|
||||
marks.resize(tree.len(), false);
|
||||
|
||||
// FIXME: avoid all those allocations.
|
||||
// TODO: avoid all those allocations.
|
||||
let mut tmp = Vec::new();
|
||||
let mut res = Vec::new();
|
||||
|
||||
@ -347,7 +347,7 @@ where
|
||||
}
|
||||
|
||||
fn tree_postorder(tree: &[usize]) -> Vec<usize> {
|
||||
// FIXME: avoid all those allocations?
|
||||
// TODO: avoid all those allocations?
|
||||
let mut first_child: Vec<_> = iter::repeat(usize::max_value()).take(tree.len()).collect();
|
||||
let mut other_children: Vec<_> =
|
||||
iter::repeat(usize::max_value()).take(tree.len()).collect();
|
||||
|
@ -946,7 +946,7 @@ mod normalization_tests {
|
||||
}
|
||||
|
||||
#[cfg(all(feature = "arbitrary", feature = "alga"))]
|
||||
// FIXME: move this to alga ?
|
||||
// TODO: move this to alga ?
|
||||
mod finite_dim_inner_space_tests {
|
||||
use super::*;
|
||||
use alga::linear::FiniteDimInnerSpace;
|
||||
|
@ -110,7 +110,7 @@ fn symmetric_eigen_singular_24x24() {
|
||||
|
||||
// #[cfg(feature = "arbitrary")]
|
||||
// quickcheck! {
|
||||
// FIXME: full eigendecomposition is not implemented yet because of its complexity when some
|
||||
// TODO: full eigendecomposition is not implemented yet because of its complexity when some
|
||||
// eigenvalues have multiplicity > 1.
|
||||
//
|
||||
// /*
|
||||
|
Loading…
Reference in New Issue
Block a user