forked from M-Labs/nalgebra
Add Vector::axcpy method
The added method `Vector::axcpy` generalises `Vector::gemv` to noncommutative cases since it allows us to write for `gemv` `self.axcpy(alpha, &col2, val, beta)`, instead the usual `self.axpy(alpha * val, &col2, beta)`. Hence, `axcpy` preserves the order of scalar multiplication which is important for applications where commutativity is not guaranteed (e.g., matrices of quaternions, etc.). This commmit also removes helpers `array_axpy` and `array_ax`, and replaces them with `array_axcpy` and `array_axc` respectively, which like above preserve the order of scalar multiplication. Finally, `Vector::axpy` is preserved, however, now expressed in terms of `Vector::axcpy` like so: ``` self.axcpy(alpha * val, &col2, beta) ```
This commit is contained in:
parent
e1c8e1bccf
commit
fe65b1c129
@ -468,21 +468,21 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn array_axpy<N>(y: &mut [N], a: N, x: &[N], beta: N, stride1: usize, stride2: usize, len: usize)
|
fn array_axcpy<N>(y: &mut [N], a: N, x: &[N], c: N, beta: N, stride1: usize, stride2: usize, len: usize)
|
||||||
where N: Scalar + Zero + ClosedAdd + ClosedMul {
|
where N: Scalar + Zero + ClosedAdd + ClosedMul {
|
||||||
for i in 0..len {
|
for i in 0..len {
|
||||||
unsafe {
|
unsafe {
|
||||||
let y = y.get_unchecked_mut(i * stride1);
|
let y = y.get_unchecked_mut(i * stride1);
|
||||||
*y = *x.get_unchecked(i * stride2) * a + *y * beta;
|
*y = a * *x.get_unchecked(i * stride2) * c + beta * *y;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn array_ax<N>(y: &mut [N], a: N, x: &[N], stride1: usize, stride2: usize, len: usize)
|
fn array_axc<N>(y: &mut [N], a: N, x: &[N], c: N, stride1: usize, stride2: usize, len: usize)
|
||||||
where N: Scalar + Zero + ClosedAdd + ClosedMul {
|
where N: Scalar + Zero + ClosedAdd + ClosedMul {
|
||||||
for i in 0..len {
|
for i in 0..len {
|
||||||
unsafe {
|
unsafe {
|
||||||
*y.get_unchecked_mut(i * stride1) = *x.get_unchecked(i * stride2) * a;
|
*y.get_unchecked_mut(i * stride1) = a * *x.get_unchecked(i * stride2) * c;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -492,6 +492,40 @@ where
|
|||||||
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
||||||
S: StorageMut<N, D>,
|
S: StorageMut<N, D>,
|
||||||
{
|
{
|
||||||
|
/// Computes `self = a * x * c + b * self`.
|
||||||
|
///
|
||||||
|
/// If `b` is zero, `self` is never read from.
|
||||||
|
///
|
||||||
|
/// # Examples:
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// # use nalgebra::Vector3;
|
||||||
|
/// let mut vec1 = Vector3::new(1.0, 2.0, 3.0);
|
||||||
|
/// let vec2 = Vector3::new(0.1, 0.2, 0.3);
|
||||||
|
/// vec1.axcpy(5.0, &vec2, 2.0, 5.0);
|
||||||
|
/// assert_eq!(vec1, Vector3::new(6.0, 12.0, 18.0));
|
||||||
|
/// ```
|
||||||
|
#[inline]
|
||||||
|
pub fn axcpy<D2: Dim, SB>(&mut self, a: N, x: &Vector<N, D2, SB>, c: N, b: N)
|
||||||
|
where
|
||||||
|
SB: Storage<N, D2>,
|
||||||
|
ShapeConstraint: DimEq<D, D2>,
|
||||||
|
{
|
||||||
|
assert_eq!(self.nrows(), x.nrows(), "Axcpy: mismatched vector shapes.");
|
||||||
|
|
||||||
|
let rstride1 = self.strides().0;
|
||||||
|
let rstride2 = x.strides().0;
|
||||||
|
|
||||||
|
let y = self.data.as_mut_slice();
|
||||||
|
let x = x.data.as_slice();
|
||||||
|
|
||||||
|
if !b.is_zero() {
|
||||||
|
array_axcpy(y, a, x, c, b, rstride1, rstride2, x.len());
|
||||||
|
} else {
|
||||||
|
array_axc(y, a, x, c, rstride1, rstride2, x.len());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/// Computes `self = a * x + b * self`.
|
/// Computes `self = a * x + b * self`.
|
||||||
///
|
///
|
||||||
/// If `b` is zero, `self` is never read from.
|
/// If `b` is zero, `self` is never read from.
|
||||||
@ -508,22 +542,12 @@ where
|
|||||||
#[inline]
|
#[inline]
|
||||||
pub fn axpy<D2: Dim, SB>(&mut self, a: N, x: &Vector<N, D2, SB>, b: N)
|
pub fn axpy<D2: Dim, SB>(&mut self, a: N, x: &Vector<N, D2, SB>, b: N)
|
||||||
where
|
where
|
||||||
|
N: One,
|
||||||
SB: Storage<N, D2>,
|
SB: Storage<N, D2>,
|
||||||
ShapeConstraint: DimEq<D, D2>,
|
ShapeConstraint: DimEq<D, D2>,
|
||||||
{
|
{
|
||||||
assert_eq!(self.nrows(), x.nrows(), "Axpy: mismatched vector shapes.");
|
assert_eq!(self.nrows(), x.nrows(), "Axpy: mismatched vector shapes.");
|
||||||
|
self.axcpy(a, x, N::one(), b)
|
||||||
let rstride1 = self.strides().0;
|
|
||||||
let rstride2 = x.strides().0;
|
|
||||||
|
|
||||||
let y = self.data.as_mut_slice();
|
|
||||||
let x = x.data.as_slice();
|
|
||||||
|
|
||||||
if !b.is_zero() {
|
|
||||||
array_axpy(y, a, x, b, rstride1, rstride2, x.len());
|
|
||||||
} else {
|
|
||||||
array_ax(y, a, x, rstride1, rstride2, x.len());
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Computes `self = alpha * a * x + beta * self`, where `a` is a matrix, `x` a vector, and
|
/// Computes `self = alpha * a * x + beta * self`, where `a` is a matrix, `x` a vector, and
|
||||||
@ -579,13 +603,13 @@ where
|
|||||||
// FIXME: avoid bound checks.
|
// FIXME: avoid bound checks.
|
||||||
let col2 = a.column(0);
|
let col2 = a.column(0);
|
||||||
let val = unsafe { *x.vget_unchecked(0) };
|
let val = unsafe { *x.vget_unchecked(0) };
|
||||||
self.axpy(val * alpha, &col2, beta);
|
self.axcpy(alpha, &col2, val, beta);
|
||||||
|
|
||||||
for j in 1..ncols2 {
|
for j in 1..ncols2 {
|
||||||
let col2 = a.column(j);
|
let col2 = a.column(j);
|
||||||
let val = unsafe { *x.vget_unchecked(j) };
|
let val = unsafe { *x.vget_unchecked(j) };
|
||||||
|
|
||||||
self.axpy(val * alpha, &col2, N::one());
|
self.axcpy(alpha, &col2, val, N::one());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -624,7 +648,7 @@ where
|
|||||||
// FIXME: avoid bound checks.
|
// FIXME: avoid bound checks.
|
||||||
let col2 = a.column(0);
|
let col2 = a.column(0);
|
||||||
let val = unsafe { *x.vget_unchecked(0) };
|
let val = unsafe { *x.vget_unchecked(0) };
|
||||||
self.axpy(val * alpha, &col2, beta);
|
self.axpy(alpha * val, &col2, beta);
|
||||||
self[0] += alpha * dot(&a.slice_range(1.., 0), &x.rows_range(1..));
|
self[0] += alpha * dot(&a.slice_range(1.., 0), &x.rows_range(1..));
|
||||||
|
|
||||||
for j in 1..dim2 {
|
for j in 1..dim2 {
|
||||||
@ -637,7 +661,7 @@ where
|
|||||||
*self.vget_unchecked_mut(j) += alpha * dot;
|
*self.vget_unchecked_mut(j) += alpha * dot;
|
||||||
}
|
}
|
||||||
self.rows_range_mut(j + 1..)
|
self.rows_range_mut(j + 1..)
|
||||||
.axpy(val * alpha, &col2.rows_range(j + 1..), N::one());
|
.axpy(alpha * val, &col2.rows_range(j + 1..), N::one());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -890,7 +914,7 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
|||||||
for j in 0..ncols1 {
|
for j in 0..ncols1 {
|
||||||
// FIXME: avoid bound checks.
|
// FIXME: avoid bound checks.
|
||||||
let val = unsafe { conjugate(*y.vget_unchecked(j)) };
|
let val = unsafe { conjugate(*y.vget_unchecked(j)) };
|
||||||
self.column_mut(j).axpy(val * alpha, x, beta);
|
self.column_mut(j).axpy(alpha * val, x, beta);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1256,7 +1280,7 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
|||||||
let subdim = Dynamic::new(dim1 - j);
|
let subdim = Dynamic::new(dim1 - j);
|
||||||
// FIXME: avoid bound checks.
|
// FIXME: avoid bound checks.
|
||||||
self.generic_slice_mut((j, j), (subdim, U1)).axpy(
|
self.generic_slice_mut((j, j), (subdim, U1)).axpy(
|
||||||
val * alpha,
|
alpha * val,
|
||||||
&x.rows_range(j..),
|
&x.rows_range(j..),
|
||||||
beta,
|
beta,
|
||||||
);
|
);
|
||||||
|
Loading…
Reference in New Issue
Block a user