diff --git a/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs b/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs index 8da21b30..8b868fc9 100644 --- a/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs +++ b/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs @@ -1,74 +1,70 @@ -use na::dimension::{Const, Dynamic}; -use na::{DMatrix, EuclideanNorm, Norm, OMatrix}; +use na::dimension::Const; +use na::{DMatrix, OMatrix}; use nl::GE; use num_complex::Complex; use simba::scalar::ComplexField; -use std::cmp; use crate::proptest::*; -use proptest::{prop_assert, proptest}; +use proptest::{prop_assert, prop_compose, proptest}; + +prop_compose! { +fn f64_squares() (n in PROPTEST_MATRIX_DIM) (a in matrix(PROPTEST_F64,n,n), b in matrix(PROPTEST_F64,n,n)) -> (DMatrix, DMatrix){ + (a,b) +}} proptest! { #[test] - fn ge(n in PROPTEST_MATRIX_DIM) { - let n = cmp::max(1, cmp::min(n, 10)); - let a = DMatrix::::new_random(n, n); - let b = DMatrix::::new_random(n, n); - let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); - let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); + fn ge((a,b) in f64_squares()){ - if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 { - let a_c = a.clone().map(|x| Complex::new(x, 0.0)); - let b_c = b.clone().map(|x| Complex::new(x, 0.0)); + let a_c = a.clone().map(|x| Complex::new(x, 0.0)); + let b_c = b.clone().map(|x| Complex::new(x, 0.0)); + let n = a.shape_generic().0; - let ge = GE::new(a.clone(), b.clone()); - let (vsl,vsr) = ge.clone().eigenvectors(); + let ge = GE::new(a.clone(), b.clone()); + let (vsl,vsr) = ge.clone().eigenvectors(); - for (i,(alpha,beta)) in ge.raw_eigenvalues().iter().enumerate() { - let l_a = a_c.clone() * Complex::new(*beta, 0.0); - let l_b = b_c.clone() * *alpha; - prop_assert!( - relative_eq!( - ((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()), - OMatrix::zeros_generic(Dynamic::new(n), Const::<1>), - epsilon = 1.0e-7)); + for (i,(alpha,beta)) in ge.raw_eigenvalues().iter().enumerate() { + let l_a = a_c.clone() * Complex::new(*beta, 0.0); + let l_b = b_c.clone() * *alpha; - prop_assert!( - relative_eq!( - (vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()), - OMatrix::zeros_generic(Const::<1>, Dynamic::new(n)), - epsilon = 1.0e-7)) - }; + prop_assert!( + relative_eq!( + ((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()), + OMatrix::zeros_generic(n, Const::<1>), + epsilon = 1.0e-5)); + + prop_assert!( + relative_eq!( + (vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()), + OMatrix::zeros_generic(Const::<1>, n), + epsilon = 1.0e-5)) }; } #[test] fn ge_static(a in matrix4(), b in matrix4()) { - let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); - let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); - if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 { - let ge = GE::new(a.clone(), b.clone()); - let a_c =a.clone().map(|x| Complex::new(x, 0.0)); - let b_c = b.clone().map(|x| Complex::new(x, 0.0)); - let (vsl,vsr) = ge.eigenvectors(); - let eigenvalues = ge.raw_eigenvalues(); + let ge = GE::new(a.clone(), b.clone()); + let a_c =a.clone().map(|x| Complex::new(x, 0.0)); + let b_c = b.clone().map(|x| Complex::new(x, 0.0)); + let (vsl,vsr) = ge.eigenvectors(); + let eigenvalues = ge.raw_eigenvalues(); - for (i,(alpha,beta)) in eigenvalues.iter().enumerate() { - let l_a = a_c.clone() * Complex::new(*beta, 0.0); - let l_b = b_c.clone() * *alpha; + for (i,(alpha,beta)) in eigenvalues.iter().enumerate() { + let l_a = a_c.clone() * Complex::new(*beta, 0.0); + let l_b = b_c.clone() * *alpha; - prop_assert!( - relative_eq!( - ((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()), - OMatrix::zeros_generic(Const::<4>, Const::<1>), - epsilon = 1.0e-7)); - prop_assert!( - relative_eq!((vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()), - OMatrix::zeros_generic(Const::<1>, Const::<4>), - epsilon = 1.0e-7)) - } - }; + prop_assert!( + relative_eq!( + ((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()), + OMatrix::zeros_generic(Const::<4>, Const::<1>), + epsilon = 1.0e-5)); + prop_assert!( + relative_eq!((vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()), + OMatrix::zeros_generic(Const::<1>, Const::<4>), + epsilon = 1.0e-5)) + } } + } diff --git a/nalgebra-lapack/tests/linalg/qz.rs b/nalgebra-lapack/tests/linalg/qz.rs index 6f9cf7f8..f70f1c9e 100644 --- a/nalgebra-lapack/tests/linalg/qz.rs +++ b/nalgebra-lapack/tests/linalg/qz.rs @@ -1,74 +1,32 @@ -use na::{DMatrix, EuclideanNorm, Norm}; +use na::DMatrix; use nl::QZ; -use num_complex::Complex; -use simba::scalar::ComplexField; -use std::cmp; use crate::proptest::*; -use proptest::{prop_assert, proptest}; +use proptest::{prop_assert, prop_compose, proptest}; + +prop_compose! { +fn f64_squares() (n in PROPTEST_MATRIX_DIM) (a in matrix(PROPTEST_F64,n,n), b in matrix(PROPTEST_F64,n,n)) -> (DMatrix, DMatrix){ + (a,b) +}} proptest! { #[test] - fn qz(n in PROPTEST_MATRIX_DIM) { - let n = cmp::max(1, cmp::min(n, 10)); - let a = DMatrix::::new_random(n, n); - let b = DMatrix::::new_random(n, n); + fn qz((a,b) in f64_squares()) { - let qz = QZ::new(a.clone(), b.clone()); + let qz = QZ::new(a.clone(), b.clone()); let (vsl,s,t,vsr) = qz.clone().unpack(); - let eigenvalues = qz.raw_eigenvalues(); - prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a.clone(), epsilon = 1.0e-7)); - prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b.clone(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7)); - let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); - let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); - - if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 { - let a_c = a.clone().map(|x| Complex::new(x, 0.0)); - let b_c = b.clone().map(|x| Complex::new(x, 0.0)); - - - for (alpha,beta) in eigenvalues.iter() { - let l_a = a_c.clone() * Complex::new(*beta, 0.0); - let l_b = b_c.clone() * *alpha; - - prop_assert!( - relative_eq!( - (&l_a - &l_b).determinant().modulus(), - 0.0, - epsilon = 1.0e-7)); - - }; - }; } #[test] fn qz_static(a in matrix4(), b in matrix4()) { let qz = QZ::new(a.clone(), b.clone()); let (vsl,s,t,vsr) = qz.unpack(); - let eigenvalues = qz.raw_eigenvalues(); prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7)); prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7)); - - let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); - let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); - - if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 { - let a_c =a.clone().map(|x| Complex::new(x, 0.0)); - let b_c = b.clone().map(|x| Complex::new(x, 0.0)); - - for (alpha,beta) in eigenvalues.iter() { - let l_a = a_c.clone() * Complex::new(*beta, 0.0); - let l_b = b_c.clone() * *alpha; - - prop_assert!( - relative_eq!( - (&l_a - &l_b).determinant().modulus(), - 0.0, - epsilon = 1.0e-7)); - } - }; } }