QR factorization with column pivoting

This commit is contained in:
russellb23 2019-06-24 07:56:35 +05:30 committed by Crozet Sébastien
parent f46d1b4abb
commit f8c0195f0f

328
src/linalg/qrp.rs Normal file
View File

@ -0,0 +1,328 @@
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use num::Zero;
use alga::general::ComplexField;
use crate::allocator::{Allocator, Reallocator};
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Unit, VectorN};
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimMin, DimMinimum, U1};
use crate::storage::{Storage, StorageMut};
use crate::geometry::Reflection;
use crate::linalg::householder;
//=============================================================================
use alga::general::RealField;
use crate::linalg::PermutationSequence;
use crate::base::VecStorage;
use crate::base::Dynamic;
use crate::base::DVector;
//=============================================================================
/// The QRP decomposition of a general matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Serialize,
PermutationSequence<DimMinimum<R, C>>: Serialize,
VectorN<N, DimMinimum<R, C>>: Serialize"
))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Deserialize<'de>,
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>,
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"
))
)]
#[derive(Clone, Debug)]
pub struct QRP<N: ComplexField, R: DimMin<C>, C: Dim>
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> +
Allocator<(usize, usize), DimMinimum<R, C>>,
{
qrp: MatrixMN<N, R, C>,
p: PermutationSequence<DimMinimum<R, C>>,
diag: VectorN<N, DimMinimum<R, C>>,
}
impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for QRP<N, R, C>
where
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> +
Allocator<(usize, usize), DimMinimum<R, C>>,
MatrixMN<N, R, C>: Copy,
PermutationSequence<DimMinimum<R, C>>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy,
{}
impl<N: ComplexField, R: DimMin<C>, C: Dim> QRP<N, R, C>
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>> + Allocator<(usize, usize), DimMinimum<R, C>>
{
/// Computes the QRP decomposition using householder reflections.
pub fn new(mut matrix: MatrixMN<N, R, C>) -> Self {
let (nrows, ncols) = matrix.data.shape();
let min_nrows_ncols = nrows.min(ncols);
let mut p = PermutationSequence::identity_generic(min_nrows_ncols);
let mut diag = unsafe { MatrixMN::new_uninitialized_generic(min_nrows_ncols, U1) };
if min_nrows_ncols.value() == 0 {
return QRP {
qrp: matrix,
p: p,
diag: diag,
};
}
for ite in 0..min_nrows_ncols.value() {
let piv = matrix.slice_range(ite.., ite..).icamax_full();
let col_piv = piv.1 + ite;
matrix.swap_columns(ite, col_piv);
p.append_permutation(ite, col_piv);
householder::clear_column_unchecked(&mut matrix, &mut diag[ite], ite, 0, None);
}
QRP {
qrp: matrix,
p: p,
diag: diag,
}
}
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
#[inline]
pub fn r(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
{
let (nrows, ncols) = self.qrp.data.shape();
let mut res = self.qrp.rows_generic(0, nrows.min(ncols)).upper_triangle();
res.set_partial_diagonal(self.diag.iter().map(|e| N::from_real(e.modulus())));
res
}
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
///
/// This is usually faster than `r` but consumes `self`.
#[inline]
pub fn unpack_r(self) -> MatrixMN<N, DimMinimum<R, C>, C>
where
DefaultAllocator: Reallocator<N, R, C, DimMinimum<R, C>, C>,
{
let (nrows, ncols) = self.qrp.data.shape();
let mut res = self.qrp.resize_generic(nrows.min(ncols), ncols, N::zero());
res.fill_lower_triangle(N::zero(), 1);
res.set_partial_diagonal(self.diag.iter().map(|e| N::from_real(e.modulus())));
res
}
/// Computes the orthogonal matrix `Q` of this decomposition.
pub fn q(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
let (nrows, ncols) = self.qrp.data.shape();
// NOTE: we could build the identity matrix and call q_mul on it.
// Instead we don't so that we take in account the matrix sparseness.
let mut res = Matrix::identity_generic(nrows, nrows.min(ncols));
let dim = self.diag.len();
for i in (0..dim).rev() {
let axis = self.qrp.slice_range(i.., i);
// FIXME: sometimes, the axis might have a zero magnitude.
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
let mut res_rows = res.slice_range_mut(i.., i..);
refl.reflect_with_sign(&mut res_rows, self.diag[i].signum());
}
res
}
/// The column permutations of this decomposition.
#[inline]
pub fn p(&self) -> &PermutationSequence<DimMinimum<R, C>> {
&self.p
}
/// Unpacks this decomposition into its two matrix factors.
pub fn unpack(
self,
) -> (
MatrixMN<N, R, DimMinimum<R, C>>,
MatrixMN<N, DimMinimum<R, C>, C>,
)
where
DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>>,
DefaultAllocator:
Allocator<N, R, DimMinimum<R, C>> + Reallocator<N, R, C, DimMinimum<R, C>, C>,
{
(self.q(), self.unpack_r())
}
#[doc(hidden)]
pub fn qrp_internal(&self) -> &MatrixMN<N, R, C> {
&self.qrp
}
/// Multiplies the provided matrix by the transpose of the `Q` matrix of this decomposition.
pub fn q_tr_mul<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
// FIXME: do we need a static constraint on the number of rows of rhs?
where S2: StorageMut<N, R2, C2> {
let dim = self.diag.len();
for i in 0..dim {
let axis = self.qrp.slice_range(i.., i);
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
let mut rhs_rows = rhs.rows_range_mut(i..);
refl.reflect_with_sign(&mut rhs_rows, self.diag[i].signum().conjugate());
}
}
}
impl<N: ComplexField, D: DimMin<D, Output = D>> QRP<N, D, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> +
Allocator<(usize, usize), DimMinimum<D, D>>
{
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
///
/// Returns `None` if `self` is not invertible.
pub fn solve<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<N, R2, C2, S2>,
) -> Option<MatrixMN<N, R2, C2>>
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
DefaultAllocator: Allocator<N, R2, C2>,
{
let mut res = b.clone_owned();
if self.solve_mut(&mut res) {
Some(res)
} else {
None
}
}
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
///
/// If the decomposed matrix is not invertible, this returns `false` and its input `b` is
/// overwritten with garbage.
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
assert_eq!(
self.qrp.nrows(),
b.nrows(),
"QRP solve matrix dimension mismatch."
);
assert!(
self.qrp.is_square(),
"QRP solve: unable to solve a non-square system."
);
self.q_tr_mul(b);
self.solve_upper_triangular_mut(b)
}
// FIXME: duplicate code from the `solve` module.
fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(
&self,
b: &mut Matrix<N, R2, C2, S2>,
) -> bool
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let dim = self.qrp.nrows();
for k in 0..b.ncols() {
let mut b = b.column_mut(k);
for i in (0..dim).rev() {
let coeff;
unsafe {
let diag = self.diag.vget_unchecked(i).modulus();
if diag.is_zero() {
return false;
}
coeff = b.vget_unchecked(i).unscale(diag);
*b.vget_unchecked_mut(i) = coeff;
}
b.rows_range_mut(..i)
.axpy(-coeff, &self.qrp.slice_range(..i, i), N::one());
}
}
true
}
/// Computes the inverse of the decomposed matrix.
///
/// Returns `None` if the decomposed matrix is not invertible.
pub fn try_inverse(&self) -> Option<MatrixN<N, D>> {
assert!(
self.qrp.is_square(),
"QRP inverse: unable to compute the inverse of a non-square matrix."
);
// FIXME: is there a less naive method ?
let (nrows, ncols) = self.qrp.data.shape();
let mut res = MatrixN::identity_generic(nrows, ncols);
if self.solve_mut(&mut res) {
Some(res)
} else {
None
}
}
/// Indicates if the decomposed matrix is invertible.
pub fn is_invertible(&self) -> bool {
assert!(
self.qrp.is_square(),
"QRP: unable to test the invertibility of a non-square matrix."
);
for i in 0..self.diag.len() {
if self.diag[i].is_zero() {
return false;
}
}
true
}
// /// Computes the determinant of the decomposed matrix.
// pub fn determinant(&self) -> N {
// let dim = self.qrp.nrows();
// assert!(self.qrp.is_square(), "QRP determinant: unable to compute the determinant of a non-square matrix.");
// let mut res = N::one();
// for i in 0 .. dim {
// res *= unsafe { *self.diag.vget_unchecked(i) };
// }
// res self.q_determinant()
// }
}
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>> + Allocator<(usize, usize), DimMinimum<R, C>>
{
/// Computes the QRP decomposition of this matrix.
pub fn qrp(self) -> QRP<N, R, C> {
QRP::new(self.into_owned())
}
}