forked from M-Labs/nalgebra
Merge pull request #836 from dimforge/rotation_utils
Add various utilities for constructing/appending rotations
This commit is contained in:
commit
f46d1b4abb
@ -4,6 +4,13 @@ documented here.
|
||||
|
||||
This project adheres to [Semantic Versioning](https://semver.org/).
|
||||
|
||||
## [0.25.0] - WIP
|
||||
### Added
|
||||
* Add `from_basis_unchecked` to all the rotation types. This builds a rotation from a set of basis vectors (representing the columns of the corresponding rotation matrix).
|
||||
* Add `Matrix::cap_magnitude` to cap the magnitude of a vector.
|
||||
* Add `UnitQuaternion::append_axisangle_linearized` to approximately append a rotation represented as an axis-angle to a rotation represented as an unit quaternion.
|
||||
* Re-export `simba::simd::SimdValue` at the root of the `nalgebra` crate.
|
||||
|
||||
## [0.24.0]
|
||||
|
||||
### Added
|
||||
|
@ -8,7 +8,7 @@ documentation = "https://www.nalgebra.org/docs"
|
||||
homepage = "https://nalgebra.org"
|
||||
repository = "https://github.com/dimforge/nalgebra"
|
||||
readme = "README.md"
|
||||
categories = [ "science", "mathematics", "wasm", "no standard library" ]
|
||||
categories = [ "science", "mathematics", "wasm", "no-std" ]
|
||||
keywords = [ "linear", "algebra", "matrix", "vector", "math" ]
|
||||
license = "BSD-3-Clause"
|
||||
edition = "2018"
|
||||
|
@ -8,7 +8,7 @@ use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, Dim, DimName, Matrix, MatrixMN, Normed, VectorN};
|
||||
use crate::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
|
||||
use crate::storage::{Storage, StorageMut};
|
||||
use crate::{ComplexField, Scalar, SimdComplexField, Unit};
|
||||
use crate::{ComplexField, RealField, Scalar, SimdComplexField, Unit};
|
||||
use simba::scalar::ClosedNeg;
|
||||
use simba::simd::{SimdOption, SimdPartialOrd};
|
||||
|
||||
@ -334,11 +334,27 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
{
|
||||
let n = self.norm();
|
||||
|
||||
if n >= min_magnitude {
|
||||
if n > min_magnitude {
|
||||
self.scale_mut(magnitude / n)
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a new vector with the same magnitude as `self` clamped between `0.0` and `max`.
|
||||
#[inline]
|
||||
pub fn cap_magnitude(&self, max: N::RealField) -> MatrixMN<N, R, C>
|
||||
where
|
||||
N: RealField,
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
let n = self.norm();
|
||||
|
||||
if n > max {
|
||||
self.scale(max / n)
|
||||
} else {
|
||||
self.clone_owned()
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`.
|
||||
///
|
||||
/// The components of this matrix cannot be SIMD types (see `simd_try_normalize`) instead.
|
||||
|
@ -1542,6 +1542,17 @@ where
|
||||
pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector3<N>>) -> Unit<Vector3<N>> {
|
||||
self.inverse() * v
|
||||
}
|
||||
|
||||
/// Appends to `self` a rotation given in the axis-angle form, using a linearized formulation.
|
||||
///
|
||||
/// This is faster, but approximate, way to compute `UnitQuaternion::new(axisangle) * self`.
|
||||
#[inline]
|
||||
pub fn append_axisangle_linearized(&self, axisangle: &Vector3<N>) -> Self {
|
||||
let half: N = crate::convert(0.5);
|
||||
let q1 = self.into_inner();
|
||||
let q2 = Quaternion::from_imag(axisangle * half);
|
||||
Unit::new_normalize(q1 + q2 * q1)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField> Default for UnitQuaternion<N> {
|
||||
|
@ -266,6 +266,17 @@ where
|
||||
Self::new_unchecked(q)
|
||||
}
|
||||
|
||||
/// Builds an unit quaternion from a basis assumed to be orthonormal.
|
||||
///
|
||||
/// In order to get a valid unit-quaternion, the input must be an
|
||||
/// orthonormal basis, i.e., all vectors are normalized, and the are
|
||||
/// all orthogonal to each other. These invariants are not checked
|
||||
/// by this method.
|
||||
pub fn from_basis_unchecked(basis: &[Vector3<N>; 3]) -> Self {
|
||||
let rot = Rotation3::from_basis_unchecked(basis);
|
||||
Self::from_rotation_matrix(&rot)
|
||||
}
|
||||
|
||||
/// Builds an unit quaternion from a rotation matrix.
|
||||
///
|
||||
/// # Example
|
||||
|
@ -12,7 +12,7 @@ use std::ops::Neg;
|
||||
|
||||
use crate::base::dimension::{U1, U2, U3};
|
||||
use crate::base::storage::Storage;
|
||||
use crate::base::{Matrix2, Matrix3, MatrixN, Unit, Vector, Vector1, Vector3, VectorN};
|
||||
use crate::base::{Matrix2, Matrix3, MatrixN, Unit, Vector, Vector1, Vector2, Vector3, VectorN};
|
||||
|
||||
use crate::geometry::{Rotation2, Rotation3, UnitComplex, UnitQuaternion};
|
||||
|
||||
@ -53,6 +53,17 @@ impl<N: SimdRealField> Rotation2<N> {
|
||||
|
||||
/// # Construction from an existing 2D matrix or rotations
|
||||
impl<N: SimdRealField> Rotation2<N> {
|
||||
/// Builds a rotation from a basis assumed to be orthonormal.
|
||||
///
|
||||
/// In order to get a valid unit-quaternion, the input must be an
|
||||
/// orthonormal basis, i.e., all vectors are normalized, and the are
|
||||
/// all orthogonal to each other. These invariants are not checked
|
||||
/// by this method.
|
||||
pub fn from_basis_unchecked(basis: &[Vector2<N>; 2]) -> Self {
|
||||
let mat = Matrix2::from_columns(&basis[..]);
|
||||
Self::from_matrix_unchecked(mat)
|
||||
}
|
||||
|
||||
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
|
||||
///
|
||||
/// This is an iterative method. See `.from_matrix_eps` to provide mover
|
||||
@ -655,6 +666,17 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
/// Builds a rotation from a basis assumed to be orthonormal.
|
||||
///
|
||||
/// In order to get a valid unit-quaternion, the input must be an
|
||||
/// orthonormal basis, i.e., all vectors are normalized, and the are
|
||||
/// all orthogonal to each other. These invariants are not checked
|
||||
/// by this method.
|
||||
pub fn from_basis_unchecked(basis: &[Vector3<N>; 3]) -> Self {
|
||||
let mat = Matrix3::from_columns(&basis[..]);
|
||||
Self::from_matrix_unchecked(mat)
|
||||
}
|
||||
|
||||
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
|
||||
///
|
||||
/// This is an iterative method. See `.from_matrix_eps` to provide mover
|
||||
|
@ -8,7 +8,7 @@ use rand::Rng;
|
||||
|
||||
use crate::base::dimension::{U1, U2};
|
||||
use crate::base::storage::Storage;
|
||||
use crate::base::{Matrix2, Unit, Vector};
|
||||
use crate::base::{Matrix2, Unit, Vector, Vector2};
|
||||
use crate::geometry::{Rotation2, UnitComplex};
|
||||
use simba::scalar::RealField;
|
||||
use simba::simd::SimdRealField;
|
||||
@ -164,6 +164,18 @@ where
|
||||
Self::new_unchecked(Complex::new(rotmat[(0, 0)], rotmat[(1, 0)]))
|
||||
}
|
||||
|
||||
/// Builds a rotation from a basis assumed to be orthonormal.
|
||||
///
|
||||
/// In order to get a valid unit-quaternion, the input must be an
|
||||
/// orthonormal basis, i.e., all vectors are normalized, and the are
|
||||
/// all orthogonal to each other. These invariants are not checked
|
||||
/// by this method.
|
||||
pub fn from_basis_unchecked(basis: &[Vector2<N>; 2]) -> Self {
|
||||
let mat = Matrix2::from_columns(&basis[..]);
|
||||
let rot = Rotation2::from_matrix_unchecked(mat);
|
||||
Self::from_rotation_matrix(&rot)
|
||||
}
|
||||
|
||||
/// Builds an unit complex by extracting the rotation part of the given transformation `m`.
|
||||
///
|
||||
/// This is an iterative method. See `.from_matrix_eps` to provide mover
|
||||
|
@ -152,7 +152,7 @@ pub use num_complex::Complex;
|
||||
pub use simba::scalar::{
|
||||
ClosedAdd, ClosedDiv, ClosedMul, ClosedSub, ComplexField, Field, RealField,
|
||||
};
|
||||
pub use simba::simd::{SimdBool, SimdComplexField, SimdPartialOrd, SimdRealField};
|
||||
pub use simba::simd::{SimdBool, SimdComplexField, SimdPartialOrd, SimdRealField, SimdValue};
|
||||
|
||||
/// Gets the multiplicative identity element.
|
||||
///
|
||||
|
Loading…
Reference in New Issue
Block a user