forked from M-Labs/nalgebra
commit
ef3406cc8f
@ -1,33 +1,31 @@
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use num::One;
|
||||
use alga::general::ComplexField;
|
||||
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix};
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix, Vector};
|
||||
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
use crate::dimension::{Dim, DimSub, Dynamic};
|
||||
use crate::dimension::{Dim, DimAdd, DimSum, DimDiff, DimSub, Dynamic, U1};
|
||||
use crate::storage::{Storage, StorageMut};
|
||||
|
||||
/// The Cholesky decomposition of a symmetric-definite-positive matrix.
|
||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, D>,
|
||||
MatrixN<N, D>: Serialize"
|
||||
))
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, D>,
|
||||
MatrixN<N, D>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "DefaultAllocator: Allocator<N, D>,
|
||||
MatrixN<N, D>: Deserialize<'de>"
|
||||
))
|
||||
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D>,
|
||||
MatrixN<N, D>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Cholesky<N: ComplexField, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
chol: MatrixN<N, D>,
|
||||
}
|
||||
@ -36,10 +34,12 @@ impl<N: ComplexField, D: Dim> Copy for Cholesky<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
MatrixN<N, D>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<Dynamic>> Cholesky<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Attempts to compute the Cholesky decomposition of `matrix`.
|
||||
///
|
||||
@ -146,10 +146,155 @@ where DefaultAllocator: Allocator<N, D, D>
|
||||
self.solve_mut(&mut res);
|
||||
res
|
||||
}
|
||||
|
||||
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
|
||||
/// performs a rank one update such that we end up with the decomposition of `M + sigma * (v * v.adjoint())`.
|
||||
#[inline]
|
||||
pub fn rank_one_update<R2: Dim, S2>(&mut self, x: &Vector<N, R2, S2>, sigma: N::RealField)
|
||||
where
|
||||
S2: Storage<N, R2, U1>,
|
||||
DefaultAllocator: Allocator<N, R2, U1>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
Self::xx_rank_one_update(&mut self.chol, &mut x.clone_owned(), sigma)
|
||||
}
|
||||
|
||||
/// Updates the decomposition such that we get the decomposition of a matrix with the given column `col` in the `j`th position.
|
||||
/// Since the matrix is square, an identical row will be added in the `j`th row.
|
||||
pub fn insert_column<R2, S2>(
|
||||
&self,
|
||||
j: usize,
|
||||
col: Vector<N, R2, S2>,
|
||||
) -> Cholesky<N, DimSum<D, U1>>
|
||||
where
|
||||
D: DimAdd<U1>,
|
||||
R2: Dim,
|
||||
S2: Storage<N, R2, U1>,
|
||||
DefaultAllocator: Allocator<N, DimSum<D, U1>, DimSum<D, U1>> + Allocator<N, R2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, DimSum<D, U1>>,
|
||||
{
|
||||
let mut col = col.into_owned();
|
||||
// for an explanation of the formulas, see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
|
||||
let n = col.nrows();
|
||||
assert_eq!(n, self.chol.nrows() + 1, "The new column must have the size of the factored matrix plus one.");
|
||||
assert!(j < n, "j needs to be within the bound of the new matrix.");
|
||||
|
||||
// loads the data into a new matrix with an additional jth row/column
|
||||
let mut chol = unsafe { Matrix::new_uninitialized_generic(self.chol.data.shape().0.add(U1), self.chol.data.shape().1.add(U1)) };
|
||||
chol.slice_range_mut(..j, ..j).copy_from(&self.chol.slice_range(..j, ..j));
|
||||
chol.slice_range_mut(..j, j + 1..).copy_from(&self.chol.slice_range(..j, j..));
|
||||
chol.slice_range_mut(j + 1.., ..j).copy_from(&self.chol.slice_range(j.., ..j));
|
||||
chol.slice_range_mut(j + 1.., j + 1..).copy_from(&self.chol.slice_range(j.., j..));
|
||||
|
||||
// update the jth row
|
||||
let top_left_corner = self.chol.slice_range(..j, ..j);
|
||||
|
||||
let col_j = col[j];
|
||||
let (mut new_rowj_adjoint, mut new_colj) = col.rows_range_pair_mut(..j, j + 1..);
|
||||
assert!(top_left_corner.solve_lower_triangular_mut(&mut new_rowj_adjoint), "Cholesky::insert_column : Unable to solve lower triangular system!");
|
||||
|
||||
new_rowj_adjoint.adjoint_to(&mut chol.slice_range_mut(j, ..j));
|
||||
|
||||
// update the center element
|
||||
let center_element = N::sqrt(col_j - N::from_real(new_rowj_adjoint.norm_squared()));
|
||||
chol[(j, j)] = center_element;
|
||||
|
||||
// update the jth column
|
||||
let bottom_left_corner = self.chol.slice_range(j.., ..j);
|
||||
// new_colj = (col_jplus - bottom_left_corner * new_rowj.adjoint()) / center_element;
|
||||
new_colj.gemm(-N::one() / center_element, &bottom_left_corner, &new_rowj_adjoint, N::one() / center_element);
|
||||
chol.slice_range_mut(j + 1.., j).copy_from(&new_colj);
|
||||
|
||||
// update the bottom right corner
|
||||
let mut bottom_right_corner = chol.slice_range_mut(j + 1.., j + 1..);
|
||||
Self::xx_rank_one_update(&mut bottom_right_corner, &mut new_colj, -N::RealField::one());
|
||||
|
||||
Cholesky { chol }
|
||||
}
|
||||
|
||||
/// Updates the decomposition such that we get the decomposition of the factored matrix with its `j`th column removed.
|
||||
/// Since the matrix is square, the `j`th row will also be removed.
|
||||
pub fn remove_column(
|
||||
&self,
|
||||
j: usize,
|
||||
) -> Cholesky<N, DimDiff<D, U1>>
|
||||
where
|
||||
D: DimSub<U1>,
|
||||
DefaultAllocator: Allocator<N, DimDiff<D, U1>, DimDiff<D, U1>> + Allocator<N, D>
|
||||
{
|
||||
let n = self.chol.nrows();
|
||||
assert!(n > 0, "The matrix needs at least one column.");
|
||||
assert!(j < n, "j needs to be within the bound of the matrix.");
|
||||
|
||||
// loads the data into a new matrix except for the jth row/column
|
||||
let mut chol = unsafe { Matrix::new_uninitialized_generic(self.chol.data.shape().0.sub(U1), self.chol.data.shape().1.sub(U1)) };
|
||||
chol.slice_range_mut(..j, ..j).copy_from(&self.chol.slice_range(..j, ..j));
|
||||
chol.slice_range_mut(..j, j..).copy_from(&self.chol.slice_range(..j, j + 1..));
|
||||
chol.slice_range_mut(j.., ..j).copy_from(&self.chol.slice_range(j + 1.., ..j));
|
||||
chol.slice_range_mut(j.., j..).copy_from(&self.chol.slice_range(j + 1.., j + 1..));
|
||||
|
||||
// updates the bottom right corner
|
||||
let mut bottom_right_corner = chol.slice_range_mut(j.., j..);
|
||||
let mut workspace = self.chol.column(j).clone_owned();
|
||||
let mut old_colj = workspace.rows_range_mut(j + 1..);
|
||||
Self::xx_rank_one_update(&mut bottom_right_corner, &mut old_colj, N::RealField::one());
|
||||
|
||||
Cholesky { chol }
|
||||
}
|
||||
|
||||
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `x`,
|
||||
/// performs a rank one update such that we end up with the decomposition of `M + sigma * (x * x.adjoint())`.
|
||||
///
|
||||
/// This helper method is called by `rank_one_update` but also `insert_column` and `remove_column`
|
||||
/// where it is used on a square slice of the decomposition
|
||||
fn xx_rank_one_update<Dm, Sm, Rx, Sx>(chol : &mut Matrix<N, Dm, Dm, Sm>, x: &mut Vector<N, Rx, Sx>, sigma: N::RealField)
|
||||
where
|
||||
//N: ComplexField,
|
||||
Dm: Dim,
|
||||
Rx: Dim,
|
||||
Sm: StorageMut<N, Dm, Dm>,
|
||||
Sx: StorageMut<N, Rx, U1>,
|
||||
{
|
||||
// heavily inspired by Eigen's `llt_rank_update_lower` implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html
|
||||
let n = x.nrows();
|
||||
assert_eq!(
|
||||
n,
|
||||
chol.nrows(),
|
||||
"The input vector must be of the same size as the factorized matrix."
|
||||
);
|
||||
|
||||
let mut beta = crate::one::<N::RealField>();
|
||||
|
||||
for j in 0..n {
|
||||
// updates the diagonal
|
||||
let diag = N::real(unsafe { *chol.get_unchecked((j, j)) });
|
||||
let diag2 = diag * diag;
|
||||
let xj = unsafe { *x.get_unchecked(j) };
|
||||
let sigma_xj2 = sigma * N::modulus_squared(xj);
|
||||
let gamma = diag2 * beta + sigma_xj2;
|
||||
let new_diag = (diag2 + sigma_xj2 / beta).sqrt();
|
||||
unsafe { *chol.get_unchecked_mut((j, j)) = N::from_real(new_diag) };
|
||||
beta += sigma_xj2 / diag2;
|
||||
// updates the terms of L
|
||||
let mut xjplus = x.rows_range_mut(j + 1..);
|
||||
let mut col_j = chol.slice_range_mut(j + 1.., j);
|
||||
// temp_jplus -= (wj / N::from_real(diag)) * col_j;
|
||||
xjplus.axpy(-xj / N::from_real(diag), &col_j, N::one());
|
||||
if gamma != crate::zero::<N::RealField>() {
|
||||
// col_j = N::from_real(nljj / diag) * col_j + (N::from_real(nljj * sigma / gamma) * N::conjugate(wj)) * temp_jplus;
|
||||
col_j.axpy(
|
||||
N::from_real(new_diag * sigma / gamma) * N::conjugate(xj),
|
||||
&xjplus,
|
||||
N::from_real(new_diag / diag),
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<Dynamic>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Attempts to compute the Cholesky decomposition of this matrix.
|
||||
///
|
||||
|
@ -15,7 +15,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> Option<MatrixMN<N, R2, C2>>
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
@ -35,7 +35,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> Option<MatrixMN<N, R2, C2>>
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
@ -191,7 +191,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> Option<MatrixMN<N, R2, C2>>
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
@ -211,7 +211,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> Option<MatrixMN<N, R2, C2>>
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
@ -273,7 +273,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> Option<MatrixMN<N, R2, C2>>
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
@ -293,7 +293,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> Option<MatrixMN<N, R2, C2>>
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
|
@ -1,6 +1,5 @@
|
||||
#![cfg(all(feature = "arbitrary", feature = "debug"))]
|
||||
|
||||
|
||||
macro_rules! gen_tests(
|
||||
($module: ident, $scalar: ty) => {
|
||||
mod $module {
|
||||
@ -78,6 +77,58 @@ macro_rules! gen_tests(
|
||||
|
||||
id1.is_identity(1.0e-7) && id2.is_identity(1.0e-7)
|
||||
}
|
||||
|
||||
fn cholesky_rank_one_update(_n: usize) -> bool {
|
||||
let mut m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap();
|
||||
let x = Vector4::<$scalar>::new_random().map(|e| e.0);
|
||||
|
||||
// this is dirty but $scalar is not a scalar type (its a Rand) in this file
|
||||
let zero = random::<$scalar>().0 * 0.;
|
||||
let one = zero + 1.;
|
||||
let sigma = random::<f64>(); // needs to be a real
|
||||
let sigma_scalar = zero + sigma;
|
||||
|
||||
// updates cholesky decomposition and reconstructs m updated
|
||||
let mut chol = m.clone().cholesky().unwrap();
|
||||
chol.rank_one_update(&x, sigma);
|
||||
let m_chol_updated = chol.l() * chol.l().adjoint();
|
||||
|
||||
// updates m manually
|
||||
m.gerc(sigma_scalar, &x, &x, one); // m += sigma * x * x.adjoint()
|
||||
|
||||
relative_eq!(m, m_chol_updated, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn cholesky_insert_column(n: usize) -> bool {
|
||||
let n = n.max(1).min(10);
|
||||
let j = random::<usize>() % n;
|
||||
let m_updated = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
|
||||
|
||||
// build m and col from m_updated
|
||||
let col = m_updated.column(j);
|
||||
let m = m_updated.clone().remove_column(j).remove_row(j);
|
||||
|
||||
// remove column from cholesky decomposition and rebuild m
|
||||
let chol = m.clone().cholesky().unwrap().insert_column(j, col);
|
||||
let m_chol_updated = chol.l() * chol.l().adjoint();
|
||||
|
||||
relative_eq!(m_updated, m_chol_updated, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn cholesky_remove_column(n: usize) -> bool {
|
||||
let n = n.max(1).min(10);
|
||||
let j = random::<usize>() % n;
|
||||
let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
|
||||
|
||||
// remove column from cholesky decomposition and rebuild m
|
||||
let chol = m.clone().cholesky().unwrap().remove_column(j);
|
||||
let m_chol_updated = chol.l() * chol.l().adjoint();
|
||||
|
||||
// remove column from m
|
||||
let m_updated = m.remove_column(j).remove_row(j);
|
||||
|
||||
relative_eq!(m_updated, m_chol_updated, epsilon = 1.0e-7)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user