From edb08cd900fd50a2234bc81b1b6b73b6e10cf821 Mon Sep 17 00:00:00 2001 From: Adam Nemecek <adamnemecek@gmail.com> Date: Tue, 26 Feb 2019 18:12:30 -0800 Subject: [PATCH] quaternion trigonometry --- Cargo.toml | 3 + src/geometry/quaternion.rs | 252 +++++++++++++++++++++++- src/geometry/quaternion_construction.rs | 21 +- 3 files changed, 266 insertions(+), 10 deletions(-) diff --git a/Cargo.toml b/Cargo.toml index 43323c94..0c53df56 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -47,6 +47,9 @@ quickcheck = { version = "0.8", optional = true } pest = { version = "2.0", optional = true } pest_derive = { version = "2.0", optional = true } +[patch.crates-io] +alga = { git = "https://github.com/rustsim/alga", branch = "dev" } + [dev-dependencies] serde_json = "1.0" rand_xorshift = "0.1" diff --git a/src/geometry/quaternion.rs b/src/geometry/quaternion.rs index 6460a446..a2cc6130 100644 --- a/src/geometry/quaternion.rs +++ b/src/geometry/quaternion.rs @@ -506,6 +506,255 @@ impl<N: Real> Quaternion<N> { pub fn normalize_mut(&mut self) -> N { self.coords.normalize_mut() } + + /// Calculates square of a quaternion. + #[inline] + pub fn squared(&self) -> Self { + self * self + } + + /// Divides quaternion into two. + #[inline] + pub fn half(&self) -> Self { + self / ::convert(2.0f64) + } + + /// Calculates square root. + #[inline] + pub fn sqrt(&self) -> Self { + self.powf(::convert(0.5)) + } + + /// Check if the quaternion is pure. + #[inline] + pub fn is_pure(&self) -> bool { + self.w == N::zero() + } + + /// Convert quaternion to pure quaternion. + #[inline] + pub fn pure(&self) -> Self { + Self::from_imag(self.imag()) + } + + /// Calculates the quaternionic cosinus. + /// + /// # Example + /// ``` + /// # #[macro_use] extern crate approx; + /// # use nalgebra::Quaternion; + /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// let expected = Quaternion::new(58.93364616794395, -34.086183690465596, -51.1292755356984, -68.17236738093119); + /// let result = input.cos(); + /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); + /// ``` + #[inline] + pub fn cos(&self) -> Self { + let z = self.imag().magnitude(); + let w = -self.w.sin() * z.sinhc(); + Self::from_parts(self.w.cos() * z.cosh(), self.imag() * w) + } + + /// Calculates the quaternionic arccosinus. + /// + /// # Example + /// ``` + /// # #[macro_use] extern crate approx; + /// # use nalgebra::Quaternion; + /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// let result = input.cos().acos(); + /// assert_relative_eq!(input, result, epsilon = 1.0e-7); + /// ``` + #[inline] + pub fn acos(&self) -> Self { + let u = Self::from_imag(self.imag().normalize()); + let identity = Self::identity(); + + let z = (self + (self.squared() - identity).sqrt()).ln(); + + -(u * z) + } + + /// Calculates the quaternionic sinus. + /// + /// # Example + /// ``` + /// # #[macro_use] extern crate approx; + /// # use nalgebra::Quaternion; + /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// let expected = Quaternion::new(91.78371578403467, 21.886486853029176, 32.82973027954377, 43.77297370605835); + /// let result = input.sin(); + /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); + /// ``` + #[inline] + pub fn sin(&self) -> Self { + let z = self.imag().magnitude(); + let w = self.w.cos() * z.sinhc(); + Self::from_parts(self.w.sin() * z.cosh(), self.imag() * w) + } + + /// Calculates the quaternionic arcsinus. + /// + /// # Example + /// ``` + /// # #[macro_use] extern crate approx; + /// # use nalgebra::Quaternion; + /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// let result = input.sin().asin(); + /// assert_relative_eq!(input, result, epsilon = 1.0e-7); + /// ``` + #[inline] + pub fn asin(&self) -> Self { + let u = Self::from_imag(self.imag().normalize()); + let identity = Self::identity(); + + let z = ((u * self) + (identity - self.squared()).sqrt()).ln(); + + -(u * z) + } + + /// Calculates the quaternionic tangent. + /// + /// # Example + /// ``` + /// # #[macro_use] extern crate approx; + /// # use nalgebra::Quaternion; + /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// let expected = Quaternion::new(0.00003821631725009489, 0.3713971716439371, 0.5570957574659058, 0.7427943432878743); + /// let result = input.tan(); + /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); + /// ``` + #[inline] + pub fn tan(&self) -> Self { + let s = self.sin(); + let c = self.cos(); + + let ci = c.try_inverse().unwrap(); + s * ci + } + + /// Calculates the quaternionic arctangent. + /// + /// # Example + /// ``` + /// # #[macro_use] extern crate approx; + /// # use nalgebra::Quaternion; + /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// let result = input.tan().atan(); + /// assert_relative_eq!(input, result, epsilon = 1.0e-7); + /// ``` + #[inline] + pub fn atan(&self) -> Self { + let u = Self::from_imag(self.imag().normalize()); + let num = u + self; + let den = u - self; + let fr = num * den.try_inverse().unwrap(); + let ln = fr.ln(); + (u.half()) * ln + } + + /// Calculates the hyperbolic quaternionic sinus. + /// + /// # Example + /// ``` + /// # #[macro_use] extern crate approx; + /// # use nalgebra::Quaternion; + /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// let expected = Quaternion::new(0.7323376060463428, -0.4482074499805421, -0.6723111749708133, -0.8964148999610843); + /// let result = input.sinh(); + /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); + /// ``` + #[inline] + pub fn sinh(&self) -> Self { + (self.exp() - (-self).exp()).half() + } + + /// Calculates the hyperbolic quaternionic arcsinus. + /// + /// # Example + /// ``` + /// # #[macro_use] extern crate approx; + /// # use nalgebra::Quaternion; + /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// let expected = Quaternion::new(2.385889902585242, 0.514052600662788, 0.7710789009941821, 1.028105201325576); + /// let result = input.asinh(); + /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); + /// ``` + #[inline] + pub fn asinh(&self) -> Self { + let identity = Self::identity(); + (self + (identity + self.squared()).sqrt()).ln() + } + + /// Calculates the hyperbolic quaternionic cosinus. + /// + /// # Example + /// ``` + /// # #[macro_use] extern crate approx; + /// # use nalgebra::Quaternion; + /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// let expected = Quaternion::new(0.9615851176369566, -0.3413521745610167, -0.5120282618415251, -0.6827043491220334); + /// let result = input.cosh(); + /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); + /// ``` + #[inline] + pub fn cosh(&self) -> Self { + (self.exp() + (-self).exp()).half() + } + + /// Calculates the hyperbolic quaternionic arccosinus. + /// + /// # Example + /// ``` + /// # #[macro_use] extern crate approx; + /// # use nalgebra::Quaternion; + /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// let expected = Quaternion::new(2.4014472020074007, 0.5162761016176176, 0.7744141524264264, 1.0325522032352352); + /// let result = input.acosh(); + /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); + /// ``` + #[inline] + pub fn acosh(&self) -> Self { + let identity = Self::identity(); + (self + (self + identity).sqrt() * (self - identity).sqrt()).ln() + } + + /// Calculates the hyperbolic quaternionic tangent. + /// + /// # Example + /// ``` + /// # #[macro_use] extern crate approx; + /// # use nalgebra::Quaternion; + /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// let expected = Quaternion::new(1.0248695360556623, -0.10229568178876419, -0.1534435226831464, -0.20459136357752844); + /// let result = input.tanh(); + /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); + /// ``` + #[inline] + pub fn tanh(&self) -> Self { + let s = self.sinh(); + let c = self.cosh(); + + let ci = c.try_inverse().unwrap(); + s * ci + } + + /// Calculates the hyperbolic quaternionic arctangent. + /// + /// # Example + /// ``` + /// # #[macro_use] extern crate approx; + /// # use nalgebra::Quaternion; + /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// let expected = Quaternion::new(0.03230293287000163, 0.5173453683196951, 0.7760180524795426, 1.0346907366393903); + /// let result = input.atanh(); + /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); + /// ``` + #[inline] + pub fn atanh(&self) -> Self { + let identity = Self::identity(); + ((identity + self).ln() - (identity - self).ln()).half() + } } impl<N: Real + AbsDiffEq<Epsilon = N>> AbsDiffEq for Quaternion<N> { @@ -879,7 +1128,7 @@ impl<N: Real> UnitQuaternion<N> { #[inline] pub fn ln(&self) -> Quaternion<N> { if let Some(v) = self.axis() { - Quaternion::from_parts(N::zero(), v.into_inner() * self.angle()) + Quaternion::from_imag(v.into_inner() * self.angle()) } else { Quaternion::zero() } @@ -1073,3 +1322,4 @@ impl<N: Real + UlpsEq<Epsilon = N>> UlpsEq for UnitQuaternion<N> { self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps) } } + diff --git a/src/geometry/quaternion_construction.rs b/src/geometry/quaternion_construction.rs index 0a30fabe..8eb16b1b 100644 --- a/src/geometry/quaternion_construction.rs +++ b/src/geometry/quaternion_construction.rs @@ -13,9 +13,7 @@ use alga::general::Real; use base::dimension::U3; use base::storage::Storage; -#[cfg(feature = "arbitrary")] -use base::Vector3; -use base::{Unit, Vector, Vector4, Matrix3}; +use base::{Unit, Vector, Vector3, Vector4, Matrix3}; use geometry::{Quaternion, Rotation3, UnitQuaternion}; @@ -43,8 +41,13 @@ impl<N: Real> Quaternion<N> { /// ``` #[inline] pub fn new(w: N, i: N, j: N, k: N) -> Self { - let v = Vector4::<N>::new(i, j, k, w); - Self::from(v) + Self::from(Vector4::new(i, j, k, w)) + } + + /// Constructs a pure quaternion. + #[inline] + pub fn from_imag(vector: Vector3<N>) -> Self { + Self::from_parts(N::zero(), vector) } /// Creates a new quaternion from its scalar and vector parts. Note that the arguments order does @@ -92,7 +95,7 @@ impl<N: Real> Quaternion<N> { /// ``` #[inline] pub fn identity() -> Self { - Self::new(N::one(), N::zero(), N::zero(), N::zero()) + Self::from_parts(N::one(), Vector3::zero()) } } @@ -106,7 +109,7 @@ impl<N: Real> One for Quaternion<N> { impl<N: Real> Zero for Quaternion<N> { #[inline] fn zero() -> Self { - Self::new(N::zero(), N::zero(), N::zero(), N::zero()) + Self::from(Vector4::zero()) } #[inline] @@ -579,7 +582,7 @@ impl<N: Real> UnitQuaternion<N> { pub fn new<SB>(axisangle: Vector<N, U3, SB>) -> Self where SB: Storage<N, U3> { let two: N = ::convert(2.0f64); - let q = Quaternion::<N>::from_parts(N::zero(), axisangle / two).exp(); + let q = Quaternion::<N>::from_imag(axisangle / two).exp(); Self::new_unchecked(q) } @@ -608,7 +611,7 @@ impl<N: Real> UnitQuaternion<N> { pub fn new_eps<SB>(axisangle: Vector<N, U3, SB>, eps: N) -> Self where SB: Storage<N, U3> { let two: N = ::convert(2.0f64); - let q = Quaternion::<N>::from_parts(N::zero(), axisangle / two).exp_eps(eps); + let q = Quaternion::<N>::from_imag(axisangle / two).exp_eps(eps); Self::new_unchecked(q) }