forked from M-Labs/nalgebra
Fix slerp for regular vectors.
This commit is contained in:
parent
1d746a02b7
commit
e976ed675f
@ -1616,31 +1616,31 @@ impl<N: Scalar + Copy + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim,
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
|
||||
impl<N: RealField, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
|
||||
/// Computes the spherical linear interpolation between two unit vectors.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::geometry::UnitQuaternion;
|
||||
/// # use nalgebra::Vector2;
|
||||
///
|
||||
/// let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
|
||||
/// let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
|
||||
/// let v1 = Vector2::new(1.0, 2.0);
|
||||
/// let v2 = Vector2::new(2.0, -3.0);
|
||||
///
|
||||
/// let q = q1.slerp(&q2, 1.0 / 3.0);
|
||||
/// let v = v1.slerp(&v2, 1.0);
|
||||
///
|
||||
/// assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
|
||||
/// assert_eq!(v, v2);
|
||||
/// ```
|
||||
pub fn slerp<S2: Storage<N, D>>(
|
||||
&self,
|
||||
rhs: &Unit<Vector<N, D, S2>>,
|
||||
t: N::RealField,
|
||||
t: N,
|
||||
) -> Unit<VectorN<N, D>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
// FIXME: the result is wrong when self and rhs are collinear with opposite direction.
|
||||
self.try_slerp(rhs, t, N::RealField::default_epsilon())
|
||||
self.try_slerp(rhs, t, N::default_epsilon())
|
||||
.unwrap_or(Unit::new_unchecked(self.clone_owned()))
|
||||
}
|
||||
|
||||
@ -1651,30 +1651,30 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
|
||||
pub fn try_slerp<S2: Storage<N, D>>(
|
||||
&self,
|
||||
rhs: &Unit<Vector<N, D, S2>>,
|
||||
t: N::RealField,
|
||||
epsilon: N::RealField,
|
||||
t: N,
|
||||
epsilon: N,
|
||||
) -> Option<Unit<VectorN<N, D>>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
let (c_hang, c_hang_sign) = self.dotc(rhs).to_exp();
|
||||
let c_hang = self.dot(rhs);
|
||||
|
||||
// self == other
|
||||
if c_hang >= N::RealField::one() {
|
||||
if c_hang >= N::one() {
|
||||
return Some(Unit::new_unchecked(self.clone_owned()));
|
||||
}
|
||||
|
||||
let hang = c_hang.acos();
|
||||
let s_hang = (N::RealField::one() - c_hang * c_hang).sqrt();
|
||||
let s_hang = (N::one() - c_hang * c_hang).sqrt();
|
||||
|
||||
// FIXME: what if s_hang is 0.0 ? The result is not well-defined.
|
||||
if relative_eq!(s_hang, N::RealField::zero(), epsilon = epsilon) {
|
||||
if relative_eq!(s_hang, N::zero(), epsilon = epsilon) {
|
||||
None
|
||||
} else {
|
||||
let ta = ((N::RealField::one() - t) * hang).sin() / s_hang;
|
||||
let ta = ((N::one() - t) * hang).sin() / s_hang;
|
||||
let tb = (t * hang).sin() / s_hang;
|
||||
let mut res = self.scale(ta);
|
||||
res.axpy(c_hang_sign.scale(tb), &**rhs, N::one());
|
||||
res.axpy(tb, &**rhs, N::one());
|
||||
|
||||
Some(Unit::new_unchecked(res))
|
||||
}
|
||||
|
@ -1067,13 +1067,22 @@ impl<N: RealField> UnitQuaternion<N> {
|
||||
///
|
||||
/// Panics if the angle between both quaternion is 180 degrees (in which case the interpolation
|
||||
/// is not well-defined). Use `.try_slerp` instead to avoid the panic.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::geometry::UnitQuaternion;
|
||||
///
|
||||
/// let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
|
||||
/// let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
|
||||
///
|
||||
/// let q = q1.slerp(&q2, 1.0 / 3.0);
|
||||
///
|
||||
/// assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn slerp(&self, other: &Self, t: N) -> Self {
|
||||
Unit::new_unchecked(Quaternion::from(
|
||||
Unit::new_unchecked(self.coords)
|
||||
.slerp(&Unit::new_unchecked(other.coords), t)
|
||||
.into_inner(),
|
||||
))
|
||||
self.try_slerp(other, t, N::default_epsilon()).expect("Quaternion slerp: ambiguous configuration.")
|
||||
}
|
||||
|
||||
/// Computes the spherical linear interpolation between two unit quaternions or returns `None`
|
||||
@ -1094,9 +1103,16 @@ impl<N: RealField> UnitQuaternion<N> {
|
||||
epsilon: N,
|
||||
) -> Option<Self>
|
||||
{
|
||||
let coords = if self.coords.dot(&other.coords) < N::zero() {
|
||||
Unit::new_unchecked(self.coords)
|
||||
.try_slerp(&Unit::new_unchecked(-other.coords), t, epsilon)
|
||||
} else {
|
||||
Unit::new_unchecked(self.coords)
|
||||
.try_slerp(&Unit::new_unchecked(other.coords), t, epsilon)
|
||||
.map(|q| Unit::new_unchecked(Quaternion::from(q.into_inner())))
|
||||
};
|
||||
|
||||
|
||||
coords.map(|q| Unit::new_unchecked(Quaternion::from(q.into_inner())))
|
||||
}
|
||||
|
||||
/// Compute the conjugate of this unit quaternion in-place.
|
||||
|
Loading…
Reference in New Issue
Block a user