diff --git a/nalgebra-sparse/src/csc.rs b/nalgebra-sparse/src/csc.rs index c48697a8..39022894 100644 --- a/nalgebra-sparse/src/csc.rs +++ b/nalgebra-sparse/src/csc.rs @@ -14,8 +14,109 @@ use nalgebra::Scalar; /// The Compressed Sparse Column (CSC) format is well-suited as a general-purpose storage format /// for many sparse matrix applications. /// -/// TODO: Storage explanation and examples +/// # Usage /// +/// ```rust +/// use nalgebra_sparse::csc::CscMatrix; +/// use nalgebra::{DMatrix, Matrix3x4}; +/// use matrixcompare::assert_matrix_eq; +/// +/// // The sparsity patterns of CSC matrices are immutable. This means that you cannot dynamically +/// // change the sparsity pattern of the matrix after it has been constructed. The easiest +/// // way to construct a CSC matrix is to first incrementally construct a COO matrix, +/// // and then convert it to CSC. +/// # use nalgebra_sparse::coo::CooMatrix; +/// # let coo = CooMatrix::::new(3, 3); +/// let csc = CscMatrix::from(&coo); +/// +/// // Alternatively, a CSC matrix can be constructed directly from raw CSC data. +/// // Here, we construct a 3x4 matrix +/// let col_offsets = vec![0, 1, 3, 4, 5]; +/// let row_indices = vec![0, 0, 2, 2, 0]; +/// let values = vec![1.0, 2.0, 3.0, 4.0, 5.0]; +/// +/// // The dense representation of the CSC data, for comparison +/// let dense = Matrix3x4::new(1.0, 2.0, 0.0, 5.0, +/// 0.0, 0.0, 0.0, 0.0, +/// 0.0, 3.0, 4.0, 0.0); +/// +/// // The constructor validates the raw CSC data and returns an error if it is invalid. +/// let csc = CscMatrix::try_from_csc_data(3, 4, col_offsets, row_indices, values) +/// .expect("CSC data must conform to format specifications"); +/// assert_matrix_eq!(csc, dense); +/// +/// // A third approach is to construct a CSC matrix from a pattern and values. Sometimes this is +/// // useful if the sparsity pattern is constructed separately from the values of the matrix. +/// let (pattern, values) = csc.into_pattern_and_values(); +/// let csc = CscMatrix::try_from_pattern_and_values(pattern, values) +/// .expect("The pattern and values must be compatible"); +/// +/// // Once we have constructed our matrix, we can use it for arithmetic operations together with +/// // other CSC matrices and dense matrices/vectors. +/// let x = csc; +/// # #[allow(non_snake_case)] +/// let xTx = x.transpose() * &x; +/// let z = DMatrix::from_fn(4, 8, |i, j| (i as f64) * (j as f64)); +/// let w = 3.0 * xTx * z; +/// +/// // Although the sparsity pattern of a CSC matrix cannot be changed, its values can. +/// // Here are two different ways to scale all values by a constant: +/// let mut x = x; +/// x *= 5.0; +/// x.values_mut().iter_mut().for_each(|x_i| *x_i *= 5.0); +/// ``` +/// +/// # Format +/// +/// An `m x n` sparse matrix with `nnz` non-zeros in CSC format is represented by the +/// following three arrays: +/// +/// - `col_offsets`, an array of integers with length `n + 1`. +/// - `row_indices`, an array of integers with length `nnz`. +/// - `values`, an array of values with length `nnz`. +/// +/// The relationship between the arrays is described below. +/// +/// - Each consecutive pair of entries `col_offsets[j] .. col_offsets[j + 1]` corresponds to an +/// offset range in `row_indices` that holds the row indices in column `j`. +/// - For an entry represented by the index `idx`, `row_indices[idx]` stores its column index and +/// `values[idx]` stores its value. +/// +/// The following invariants must be upheld and are enforced by the data structure: +/// +/// - `col_offsets[0] == 0` +/// - `col_offsets[m] == nnz` +/// - `col_offsets` is monotonically increasing. +/// - `0 <= row_indices[idx] < m` for all `idx < nnz`. +/// - The row indices associated with each column are monotonically increasing (see below). +/// +/// The CSC format is a standard sparse matrix format (see [Wikipedia article]). The format +/// represents the matrix in a column-by-column fashion. The entries associated with column `j` are +/// determined as follows: +/// +/// ```rust +/// # let col_offsets: Vec = vec![0, 0]; +/// # let row_indices: Vec = vec![]; +/// # let values: Vec = vec![]; +/// # let j = 0; +/// let range = col_offsets[j] .. col_offsets[j + 1]; +/// let col_j_rows = &row_indices[range.clone()]; +/// let col_j_vals = &values[range]; +/// +/// // For each pair (i, v) in (col_j_rows, col_j_vals), we obtain a corresponding entry +/// // (i, j, v) in the matrix. +/// assert_eq!(col_j_rows.len(), col_j_vals.len()); +/// ``` +/// +/// In the above example, for each column `j`, the row indices `col_j_cols` must appear in +/// monotonically increasing order. In other words, they must be *sorted*. This criterion is not +/// standard among all sparse matrix libraries, but we enforce this property as it is a crucial +/// assumption for both correctness and performance for many algorithms. +/// +/// Note that the CSR and CSC formats are essentially identical, except that CSC stores the matrix +/// column-by-column instead of row-by-row like CSR. +/// +/// [Wikipedia article]: https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_(CSC_or_CCS) #[derive(Debug, Clone, PartialEq, Eq)] pub struct CscMatrix { // Cols are major, rows are minor in the sparsity pattern diff --git a/nalgebra-sparse/src/csr.rs b/nalgebra-sparse/src/csr.rs index caf33b58..3c0a08ca 100644 --- a/nalgebra-sparse/src/csr.rs +++ b/nalgebra-sparse/src/csr.rs @@ -56,7 +56,6 @@ use std::slice::{IterMut, Iter}; /// let x = csr; /// # #[allow(non_snake_case)] /// let xTx = x.transpose() * &x; -/// /// let z = DMatrix::from_fn(4, 8, |i, j| (i as f64) * (j as f64)); /// let w = 3.0 * xTx * z; /// @@ -69,7 +68,8 @@ use std::slice::{IterMut, Iter}; /// /// # Format /// -/// An `m x n` sparse matrix with `nnz` non-zeros consists of the following three arrays: +/// An `m x n` sparse matrix with `nnz` non-zeros in CSR format is represented by the +/// following three arrays: /// /// - `row_offsets`, an array of integers with length `m + 1`. /// - `col_indices`, an array of integers with length `nnz`. @@ -87,6 +87,7 @@ use std::slice::{IterMut, Iter}; /// - `row_offsets[0] == 0` /// - `row_offsets[m] == nnz` /// - `row_offsets` is monotonically increasing. +/// - `0 <= col_indices[idx] < n` for all `idx < nnz`. /// - The column indices associated with each row are monotonically increasing (see below). /// /// The CSR format is a standard sparse matrix format (see [Wikipedia article]). The format @@ -112,6 +113,8 @@ use std::slice::{IterMut, Iter}; /// standard among all sparse matrix libraries, but we enforce this property as it is a crucial /// assumption for both correctness and performance for many algorithms. /// +/// Note that the CSR and CSC formats are essentially identical, except that CSC stores the matrix +/// column-by-column instead of row-by-row like CSR. /// /// [Wikipedia article]: https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format) #[derive(Debug, Clone, PartialEq, Eq)]