forked from M-Labs/nalgebra
Add lower triangular solve with dense right-hand-side.
This commit is contained in:
parent
dc8edeceb2
commit
e4e5659405
@ -6,9 +6,9 @@ use std::ops::{Add, Mul, Range};
|
|||||||
use std::slice;
|
use std::slice;
|
||||||
|
|
||||||
use allocator::Allocator;
|
use allocator::Allocator;
|
||||||
use constraint::{AreMultipliable, DimEq, ShapeConstraint};
|
use constraint::{AreMultipliable, DimEq, ShapeConstraint, SameNumberOfRows};
|
||||||
use storage::{Storage, StorageMut};
|
use storage::{Storage, StorageMut};
|
||||||
use {DefaultAllocator, Dim, Matrix, MatrixMN, Scalar, Vector, VectorN, U1};
|
use {Real, DefaultAllocator, Dim, Matrix, MatrixMN, Scalar, Vector, VectorN, U1};
|
||||||
|
|
||||||
// FIXME: this structure exists for now only because impl trait
|
// FIXME: this structure exists for now only because impl trait
|
||||||
// cannot be used for trait method return types.
|
// cannot be used for trait method return types.
|
||||||
@ -245,6 +245,132 @@ impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
||||||
|
pub fn solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
||||||
|
&self,
|
||||||
|
b: &Matrix<N, R2, C2, S2>,
|
||||||
|
) -> Option<MatrixMN<N, R2, C2>>
|
||||||
|
where
|
||||||
|
S2: Storage<N, R2, C2>,
|
||||||
|
DefaultAllocator: Allocator<N, R2, C2>,
|
||||||
|
ShapeConstraint: SameNumberOfRows<D, R2>,
|
||||||
|
{
|
||||||
|
let mut b = b.clone_owned();
|
||||||
|
if self.solve_lower_triangular_mut(&mut b) {
|
||||||
|
Some(b)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn tr_solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
||||||
|
&self,
|
||||||
|
b: &Matrix<N, R2, C2, S2>,
|
||||||
|
) -> Option<MatrixMN<N, R2, C2>>
|
||||||
|
where
|
||||||
|
S2: Storage<N, R2, C2>,
|
||||||
|
DefaultAllocator: Allocator<N, R2, C2>,
|
||||||
|
ShapeConstraint: SameNumberOfRows<D, R2>,
|
||||||
|
{
|
||||||
|
let mut b = b.clone_owned();
|
||||||
|
if self.tr_solve_lower_triangular_mut(&mut b) {
|
||||||
|
Some(b)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
||||||
|
&self,
|
||||||
|
b: &mut Matrix<N, R2, C2, S2>,
|
||||||
|
) -> bool
|
||||||
|
where
|
||||||
|
S2: StorageMut<N, R2, C2>,
|
||||||
|
ShapeConstraint: SameNumberOfRows<D, R2>,
|
||||||
|
{
|
||||||
|
let (nrows, ncols) = self.data.shape();
|
||||||
|
assert_eq!(nrows.value(), ncols.value(), "The matrix must be square.");
|
||||||
|
assert_eq!(nrows.value(), b.len(), "Mismatched matrix dimensions.");
|
||||||
|
|
||||||
|
for j2 in 0..b.ncols() {
|
||||||
|
let mut b = b.column_mut(j2);
|
||||||
|
|
||||||
|
for j in 0..ncols.value() {
|
||||||
|
let mut column = self.data.column_entries(j);
|
||||||
|
let mut diag_found = false;
|
||||||
|
|
||||||
|
while let Some((i, val)) = column.next() {
|
||||||
|
if i == j {
|
||||||
|
if val.is_zero() {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
b[j] /= val;
|
||||||
|
diag_found = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if !diag_found {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i, val) in column {
|
||||||
|
b[i] -= b[j] * val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
true
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
pub fn tr_solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
||||||
|
&self,
|
||||||
|
b: &mut Matrix<N, R2, C2, S2>,
|
||||||
|
) -> bool
|
||||||
|
where
|
||||||
|
S2: StorageMut<N, R2, C2>,
|
||||||
|
ShapeConstraint: SameNumberOfRows<D, R2>,
|
||||||
|
{
|
||||||
|
let (nrows, ncols) = self.data.shape();
|
||||||
|
assert_eq!(nrows.value(), ncols.value(), "The matrix must be square.");
|
||||||
|
assert_eq!(nrows.value(), b.len(), "Mismatched matrix dimensions.");
|
||||||
|
|
||||||
|
for j2 in 0..b.ncols() {
|
||||||
|
let mut b = b.column_mut(j2);
|
||||||
|
|
||||||
|
for j in (0..ncols.value()).rev() {
|
||||||
|
let mut column = self.data.column_entries(j);
|
||||||
|
let mut diag = None;
|
||||||
|
|
||||||
|
while let Some((i, val)) = column.next() {
|
||||||
|
if i == j {
|
||||||
|
if val.is_zero() {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
diag = Some(val);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if let Some(diag) = diag {
|
||||||
|
for (i, val) in column {
|
||||||
|
b[j] -= val * b[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
b[j] /= diag;
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
impl<N: Scalar, R, S> CsVector<N, R, S> {
|
impl<N: Scalar, R, S> CsVector<N, R, S> {
|
||||||
pub fn axpy(&mut self, alpha: N, x: CsVector<N, R, S>, beta: N) {
|
pub fn axpy(&mut self, alpha: N, x: CsVector<N, R, S>, beta: N) {
|
||||||
|
Loading…
Reference in New Issue
Block a user