From e4748c69ce3e5f31cd6e7e2504daa4c6868118f1 Mon Sep 17 00:00:00 2001 From: sebcrozet Date: Mon, 18 Mar 2019 11:23:19 +0100 Subject: [PATCH] Start fixing SVD. --- src/geometry/reflection.rs | 8 +- src/linalg/bidiagonal.rs | 20 +-- src/linalg/givens.rs | 83 ++++------ src/linalg/householder.rs | 15 +- src/linalg/mod.rs | 2 +- src/linalg/schur.rs | 7 +- src/linalg/svd.rs | 228 +++++++++++++++------------- src/linalg/symmetric_eigen.rs | 41 +++-- src/linalg/symmetric_tridiagonal.rs | 1 + tests/linalg/bidiagonal.rs | 1 + tests/linalg/eigen.rs | 13 +- tests/linalg/svd.rs | 21 ++- tests/linalg/tridiagonal.rs | 14 ++ 13 files changed, 248 insertions(+), 206 deletions(-) diff --git a/src/geometry/reflection.rs b/src/geometry/reflection.rs index fca0f548..237054b6 100644 --- a/src/geometry/reflection.rs +++ b/src/geometry/reflection.rs @@ -61,10 +61,10 @@ impl> Reflection { } } - /// Applies the reflection to the rows of `rhs`. + /// Applies the reflection to the rows of `lhs`. pub fn reflect_rows( &self, - rhs: &mut Matrix, + lhs: &mut Matrix, work: &mut Vector, ) where S2: StorageMut, @@ -72,13 +72,13 @@ impl> Reflection { ShapeConstraint: DimEq + AreMultipliable, DefaultAllocator: Allocator { - rhs.mul_to(&self.axis, work); + lhs.mul_to(&self.axis, work); if !self.bias.is_zero() { work.add_scalar_mut(-self.bias); } let m_two: N = ::convert(-2.0f64); - rhs.ger(m_two, &work, &self.axis.conjugate(), N::one()); + lhs.ger(m_two, &work, &self.axis.conjugate(), N::one()); } } diff --git a/src/linalg/bidiagonal.rs b/src/linalg/bidiagonal.rs index a44be398..e487758c 100644 --- a/src/linalg/bidiagonal.rs +++ b/src/linalg/bidiagonal.rs @@ -49,9 +49,9 @@ where // contiguous. This prevents some useless copies. uv: MatrixMN, /// The diagonal elements of the decomposed matrix. - pub diagonal: VectorN>, + diagonal: VectorN>, /// The off-diagonal elements of the decomposed matrix. - pub off_diagonal: VectorN, U1>>, + off_diagonal: VectorN, U1>>, upper_diagonal: bool, } @@ -143,9 +143,9 @@ where Bidiagonal { uv: matrix, - diagonal: diagonal, - off_diagonal: off_diagonal, - upper_diagonal: upper_diagonal, + diagonal, + off_diagonal, + upper_diagonal, } } @@ -231,7 +231,7 @@ where res } - /// Computes the orthogonal matrix `V` of this `U * D * V` decomposition. + /// Computes the orthogonal matrix `V_t` of this `U * D * V_t` decomposition. pub fn v_t(&self) -> MatrixMN, C> where DefaultAllocator: Allocator, C> { let (nrows, ncols) = self.uv.data.shape(); @@ -258,13 +258,13 @@ where } /// The diagonal part of this decomposed matrix. - pub fn diagonal(&self) -> &VectorN> { - &self.diagonal + pub fn diagonal(&self) -> VectorN> { + self.diagonal.map(|e| N::from_real(e.modulus())) } /// The off-diagonal part of this decomposed matrix. - pub fn off_diagonal(&self) -> &VectorN, U1>> { - &self.off_diagonal + pub fn off_diagonal(&self) -> VectorN, U1>> { + self.off_diagonal.map(|e| N::from_real(e.modulus())) } #[doc(hidden)] diff --git a/src/linalg/givens.rs b/src/linalg/givens.rs index 472f3bb3..72f4a427 100644 --- a/src/linalg/givens.rs +++ b/src/linalg/givens.rs @@ -1,7 +1,7 @@ //! Construction of givens rotations. use alga::general::{Complex, Real}; -use num::Zero; +use num::{Zero, One}; use num_complex::Complex as NumComplex; use base::dimension::{Dim, U2}; @@ -12,60 +12,37 @@ use base::{Vector, Matrix}; use geometry::UnitComplex; /// A Givens rotation. -#[derive(Debug)] +#[derive(Debug, Clone, Copy)] pub struct GivensRotation { - // FIXME: c should be a `N::Real`. - c: N, + c: N::Real, s: N } -// XXX: remove this -/// Computes the rotation `R` required such that the `y` component of `R * v` is zero. -/// -/// Returns `None` if no rotation is needed (i.e. if `v.y == 0`). Otherwise, this returns the norm -/// of `v` and the rotation `r` such that `R * v = [ |v|, 0.0 ]^t` where `|v|` is the norm of `v`. -pub fn cancel_y>(v: &Vector) -> Option<(UnitComplex, N)> { - if !v[1].is_zero() { - let c = NumComplex::new(v[0], -v[1]); - Some(UnitComplex::from_complex_and_get(c)) - } else { - None - } -} - -// XXX: remove this -/// Computes the rotation `R` required such that the `x` component of `R * v` is zero. -/// -/// Returns `None` if no rotation is needed (i.e. if `v.x == 0`). Otherwise, this returns the norm -/// of `v` and the rotation `r` such that `R * v = [ 0.0, |v| ]^t` where `|v|` is the norm of `v`. -pub fn cancel_x>(v: &Vector) -> Option<(UnitComplex, N)> { - if !v[0].is_zero() { - let c = NumComplex::new(v[1], v[0]); - Some(UnitComplex::from_complex_and_get(c)) - } else { - None - } -} - - // Matrix = UnitComplex * Matrix impl GivensRotation { + /// The Givents rotation that does nothing. + pub fn identity() -> Self { + Self { + c: N::Real::one(), + s: N::zero() + } + } + /// Initializes a Givens rotation from its non-normalized cosine an sine components. - pub fn new(c: N, s: N) -> Self { - let res = Self::try_new(c, s, N::Real::zero()).unwrap(); - println!("The rot: {:?}", res); - res + pub fn new(c: N, s: N) -> (Self, N) { + Self::try_new(c, s, N::Real::zero()).unwrap() } /// Initializes a Givens rotation form its non-normalized cosine an sine components. - pub fn try_new(c: N, s: N, eps: N::Real) -> Option { + pub fn try_new(c: N, s: N, eps: N::Real) -> Option<(Self, N)> { let (mod0, sign0) = c.to_exp(); let denom = (mod0 * mod0 + s.modulus_squared()).sqrt(); if denom > eps { - let c = N::from_real(mod0 / denom); - let s = s / sign0.scale(denom); - Some(Self { c, s }) + let norm = sign0.scale(denom); + let c = mod0 / denom; + let s = s / norm; + Some((Self { c, s }, norm)) } else { None } @@ -79,8 +56,8 @@ impl GivensRotation { if !v[1].is_zero() { let (mod0, sign0) = v[0].to_exp(); let denom = (mod0 * mod0 + v[1].modulus_squared()).sqrt(); - let c = N::from_real(mod0 / denom); - let s = (sign0 * v[1].conjugate()).unscale(-denom); + let c = mod0 / denom; + let s = -v[1] / sign0.scale(denom); let r = sign0.scale(denom); Some((Self { c, s }, r)) } else { @@ -94,11 +71,11 @@ impl GivensRotation { /// of `v` and the rotation `r` such that `R * v = [ 0.0, |v| ]^t` where `|v|` is the norm of `v`. pub fn cancel_x>(v: &Vector) -> Option<(Self, N)> { if !v[0].is_zero() { - let (mod0, sign0) = v[0].to_exp(); - let denom = (mod0 * mod0 + v[1].modulus_squared()).sqrt(); - let c = N::from_real(mod0 / denom); - let s = (sign0 * v[1].conjugate()).unscale(denom); - let r = sign0.scale(denom); + let (mod1, sign1) = v[1].to_exp(); + let denom = (mod1 * mod1 + v[0].modulus_squared()).sqrt(); + let c = mod1 / denom; + let s = (v[0].conjugate() * sign1).unscale(denom); + let r = sign1.scale(denom); Some((Self { c, s }, r)) } else { None @@ -106,7 +83,7 @@ impl GivensRotation { } /// The cos part of this roration. - pub fn c(&self) -> N { + pub fn c(&self) -> N::Real { self.c } @@ -140,8 +117,8 @@ impl GivensRotation { let a = *rhs.get_unchecked((0, j)); let b = *rhs.get_unchecked((1, j)); - *rhs.get_unchecked_mut((0, j)) = c * a + -s.conjugate() * b; - *rhs.get_unchecked_mut((1, j)) = s * a + c * b; + *rhs.get_unchecked_mut((0, j)) = a.scale(c) - s.conjugate() * b; + *rhs.get_unchecked_mut((1, j)) = s * a + b.scale(c); } } } @@ -167,8 +144,8 @@ impl GivensRotation { let a = *lhs.get_unchecked((j, 0)); let b = *lhs.get_unchecked((j, 1)); - *lhs.get_unchecked_mut((j, 0)) = c * a + s * b; - *lhs.get_unchecked_mut((j, 1)) = -s.conjugate() * a + c * b; + *lhs.get_unchecked_mut((j, 0)) = a.scale(c) + s * b; + *lhs.get_unchecked_mut((j, 1)) = -s.conjugate() * a + b.scale(c); } } } diff --git a/src/linalg/householder.rs b/src/linalg/householder.rs index 0fe46499..dc97b9b3 100644 --- a/src/linalg/householder.rs +++ b/src/linalg/householder.rs @@ -23,20 +23,20 @@ pub fn reflection_axis_mut>( let reflection_norm = reflection_sq_norm.sqrt(); let factor; - let scaled_norm; + let signed_norm; unsafe { - let (modulus, exp) = column.vget_unchecked(0).to_exp(); - scaled_norm = exp.scale(reflection_norm); + let (modulus, sign) = column.vget_unchecked(0).to_exp(); + signed_norm = sign.scale(reflection_norm); factor = (reflection_sq_norm + modulus * reflection_norm) * ::convert(2.0); - *column.vget_unchecked_mut(0) += scaled_norm; + *column.vget_unchecked_mut(0) += signed_norm; }; if !factor.is_zero() { column.unscale_mut(factor.sqrt()); - (-scaled_norm, true) + (-signed_norm, true) } else { - (-scaled_norm, false) + (-signed_norm, false) } } @@ -67,7 +67,7 @@ pub fn clear_column_unchecked( } } -/// Uses an hoseholder reflection to zero out the `irow`-th row, ending before the `shift + 1`-th +/// Uses an householder reflection to zero out the `irow`-th row, ending before the `shift + 1`-th /// superdiagonal element. #[doc(hidden)] pub fn clear_row_unchecked( @@ -85,6 +85,7 @@ pub fn clear_row_unchecked( axis.tr_copy_from(&top.columns_range(irow + shift..)); let (reflection_norm, not_zero) = reflection_axis_mut(&mut axis); + axis.conjugate_mut(); // So that reflect_rows actually cancels the first row. *diag_elt = reflection_norm; if not_zero { diff --git a/src/linalg/mod.rs b/src/linalg/mod.rs index 4418b283..6c7f7194 100644 --- a/src/linalg/mod.rs +++ b/src/linalg/mod.rs @@ -30,6 +30,6 @@ pub use self::lu::*; pub use self::permutation_sequence::*; pub use self::qr::*; pub use self::schur::*; -pub use self::svd::*; +//pub use self::svd::*; pub use self::symmetric_eigen::*; pub use self::symmetric_tridiagonal::*; diff --git a/src/linalg/schur.rs b/src/linalg/schur.rs index 2eca9843..b815131e 100644 --- a/src/linalg/schur.rs +++ b/src/linalg/schur.rs @@ -417,10 +417,11 @@ where if compute_q { // XXX: we have to build the matrix manually because // rot.to_rotation_matrix().unwrap() causes an ICE. + let c = N::from_real(rot.c()); q = Some(MatrixN::from_column_slice_generic( dim, dim, - &[rot.c(), rot.s(), -rot.s().conjugate(), rot.c()], + &[c, rot.s(), -rot.s().conjugate(), c], )); } } @@ -479,9 +480,9 @@ fn compute_2x2_basis>( // This is necessary for numerical stability of the normalization of the complex // number. if x1.modulus() > x2.modulus() { - Some(GivensRotation::new(x1, h10)) + Some(GivensRotation::new(x1, h10).0) } else { - Some(GivensRotation::new(x2, h10)) + Some(GivensRotation::new(x2, h10).0) } } else { None diff --git a/src/linalg/svd.rs b/src/linalg/svd.rs index 67b49604..bcc93333 100644 --- a/src/linalg/svd.rs +++ b/src/linalg/svd.rs @@ -1,27 +1,29 @@ #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; -use num_complex::Complex; +use num_complex::Complex as NumComplex; +use num::Zero; use std::ops::MulAssign; +use approx::AbsDiffEq; -use alga::general::Real; +use alga::general::Complex; use allocator::Allocator; use base::{DefaultAllocator, Matrix, Matrix2x3, MatrixMN, Vector2, VectorN}; use constraint::{SameNumberOfRows, ShapeConstraint}; use dimension::{Dim, DimDiff, DimMin, DimMinimum, DimSub, U1, U2}; use storage::Storage; -use geometry::UnitComplex; use linalg::givens; use linalg::symmetric_eigen; use linalg::Bidiagonal; +use linalg::givens::GivensRotation; /// Singular Value Decomposition of a general matrix. #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", serde(bound( - serialize = "DefaultAllocator: Allocator + + serialize = "DefaultAllocator: Allocator + Allocator> + Allocator, C> + Allocator>, @@ -33,7 +35,7 @@ use linalg::Bidiagonal; #[cfg_attr( feature = "serde-serialize", serde(bound( - deserialize = "DefaultAllocator: Allocator + + deserialize = "DefaultAllocator: Allocator + Allocator> + Allocator, C> + Allocator>, @@ -43,7 +45,7 @@ use linalg::Bidiagonal; )) )] #[derive(Clone, Debug)] -pub struct SVD, C: Dim> +pub struct SVD, C: Dim> where DefaultAllocator: Allocator, C> + Allocator> + Allocator> @@ -52,11 +54,13 @@ where DefaultAllocator: Allocator, C> pub u: Option>>, /// The right-singular vectors `V^t` of this SVD. pub v_t: Option, C>>, + // FIXME: this should a vector of N::Real + // because singular values are necessarily real. /// The singular values of this SVD. pub singular_values: VectorN>, } -impl, C: Dim> Copy for SVD +impl, C: Dim> Copy for SVD where DefaultAllocator: Allocator, C> + Allocator> @@ -66,7 +70,7 @@ where VectorN>: Copy, {} -impl, C: Dim> SVD +impl, C: Dim> SVD where DimMinimum: DimSub, // for Bidiagonal. DefaultAllocator: Allocator @@ -79,7 +83,7 @@ where { /// Computes the Singular Value Decomposition of `matrix` using implicit shift. pub fn new(matrix: MatrixMN, compute_u: bool, compute_v: bool) -> Self { - Self::try_new(matrix, compute_u, compute_v, N::default_epsilon(), 0).unwrap() + Self::try_new(matrix, compute_u, compute_v, N::Real::default_epsilon(), 0).unwrap() } /// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift. @@ -96,7 +100,7 @@ where mut matrix: MatrixMN, compute_u: bool, compute_v: bool, - eps: N, + eps: N::Real, max_niter: usize, ) -> Option { @@ -108,18 +112,20 @@ where let min_nrows_ncols = nrows.min(ncols); let dim = min_nrows_ncols.value(); - let m_amax = matrix.amax(); + let m_amax = matrix.camax(); if !m_amax.is_zero() { - matrix /= m_amax; + matrix.unscale_mut(m_amax); } let mut b = Bidiagonal::new(matrix); let mut u = if compute_u { Some(b.u()) } else { None }; let mut v_t = if compute_v { Some(b.v_t()) } else { None }; + let mut diagonal = b.diagonal(); + let mut off_diagonal = b.off_diagonal(); let mut niter = 0; - let (mut start, mut end) = Self::delimit_subproblem(&mut b, &mut u, &mut v_t, dim - 1, eps); + let (mut start, mut end) = Self::delimit_subproblem(&mut diagonal, &mut off_diagonal, &mut u, &mut v_t, b.is_upper_diagonal(), dim - 1, eps); while end != start { let subdim = end - start + 1; @@ -131,19 +137,19 @@ where let mut vec; { - let dm = b.diagonal[m]; - let dn = b.diagonal[n]; - let fm = b.off_diagonal[m]; + let dm = diagonal[m]; + let dn = diagonal[n]; + let fm = off_diagonal[m]; - let tmm = dm * dm + b.off_diagonal[m - 1] * b.off_diagonal[m - 1]; + let tmm = dm * dm + off_diagonal[m - 1] * off_diagonal[m - 1]; let tmn = dm * fm; let tnn = dn * dn + fm * fm; let shift = symmetric_eigen::wilkinson_shift(tmm, tnn, tmn); vec = Vector2::new( - b.diagonal[start] * b.diagonal[start] - shift, - b.diagonal[start] * b.off_diagonal[start], + diagonal[start] * diagonal[start] - shift, + diagonal[start] * off_diagonal[start], ); } @@ -151,31 +157,31 @@ where let m12 = if k == n - 1 { N::zero() } else { - b.off_diagonal[k + 1] + off_diagonal[k + 1] }; let mut subm = Matrix2x3::new( - b.diagonal[k], - b.off_diagonal[k], + diagonal[k], + off_diagonal[k], N::zero(), N::zero(), - b.diagonal[k + 1], + diagonal[k + 1], m12, ); - if let Some((rot1, norm1)) = givens::cancel_y(&vec) { - rot1.conjugate() + if let Some((rot1, norm1)) = GivensRotation::cancel_y(&vec) { + rot1.inverse() .rotate_rows(&mut subm.fixed_columns_mut::(0)); if k > start { // This is not the first iteration. - b.off_diagonal[k - 1] = norm1; + off_diagonal[k - 1] = norm1; } let v = Vector2::new(subm[(0, 0)], subm[(1, 0)]); // FIXME: does the case `v.y == 0` ever happen? let (rot2, norm2) = - givens::cancel_y(&v).unwrap_or((UnitComplex::identity(), subm[(0, 0)])); + GivensRotation::cancel_y(&v).unwrap_or((GivensRotation::identity(), subm[(0, 0)])); rot2.rotate(&mut subm.fixed_columns_mut::(1)); subm[(0, 0)] = norm2; @@ -197,12 +203,12 @@ where } } - b.diagonal[k + 0] = subm[(0, 0)]; - b.diagonal[k + 1] = subm[(1, 1)]; - b.off_diagonal[k + 0] = subm[(0, 1)]; + diagonal[k + 0] = subm[(0, 0)]; + diagonal[k + 1] = subm[(1, 1)]; + off_diagonal[k + 0] = subm[(0, 1)]; if k != n - 1 { - b.off_diagonal[k + 1] = subm[(1, 2)]; + off_diagonal[k + 1] = subm[(1, 2)]; } vec.x = subm[(0, 1)]; @@ -214,16 +220,16 @@ where } else if subdim == 2 { // Solve the remaining 2x2 subproblem. let (u2, s, v2) = Self::compute_2x2_uptrig_svd( - b.diagonal[start], - b.off_diagonal[start], - b.diagonal[start + 1], + diagonal[start], + off_diagonal[start], + diagonal[start + 1], compute_u && b.is_upper_diagonal() || compute_v && !b.is_upper_diagonal(), compute_v && b.is_upper_diagonal() || compute_u && !b.is_upper_diagonal(), ); - b.diagonal[start + 0] = s[0]; - b.diagonal[start + 1] = s[1]; - b.off_diagonal[start] = N::zero(); + diagonal[start + 0] = s[0]; + diagonal[start + 1] = s[1]; + off_diagonal[start] = N::zero(); if let Some(ref mut u) = u { let rot = if b.is_upper_diagonal() { @@ -247,7 +253,7 @@ where } // Re-delimit the subproblem in case some decoupling occurred. - let sub = Self::delimit_subproblem(&mut b, &mut u, &mut v_t, end, eps); + let sub = Self::delimit_subproblem(&mut diagonal, &mut off_diagonal, &mut u, &mut v_t, b.is_upper_diagonal(), end, eps); start = sub.0; end = sub.1; @@ -257,24 +263,25 @@ where } } - b.diagonal *= m_amax; + diagonal.scale_mut(m_amax); // Ensure all singular value are non-negative. for i in 0..dim { - let sval = b.diagonal[i]; - if sval < N::zero() { - b.diagonal[i] = -sval; + let sval = diagonal[i]; + let (modulus, sign) = sval.to_exp(); + if modulus != N::Real::zero() { + diagonal[i] = N::from_real(modulus); if let Some(ref mut u) = u { - u.column_mut(i).neg_mut(); + u.column_mut(i).mul_assign(sign); } } } Some(Self { - u: u, - v_t: v_t, - singular_values: b.diagonal, + u, + v_t, + singular_values: diagonal, }) } @@ -287,10 +294,10 @@ where m22: N, compute_u: bool, compute_v: bool, - ) -> (Option>, Vector2, Option>) + ) -> (Option>, Vector2, Option>) { - let two: N = ::convert(2.0f64); - let half: N = ::convert(0.5f64); + let two: N::Real = ::convert(2.0f64); + let half: N::Real = ::convert(0.5f64); let denom = (m11 + m22).hypot(m12) + (m11 - m22).hypot(m12); @@ -298,24 +305,29 @@ where // This prevents cancellation issues when constructing the vector `csv` below. If we chose // otherwise, we would have v1 ~= m11 when m12 is small. This would cause catastrophic // cancellation on `v1 * v1 - m11 * m11` below. - let v1 = two * m11 * m22 / denom; - let v2 = half * denom; + let mut v1 = (m11 * m22).scale(two / denom); + let mut v2 = N::from_real(half * denom); let mut u = None; let mut v_t = None; if compute_u || compute_v { - let csv = Vector2::new(m11 * m12, v1 * v1 - m11 * m11).normalize(); + let (csv, sgn_v) = GivensRotation::new(m11 * m12, v1 * v1 - m11 * m11); + v1 *= sgn_v; + v2 *= sgn_v; if compute_v { - v_t = Some(UnitComplex::new_unchecked(Complex::new(csv.x, csv.y))); + v_t = Some(csv); } if compute_u { - let cu = (m11 * csv.x + m12 * csv.y) / v1; - let su = (m22 * csv.y) / v1; + let cu = (m11.scale(csv.c()) + m12 * csv.s()) / v1; + let su = (m22 * csv.s()) / v1; + let (csu, sgn_u) = GivensRotation::new(cu, su); - u = Some(UnitComplex::new_unchecked(Complex::new(cu, su))); + v1 *= sgn_u; + v2 *= sgn_u; + u = Some(csu); } } @@ -338,11 +350,13 @@ where */ fn delimit_subproblem( - b: &mut Bidiagonal, + diagonal: &mut VectorN>, + off_diagonal: &mut VectorN, U1>>, u: &mut Option>>, v_t: &mut Option, C>>, + is_upper_diagonal: bool, end: usize, - eps: N, + eps: N::Real, ) -> (usize, usize) { let mut n = end; @@ -350,20 +364,20 @@ where while n > 0 { let m = n - 1; - if b.off_diagonal[m].is_zero() - || b.off_diagonal[m].abs() <= eps * (b.diagonal[n].abs() + b.diagonal[m].abs()) + if off_diagonal[m].is_zero() + || off_diagonal[m].modulus() <= eps * (diagonal[n].modulus() + diagonal[m].modulus()) { - b.off_diagonal[m] = N::zero(); - } else if b.diagonal[m].abs() <= eps { - b.diagonal[m] = N::zero(); - Self::cancel_horizontal_off_diagonal_elt(b, u, v_t, m, m + 1); + off_diagonal[m] = N::zero(); + } else if diagonal[m].modulus() <= eps { + diagonal[m] = N::zero(); + Self::cancel_horizontal_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m, m + 1); if m != 0 { - Self::cancel_vertical_off_diagonal_elt(b, u, v_t, m - 1); + Self::cancel_vertical_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m - 1); } - } else if b.diagonal[n].abs() <= eps { - b.diagonal[n] = N::zero(); - Self::cancel_vertical_off_diagonal_elt(b, u, v_t, m); + } else if diagonal[n].modulus() <= eps { + diagonal[n] = N::zero(); + Self::cancel_vertical_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m); } else { break; } @@ -379,18 +393,18 @@ where while new_start > 0 { let m = new_start - 1; - if b.off_diagonal[m].abs() <= eps * (b.diagonal[new_start].abs() + b.diagonal[m].abs()) + if off_diagonal[m].modulus() <= eps * (diagonal[new_start].modulus() + diagonal[m].modulus()) { - b.off_diagonal[m] = N::zero(); + off_diagonal[m] = N::zero(); break; } // FIXME: write a test that enters this case. - else if b.diagonal[m].abs() <= eps { - b.diagonal[m] = N::zero(); - Self::cancel_horizontal_off_diagonal_elt(b, u, v_t, m, n); + else if diagonal[m].modulus() <= eps { + diagonal[m] = N::zero(); + Self::cancel_horizontal_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m, n); if m != 0 { - Self::cancel_vertical_off_diagonal_elt(b, u, v_t, m - 1); + Self::cancel_vertical_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m - 1); } break; } @@ -403,21 +417,23 @@ where // Cancels the i-th off-diagonal element using givens rotations. fn cancel_horizontal_off_diagonal_elt( - b: &mut Bidiagonal, + diagonal: &mut VectorN>, + off_diagonal: &mut VectorN, U1>>, u: &mut Option>>, v_t: &mut Option, C>>, + is_upper_diagonal: bool, i: usize, end: usize, ) { - let mut v = Vector2::new(b.off_diagonal[i], b.diagonal[i + 1]); - b.off_diagonal[i] = N::zero(); + let mut v = Vector2::new(off_diagonal[i], diagonal[i + 1]); + off_diagonal[i] = N::zero(); for k in i..end { - if let Some((rot, norm)) = givens::cancel_x(&v) { - b.diagonal[k + 1] = norm; + if let Some((rot, norm)) = GivensRotation::cancel_x(&v) { + diagonal[k + 1] = norm; - if b.is_upper_diagonal() { + if is_upper_diagonal { if let Some(ref mut u) = *u { rot.inverse() .rotate_rows(&mut u.fixed_columns_with_step_mut::(i, k - i)); @@ -427,9 +443,9 @@ where } if k + 1 != end { - v.x = -rot.sin_angle() * b.off_diagonal[k + 1]; - v.y = b.diagonal[k + 2]; - b.off_diagonal[k + 1] *= rot.cos_angle(); + v.x = -rot.s() * off_diagonal[k + 1]; + v.y = diagonal[k + 2]; + off_diagonal[k + 1] = off_diagonal[k + 1].scale(rot.c()); } } else { break; @@ -439,20 +455,22 @@ where // Cancels the i-th off-diagonal element using givens rotations. fn cancel_vertical_off_diagonal_elt( - b: &mut Bidiagonal, + diagonal: &mut VectorN>, + off_diagonal: &mut VectorN, U1>>, u: &mut Option>>, v_t: &mut Option, C>>, + is_upper_diagonal: bool, i: usize, ) { - let mut v = Vector2::new(b.diagonal[i], b.off_diagonal[i]); - b.off_diagonal[i] = N::zero(); + let mut v = Vector2::new(diagonal[i], off_diagonal[i]); + off_diagonal[i] = N::zero(); for k in (0..i + 1).rev() { - if let Some((rot, norm)) = givens::cancel_y(&v) { - b.diagonal[k] = norm; + if let Some((rot, norm)) = GivensRotation::cancel_y(&v) { + diagonal[k] = norm; - if b.is_upper_diagonal() { + if is_upper_diagonal { if let Some(ref mut v_t) = *v_t { rot.rotate(&mut v_t.fixed_rows_with_step_mut::(k, i - k)); } @@ -462,9 +480,9 @@ where } if k > 0 { - v.x = b.diagonal[k - 1]; - v.y = rot.sin_angle() * b.off_diagonal[k - 1]; - b.off_diagonal[k - 1] *= rot.cos_angle(); + v.x = diagonal[k - 1]; + v.y = rot.s() * off_diagonal[k - 1]; + off_diagonal[k - 1] = off_diagonal[k - 1].scale(rot.c()); } } else { break; @@ -474,12 +492,12 @@ where /// Computes the rank of the decomposed matrix, i.e., the number of singular values greater /// than `eps`. - pub fn rank(&self, eps: N) -> usize { + pub fn rank(&self, eps: N::Real) -> usize { assert!( - eps >= N::zero(), + eps >= N::Real::zero(), "SVD rank: the epsilon must be non-negative." ); - self.singular_values.iter().filter(|e| **e > eps).count() + self.singular_values.iter().filter(|e| e.asum() > eps).count() } /// Rebuild the original matrix. @@ -507,18 +525,18 @@ where /// Any singular value smaller than `eps` is assumed to be zero. /// Returns `Err` if the right- and left- singular vectors have not /// been computed at construction-time. - pub fn pseudo_inverse(mut self, eps: N) -> Result, &'static str> + pub fn pseudo_inverse(mut self, eps: N::Real) -> Result, &'static str> where DefaultAllocator: Allocator, { - if eps < N::zero() { + if eps < N::Real::zero() { Err("SVD pseudo inverse: the epsilon must be non-negative.") } else { for i in 0..self.singular_values.len() { let val = self.singular_values[i]; - if val > eps { + if val.asum() > eps { self.singular_values[i] = N::one() / val; } else { self.singular_values[i] = N::zero(); @@ -537,14 +555,14 @@ where pub fn solve( &self, b: &Matrix, - eps: N, + eps: N::Real, ) -> Result, &'static str> where S2: Storage, DefaultAllocator: Allocator + Allocator, C2>, ShapeConstraint: SameNumberOfRows, { - if eps < N::zero() { + if eps < N::Real::zero() { Err("SVD solve: the epsilon must be non-negative.") } else { @@ -557,7 +575,7 @@ where for i in 0..self.singular_values.len() { let val = self.singular_values[i]; - if val > eps { + if val.asum() > eps { col[i] /= val; } else { col[i] = N::zero(); @@ -575,7 +593,7 @@ where } } -impl, C: Dim, S: Storage> Matrix +impl, C: Dim, S: Storage> Matrix where DimMinimum: DimSub, // for Bidiagonal. DefaultAllocator: Allocator @@ -605,7 +623,7 @@ where self, compute_u: bool, compute_v: bool, - eps: N, + eps: N::Real, max_niter: usize, ) -> Option> { @@ -620,7 +638,7 @@ where /// Computes the rank of this matrix. /// /// All singular values below `eps` are considered equal to 0. - pub fn rank(&self, eps: N) -> usize { + pub fn rank(&self, eps: N::Real) -> usize { let svd = SVD::new(self.clone_owned(), false, false); svd.rank(eps) } @@ -628,7 +646,7 @@ where /// Computes the pseudo-inverse of this matrix. /// /// All singular values below `eps` are considered equal to 0. - pub fn pseudo_inverse(self, eps: N) -> Result, &'static str> + pub fn pseudo_inverse(self, eps: N::Real) -> Result, &'static str> where DefaultAllocator: Allocator, { diff --git a/src/linalg/symmetric_eigen.rs b/src/linalg/symmetric_eigen.rs index 6084c1b4..b5437d83 100644 --- a/src/linalg/symmetric_eigen.rs +++ b/src/linalg/symmetric_eigen.rs @@ -1,7 +1,7 @@ #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; -use num::Zero; +use num::{Zero, One}; use num_complex::Complex as NumComplex; use approx::AbsDiffEq; use std::ops::MulAssign; @@ -119,6 +119,8 @@ where DefaultAllocator: Allocator + Allocator q = Some(res.0); diag = res.1; off_diag = res.2; + + println!("Tridiagonalization q: {:.5?}", q); } else { let res = SymmetricTridiagonal::new(m).unpack_tridiagonal(); q = None; @@ -150,6 +152,7 @@ where DefaultAllocator: Allocator + Allocator let j = i + 1; if let Some((rot, norm)) = GivensRotation::cancel_y(&v) { + println!("Canceling: {:.5?} with norm: {:.5?}", rot, norm); if i > start { // Not the first iteration. off_diag[i - 1] = norm; @@ -160,19 +163,33 @@ where DefaultAllocator: Allocator + Allocator let mij = off_diag[i]; let cc = rot.c() * rot.c(); - let ss = rot.s() * rot.s().conjugate(); - let cs = rot.c() * rot.s(); + let ss = rot.s().modulus_squared(); // rot.s() * rot.s().conjugate() + let cs = rot.s().scale(rot.c()); - let b = cs * mij.conjugate() + cs.conjugate() * mij; + // b = cs * mij.conjugate() + cs.conjugate() * mij + let b = N::from_real((cs * mij.conjugate()).real() * ::convert(2.0)); - diag[i] = (cc * mii + ss * mjj) - b; - diag[j] = (ss * mii + cc * mjj) + b; - off_diag[i] = cs * (mii - mjj) + mij * cc - mij.conjugate() * rot.s() * rot.s(); + diag[i] = (mii.scale(cc) + mjj.scale(ss)) - b; + diag[j] = (mii.scale(ss) + mjj.scale(cc)) + b; + off_diag[i] = cs * (mii - mjj) + mij.scale(cc) - mij.conjugate() * rot.s() * rot.s(); + + let mut mat = Matrix2::new( + mii, mij.conjugate(), + mij, mjj); + println!("The mat before rotate: {:.5}", mat); + println!("The v before rotate: {:.5?}", v); + rot.rotate(&mut mat); + rot.inverse().rotate_rows(&mut mat); + let mut v2 = v.clone(); + rot.rotate(&mut v2); + println!("The v: {:.5?}", v2); + println!("The mat: {:.5}", mat); + println!("Its components: {:.5}, {:.5}, {:.5}", diag[i], diag[j], off_diag[i]); if i != n - 1 { v.x = off_diag[i]; v.y = -rot.s() * off_diag[i + 1]; - off_diag[i + 1] *= rot.c(); + off_diag[i + 1] = off_diag[i + 1].scale(rot.c()); } if let Some(ref mut q) = q { @@ -197,12 +214,12 @@ where DefaultAllocator: Allocator + Allocator diag[start + 0] = eigvals[0]; diag[start + 1] = eigvals[1]; - println!("Eigvals: {:?}", eigvals); - println!("m: {}", m); - println!("Curr q: {:?}", q); + println!("Eigvals: {:.5?}", eigvals); + println!("m: {:.5}", m); + println!("Curr q: {:.5?}", q); if let Some(ref mut q) = q { - if let Some(rot) = GivensRotation::try_new(basis.x, basis.y, eps) { + if let Some((rot, _)) = GivensRotation::try_new(basis.x, basis.y, eps) { rot.rotate_rows(&mut q.fixed_columns_mut::(start)); } } diff --git a/src/linalg/symmetric_tridiagonal.rs b/src/linalg/symmetric_tridiagonal.rs index 9b54c596..cd4f7c3d 100644 --- a/src/linalg/symmetric_tridiagonal.rs +++ b/src/linalg/symmetric_tridiagonal.rs @@ -83,6 +83,7 @@ where DefaultAllocator: Allocator + Allocator> m.ger_symm(-N::one(), &p, &axis.conjugate(), N::one()); m.ger_symm(-N::one(), &axis, &p.conjugate(), N::one()); m.ger_symm(dot * ::convert(2.0), &axis, &axis.conjugate(), N::one()); + println!("The m: {}", m); } } diff --git a/tests/linalg/bidiagonal.rs b/tests/linalg/bidiagonal.rs index 28b1e3a9..dbb0c4fb 100644 --- a/tests/linalg/bidiagonal.rs +++ b/tests/linalg/bidiagonal.rs @@ -41,6 +41,7 @@ quickcheck! { relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } + fn bidiagonal_static_square(m: Matrix4>) -> bool { let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); diff --git a/tests/linalg/eigen.rs b/tests/linalg/eigen.rs index 28a2b0d1..024384ce 100644 --- a/tests/linalg/eigen.rs +++ b/tests/linalg/eigen.rs @@ -9,10 +9,9 @@ mod quickcheck_tests { use std::cmp; quickcheck! { - /* fn symmetric_eigen(n: usize) -> bool { let n = cmp::max(1, cmp::min(n, 10)); - let m = DMatrix::>::new_random(n, n).map(|e| e.0); + let m = DMatrix::>::new_random(n, n).map(|e| e.0).hermitian_part(); let eig = m.clone().symmetric_eigen(); let recomp = eig.recompose(); @@ -23,7 +22,7 @@ mod quickcheck_tests { fn symmetric_eigen_singular(n: usize) -> bool { let n = cmp::max(1, cmp::min(n, 10)); - let mut m = DMatrix::>::new_random(n, n).map(|e| e.0); + let mut m = DMatrix::>::new_random(n, n).map(|e| e.0).hermitian_part(); m.row_mut(n / 2).fill(na::zero()); m.column_mut(n / 2).fill(na::zero()); let eig = m.clone().symmetric_eigen(); @@ -35,7 +34,7 @@ mod quickcheck_tests { } fn symmetric_eigen_static_square_4x4(m: Matrix4>) -> bool { - let m = m.map(|e| e.0); + let m = m.map(|e| e.0).hermitian_part(); let eig = m.symmetric_eigen(); let recomp = eig.recompose(); @@ -43,7 +42,6 @@ mod quickcheck_tests { relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5) } - */ fn symmetric_eigen_static_square_3x3(m: Matrix3>) -> bool { let m = m.map(|e| e.0).hermitian_part(); @@ -57,7 +55,6 @@ mod quickcheck_tests { relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5) } -/* fn symmetric_eigen_static_square_2x2(m: Matrix2>) -> bool { let m = m.map(|e| e.0).hermitian_part(); let eig = m.symmetric_eigen(); @@ -68,11 +65,9 @@ mod quickcheck_tests { relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5) } - */ } } -/* // Test proposed on the issue #176 of rulinalg. #[test] fn symmetric_eigen_singular_24x24() { @@ -115,7 +110,7 @@ fn symmetric_eigen_singular_24x24() { recomp.lower_triangle(), epsilon = 1.0e-5 )); -}*/ +} // #[cfg(feature = "arbitrary")] // quickcheck! { diff --git a/tests/linalg/svd.rs b/tests/linalg/svd.rs index e84108ed..91f2002d 100644 --- a/tests/linalg/svd.rs +++ b/tests/linalg/svd.rs @@ -7,8 +7,11 @@ mod quickcheck_tests { DMatrix, DVector, Matrix2, Matrix2x5, Matrix3, Matrix3x5, Matrix4, Matrix5x2, Matrix5x3, }; use std::cmp; + use core::helper::{RandScalar, RandComplex}; + quickcheck! { + /* fn svd(m: DMatrix) -> bool { if m.len() > 0 { let svd = m.clone().svd(true, true); @@ -68,6 +71,7 @@ mod quickcheck_tests { relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) } + fn svd_static_square(m: Matrix4) -> bool { let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); @@ -78,18 +82,27 @@ mod quickcheck_tests { u.is_orthogonal(1.0e-5) && v_t.is_orthogonal(1.0e-5) } + */ - fn svd_static_square_2x2(m: Matrix2) -> bool { + + fn svd_static_square_2x2(m: Matrix2>) -> bool { + let m = m.map(|e| e.0); let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); let ds = Matrix2::from_diagonal(&s); - s.iter().all(|e| *e >= 0.0) && + println!("u, s, v_t: {}{}{}", u, s, v_t); + println!("m: {}", m); + println!("recomp: {}", u * ds * v_t); + println!("uu_t, vv_t: {}{}", u * u.conjugate_transpose(), v_t.conjugate_transpose() * v_t); + + s.iter().all(|e| e.re >= 0.0) && relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) && u.is_orthogonal(1.0e-5) && v_t.is_orthogonal(1.0e-5) } +/* fn svd_pseudo_inverse(m: DMatrix) -> bool { if m.len() > 0 { let svd = m.clone().svd(true, true); @@ -140,9 +153,11 @@ mod quickcheck_tests { true } + */ } } +/* // Test proposed on the issue #176 of rulinalg. #[test] fn svd_singular() { @@ -342,3 +357,5 @@ fn svd_err() { assert_eq!(Err("SVD recomposition: U and V^t have not been computed."), svd.clone().recompose()); assert_eq!(Err("SVD pseudo inverse: the epsilon must be non-negative."), svd.clone().pseudo_inverse(-1.0)); } + +*/ \ No newline at end of file diff --git a/tests/linalg/tridiagonal.rs b/tests/linalg/tridiagonal.rs index 5ecf32ff..fee0176a 100644 --- a/tests/linalg/tridiagonal.rs +++ b/tests/linalg/tridiagonal.rs @@ -15,6 +15,20 @@ quickcheck! { relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) } + fn symm_tridiagonal_singular(n: usize) -> bool { + let n = cmp::max(1, cmp::min(n, 4)); + let mut m = DMatrix::>::new_random(n, n).map(|e| e.0).hermitian_part(); + m.row_mut(n / 2).fill(na::zero()); + m.column_mut(n / 2).fill(na::zero()); + let tri = m.clone().symmetric_tridiagonalize(); + println!("Tri: {:?}", tri); + let recomp = tri.recompose(); + println!("Recomp: {:?}", recomp); + + + relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) + } + fn symm_tridiagonal_static_square(m: Matrix4>) -> bool { let m = m.map(|e| e.0).hermitian_part(); let tri = m.symmetric_tridiagonalize();