Fix Vector::axpy for noncommutative cases

One example would be performing simple matrix multiplication
over a division algebra such as quaternions.
This commit is contained in:
Jakub Konka 2019-09-04 16:02:31 +02:00 committed by Sébastien Crozet
parent 549d0dd2dd
commit e1c8e1bccf
2 changed files with 106 additions and 82 deletions

View File

@ -473,7 +473,7 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul {
for i in 0..len { for i in 0..len {
unsafe { unsafe {
let y = y.get_unchecked_mut(i * stride1); let y = y.get_unchecked_mut(i * stride1);
*y = a * *x.get_unchecked(i * stride2) + beta * *y; *y = *x.get_unchecked(i * stride2) * a + *y * beta;
} }
} }
} }
@ -482,7 +482,7 @@ fn array_ax<N>(y: &mut [N], a: N, x: &[N], stride1: usize, stride2: usize, len:
where N: Scalar + Zero + ClosedAdd + ClosedMul { where N: Scalar + Zero + ClosedAdd + ClosedMul {
for i in 0..len { for i in 0..len {
unsafe { unsafe {
*y.get_unchecked_mut(i * stride1) = a * *x.get_unchecked(i * stride2); *y.get_unchecked_mut(i * stride1) = *x.get_unchecked(i * stride2) * a;
} }
} }
} }
@ -579,13 +579,13 @@ where
// FIXME: avoid bound checks. // FIXME: avoid bound checks.
let col2 = a.column(0); let col2 = a.column(0);
let val = unsafe { *x.vget_unchecked(0) }; let val = unsafe { *x.vget_unchecked(0) };
self.axpy(alpha * val, &col2, beta); self.axpy(val * alpha, &col2, beta);
for j in 1..ncols2 { for j in 1..ncols2 {
let col2 = a.column(j); let col2 = a.column(j);
let val = unsafe { *x.vget_unchecked(j) }; let val = unsafe { *x.vget_unchecked(j) };
self.axpy(alpha * val, &col2, N::one()); self.axpy(val * alpha, &col2, N::one());
} }
} }
@ -624,7 +624,7 @@ where
// FIXME: avoid bound checks. // FIXME: avoid bound checks.
let col2 = a.column(0); let col2 = a.column(0);
let val = unsafe { *x.vget_unchecked(0) }; let val = unsafe { *x.vget_unchecked(0) };
self.axpy(alpha * val, &col2, beta); self.axpy(val * alpha, &col2, beta);
self[0] += alpha * dot(&a.slice_range(1.., 0), &x.rows_range(1..)); self[0] += alpha * dot(&a.slice_range(1.., 0), &x.rows_range(1..));
for j in 1..dim2 { for j in 1..dim2 {
@ -637,7 +637,7 @@ where
*self.vget_unchecked_mut(j) += alpha * dot; *self.vget_unchecked_mut(j) += alpha * dot;
} }
self.rows_range_mut(j + 1..) self.rows_range_mut(j + 1..)
.axpy(alpha * val, &col2.rows_range(j + 1..), N::one()); .axpy(val * alpha, &col2.rows_range(j + 1..), N::one());
} }
} }
@ -890,7 +890,7 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
for j in 0..ncols1 { for j in 0..ncols1 {
// FIXME: avoid bound checks. // FIXME: avoid bound checks.
let val = unsafe { conjugate(*y.vget_unchecked(j)) }; let val = unsafe { conjugate(*y.vget_unchecked(j)) };
self.column_mut(j).axpy(alpha * val, x, beta); self.column_mut(j).axpy(val * alpha, x, beta);
} }
} }
@ -1256,7 +1256,7 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
let subdim = Dynamic::new(dim1 - j); let subdim = Dynamic::new(dim1 - j);
// FIXME: avoid bound checks. // FIXME: avoid bound checks.
self.generic_slice_mut((j, j), (subdim, U1)).axpy( self.generic_slice_mut((j, j), (subdim, U1)).axpy(
alpha * val, val * alpha,
&x.rows_range(j..), &x.rows_range(j..),
beta, beta,
); );

View File

@ -1,9 +1,32 @@
#![cfg(feature = "arbitrary")] use na::{geometry::Quaternion, Matrix2, Vector3};
use num_traits::{One, Zero};
use na::{DMatrix, DVector}; #[test]
use std::cmp; fn gemm_noncommutative() {
type Qf64 = Quaternion<f64>;
let i = Qf64::from_imag(Vector3::new(1.0, 0.0, 0.0));
let j = Qf64::from_imag(Vector3::new(0.0, 1.0, 0.0));
let k = Qf64::from_imag(Vector3::new(0.0, 0.0, 1.0));
quickcheck! { let m1 = Matrix2::new(k, Qf64::zero(), j, i);
// this is the inverse of m1
let m2 = Matrix2::new(-k, Qf64::zero(), Qf64::one(), -i);
let mut res: Matrix2<Qf64> = Matrix2::zero();
res.gemm(Qf64::one(), &m1, &m2, Qf64::zero());
assert_eq!(res, Matrix2::identity());
let mut res: Matrix2<Qf64> = Matrix2::identity();
res.gemm(k, &m1, &m2, -k);
assert_eq!(res, Matrix2::zero());
}
#[cfg(feature = "arbitrary")]
mod blas_quickcheck {
use na::{DMatrix, DVector};
use std::cmp;
quickcheck! {
/* /*
* *
* Symmetric operators. * Symmetric operators.
@ -102,4 +125,5 @@ quickcheck! {
relative_eq!(res, expected, epsilon = 1.0e-7) relative_eq!(res, expected, epsilon = 1.0e-7)
} }
}
} }