forked from M-Labs/nalgebra
Remove the Copy requirement from SimdRealField.
This commit is contained in:
parent
107b3bedb4
commit
dd6c40016e
@ -76,12 +76,7 @@ pub fn mat2_to_mat3<T: Number>(m: &TMat2<T>) -> TMat3<T> {
|
||||
|
||||
/// Converts a 3x3 matrix to a 2x2 matrix.
|
||||
pub fn mat3_to_mat2<T: Scalar>(m: &TMat3<T>) -> TMat2<T> {
|
||||
TMat2::new(
|
||||
m.m11.inlined_clone(),
|
||||
m.m12.inlined_clone(),
|
||||
m.m21.inlined_clone(),
|
||||
m.m22.inlined_clone(),
|
||||
)
|
||||
TMat2::new(m.m11.clone(), m.m12.clone(), m.m21.clone(), m.m22.clone())
|
||||
}
|
||||
|
||||
/// Converts a 3x3 matrix to a 4x4 matrix.
|
||||
@ -97,15 +92,15 @@ pub fn mat3_to_mat4<T: Number>(m: &TMat3<T>) -> TMat4<T> {
|
||||
/// Converts a 4x4 matrix to a 3x3 matrix.
|
||||
pub fn mat4_to_mat3<T: Scalar>(m: &TMat4<T>) -> TMat3<T> {
|
||||
TMat3::new(
|
||||
m.m11.inlined_clone(),
|
||||
m.m12.inlined_clone(),
|
||||
m.m13.inlined_clone(),
|
||||
m.m21.inlined_clone(),
|
||||
m.m22.inlined_clone(),
|
||||
m.m23.inlined_clone(),
|
||||
m.m31.inlined_clone(),
|
||||
m.m32.inlined_clone(),
|
||||
m.m33.inlined_clone(),
|
||||
m.m11.clone(),
|
||||
m.m12.clone(),
|
||||
m.m13.clone(),
|
||||
m.m21.clone(),
|
||||
m.m22.clone(),
|
||||
m.m23.clone(),
|
||||
m.m31.clone(),
|
||||
m.m32.clone(),
|
||||
m.m33.clone(),
|
||||
)
|
||||
}
|
||||
|
||||
@ -121,12 +116,7 @@ pub fn mat2_to_mat4<T: Number>(m: &TMat2<T>) -> TMat4<T> {
|
||||
|
||||
/// Converts a 4x4 matrix to a 2x2 matrix.
|
||||
pub fn mat4_to_mat2<T: Scalar>(m: &TMat4<T>) -> TMat2<T> {
|
||||
TMat2::new(
|
||||
m.m11.inlined_clone(),
|
||||
m.m12.inlined_clone(),
|
||||
m.m21.inlined_clone(),
|
||||
m.m22.inlined_clone(),
|
||||
)
|
||||
TMat2::new(m.m11.clone(), m.m12.clone(), m.m21.clone(), m.m22.clone())
|
||||
}
|
||||
|
||||
/// Creates a quaternion from a slice arranged as `[x, y, z, w]`.
|
||||
@ -156,7 +146,7 @@ pub fn make_vec1<T: Scalar>(v: &TVec1<T>) -> TVec1<T> {
|
||||
/// * [`vec1_to_vec3`](fn.vec1_to_vec3.html)
|
||||
/// * [`vec1_to_vec4`](fn.vec1_to_vec4.html)
|
||||
pub fn vec2_to_vec1<T: Scalar>(v: &TVec2<T>) -> TVec1<T> {
|
||||
TVec1::new(v.x.inlined_clone())
|
||||
TVec1::new(v.x.clone())
|
||||
}
|
||||
|
||||
/// Creates a 1D vector from another vector.
|
||||
@ -170,7 +160,7 @@ pub fn vec2_to_vec1<T: Scalar>(v: &TVec2<T>) -> TVec1<T> {
|
||||
/// * [`vec1_to_vec3`](fn.vec1_to_vec3.html)
|
||||
/// * [`vec1_to_vec4`](fn.vec1_to_vec4.html)
|
||||
pub fn vec3_to_vec1<T: Scalar>(v: &TVec3<T>) -> TVec1<T> {
|
||||
TVec1::new(v.x.inlined_clone())
|
||||
TVec1::new(v.x.clone())
|
||||
}
|
||||
|
||||
/// Creates a 1D vector from another vector.
|
||||
@ -184,7 +174,7 @@ pub fn vec3_to_vec1<T: Scalar>(v: &TVec3<T>) -> TVec1<T> {
|
||||
/// * [`vec1_to_vec3`](fn.vec1_to_vec3.html)
|
||||
/// * [`vec1_to_vec4`](fn.vec1_to_vec4.html)
|
||||
pub fn vec4_to_vec1<T: Scalar>(v: &TVec4<T>) -> TVec1<T> {
|
||||
TVec1::new(v.x.inlined_clone())
|
||||
TVec1::new(v.x.clone())
|
||||
}
|
||||
|
||||
/// Creates a 2D vector from another vector.
|
||||
@ -200,7 +190,7 @@ pub fn vec4_to_vec1<T: Scalar>(v: &TVec4<T>) -> TVec1<T> {
|
||||
/// * [`vec2_to_vec3`](fn.vec2_to_vec3.html)
|
||||
/// * [`vec2_to_vec4`](fn.vec2_to_vec4.html)
|
||||
pub fn vec1_to_vec2<T: Number>(v: &TVec1<T>) -> TVec2<T> {
|
||||
TVec2::new(v.x.inlined_clone(), T::zero())
|
||||
TVec2::new(v.x.clone(), T::zero())
|
||||
}
|
||||
|
||||
/// Creates a 2D vector from another vector.
|
||||
@ -229,7 +219,7 @@ pub fn vec2_to_vec2<T: Scalar>(v: &TVec2<T>) -> TVec2<T> {
|
||||
/// * [`vec2_to_vec3`](fn.vec2_to_vec3.html)
|
||||
/// * [`vec2_to_vec4`](fn.vec2_to_vec4.html)
|
||||
pub fn vec3_to_vec2<T: Scalar>(v: &TVec3<T>) -> TVec2<T> {
|
||||
TVec2::new(v.x.inlined_clone(), v.y.inlined_clone())
|
||||
TVec2::new(v.x.clone(), v.y.clone())
|
||||
}
|
||||
|
||||
/// Creates a 2D vector from another vector.
|
||||
@ -243,7 +233,7 @@ pub fn vec3_to_vec2<T: Scalar>(v: &TVec3<T>) -> TVec2<T> {
|
||||
/// * [`vec2_to_vec3`](fn.vec2_to_vec3.html)
|
||||
/// * [`vec2_to_vec4`](fn.vec2_to_vec4.html)
|
||||
pub fn vec4_to_vec2<T: Scalar>(v: &TVec4<T>) -> TVec2<T> {
|
||||
TVec2::new(v.x.inlined_clone(), v.y.inlined_clone())
|
||||
TVec2::new(v.x.clone(), v.y.clone())
|
||||
}
|
||||
|
||||
/// Creates a 2D vector from a slice.
|
||||
@ -269,7 +259,7 @@ pub fn make_vec2<T: Scalar>(ptr: &[T]) -> TVec2<T> {
|
||||
/// * [`vec1_to_vec2`](fn.vec1_to_vec2.html)
|
||||
/// * [`vec1_to_vec4`](fn.vec1_to_vec4.html)
|
||||
pub fn vec1_to_vec3<T: Number>(v: &TVec1<T>) -> TVec3<T> {
|
||||
TVec3::new(v.x.inlined_clone(), T::zero(), T::zero())
|
||||
TVec3::new(v.x.clone(), T::zero(), T::zero())
|
||||
}
|
||||
|
||||
/// Creates a 3D vector from another vector.
|
||||
@ -285,7 +275,7 @@ pub fn vec1_to_vec3<T: Number>(v: &TVec1<T>) -> TVec3<T> {
|
||||
/// * [`vec3_to_vec2`](fn.vec3_to_vec2.html)
|
||||
/// * [`vec3_to_vec4`](fn.vec3_to_vec4.html)
|
||||
pub fn vec2_to_vec3<T: Number>(v: &TVec2<T>) -> TVec3<T> {
|
||||
TVec3::new(v.x.inlined_clone(), v.y.inlined_clone(), T::zero())
|
||||
TVec3::new(v.x.clone(), v.y.clone(), T::zero())
|
||||
}
|
||||
|
||||
/// Creates a 3D vector from another vector.
|
||||
@ -313,11 +303,7 @@ pub fn vec3_to_vec3<T: Scalar>(v: &TVec3<T>) -> TVec3<T> {
|
||||
/// * [`vec3_to_vec2`](fn.vec3_to_vec2.html)
|
||||
/// * [`vec3_to_vec4`](fn.vec3_to_vec4.html)
|
||||
pub fn vec4_to_vec3<T: Scalar>(v: &TVec4<T>) -> TVec3<T> {
|
||||
TVec3::new(
|
||||
v.x.inlined_clone(),
|
||||
v.y.inlined_clone(),
|
||||
v.z.inlined_clone(),
|
||||
)
|
||||
TVec3::new(v.x.clone(), v.y.clone(), v.z.clone())
|
||||
}
|
||||
|
||||
/// Creates a 3D vector from another vector.
|
||||
|
@ -30,7 +30,7 @@ where
|
||||
// We use the fact that matrix iteration is guaranteed to be column-major
|
||||
let i = index % dense.nrows();
|
||||
let j = index / dense.nrows();
|
||||
coo.push(i, j, v.inlined_clone());
|
||||
coo.push(i, j, v.clone());
|
||||
}
|
||||
}
|
||||
|
||||
@ -44,7 +44,7 @@ where
|
||||
{
|
||||
let mut output = DMatrix::repeat(coo.nrows(), coo.ncols(), T::zero());
|
||||
for (i, j, v) in coo.triplet_iter() {
|
||||
output[(i, j)] += v.inlined_clone();
|
||||
output[(i, j)] += v.clone();
|
||||
}
|
||||
output
|
||||
}
|
||||
@ -71,7 +71,7 @@ where
|
||||
pub fn convert_csr_coo<T: Scalar>(csr: &CsrMatrix<T>) -> CooMatrix<T> {
|
||||
let mut result = CooMatrix::new(csr.nrows(), csr.ncols());
|
||||
for (i, j, v) in csr.triplet_iter() {
|
||||
result.push(i, j, v.inlined_clone());
|
||||
result.push(i, j, v.clone());
|
||||
}
|
||||
result
|
||||
}
|
||||
@ -84,7 +84,7 @@ where
|
||||
let mut output = DMatrix::zeros(csr.nrows(), csr.ncols());
|
||||
|
||||
for (i, j, v) in csr.triplet_iter() {
|
||||
output[(i, j)] += v.inlined_clone();
|
||||
output[(i, j)] += v.clone();
|
||||
}
|
||||
|
||||
output
|
||||
@ -111,7 +111,7 @@ where
|
||||
let v = dense.index((i, j));
|
||||
if v != &T::zero() {
|
||||
col_idx.push(j);
|
||||
values.push(v.inlined_clone());
|
||||
values.push(v.clone());
|
||||
}
|
||||
}
|
||||
row_offsets.push(col_idx.len());
|
||||
@ -148,7 +148,7 @@ where
|
||||
{
|
||||
let mut coo = CooMatrix::new(csc.nrows(), csc.ncols());
|
||||
for (i, j, v) in csc.triplet_iter() {
|
||||
coo.push(i, j, v.inlined_clone());
|
||||
coo.push(i, j, v.clone());
|
||||
}
|
||||
coo
|
||||
}
|
||||
@ -161,7 +161,7 @@ where
|
||||
let mut output = DMatrix::zeros(csc.nrows(), csc.ncols());
|
||||
|
||||
for (i, j, v) in csc.triplet_iter() {
|
||||
output[(i, j)] += v.inlined_clone();
|
||||
output[(i, j)] += v.clone();
|
||||
}
|
||||
|
||||
output
|
||||
@ -185,7 +185,7 @@ where
|
||||
let v = dense.index((i, j));
|
||||
if v != &T::zero() {
|
||||
row_idx.push(i);
|
||||
values.push(v.inlined_clone());
|
||||
values.push(v.clone());
|
||||
}
|
||||
}
|
||||
col_offsets.push(row_idx.len());
|
||||
|
@ -522,7 +522,7 @@ where
|
||||
let entry_offset = target_offsets[source_minor_idx] + *target_lane_count;
|
||||
target_indices[entry_offset] = source_major_idx;
|
||||
unsafe {
|
||||
target_values.set(entry_offset, val.inlined_clone());
|
||||
target_values.set(entry_offset, val.clone());
|
||||
}
|
||||
*target_lane_count += 1;
|
||||
}
|
||||
|
@ -225,7 +225,7 @@ impl<T: RealField> CscCholesky<T> {
|
||||
let col_j_entries = col_j.row_indices().iter().zip(col_j.values());
|
||||
for (&z, val) in col_j_entries {
|
||||
if z >= k {
|
||||
*self.work_x.get_unchecked_mut(z) += val.inlined_clone() * factor;
|
||||
*self.work_x.get_unchecked_mut(z) += val.clone() * factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -141,7 +141,7 @@ macro_rules! impl_scalar_mul {
|
||||
impl_mul!(<'a, T>(a: &'a $matrix_type<T>, b: &'a T) -> $matrix_type<T> {
|
||||
let values: Vec<_> = a.values()
|
||||
.iter()
|
||||
.map(|v_i| v_i.inlined_clone() * b.inlined_clone())
|
||||
.map(|v_i| v_i.clone() * b.clone())
|
||||
.collect();
|
||||
$matrix_type::try_from_pattern_and_values(a.pattern().clone(), values).unwrap()
|
||||
});
|
||||
@ -151,7 +151,7 @@ macro_rules! impl_scalar_mul {
|
||||
impl_mul!(<'a, T>(a: $matrix_type<T>, b: &'a T) -> $matrix_type<T> {
|
||||
let mut a = a;
|
||||
for value in a.values_mut() {
|
||||
*value = b.inlined_clone() * value.inlined_clone();
|
||||
*value = b.clone() * value.clone();
|
||||
}
|
||||
a
|
||||
});
|
||||
@ -168,7 +168,7 @@ macro_rules! impl_scalar_mul {
|
||||
{
|
||||
fn mul_assign(&mut self, scalar: T) {
|
||||
for val in self.values_mut() {
|
||||
*val *= scalar.inlined_clone();
|
||||
*val *= scalar.clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -179,7 +179,7 @@ macro_rules! impl_scalar_mul {
|
||||
{
|
||||
fn mul_assign(&mut self, scalar: &'a T) {
|
||||
for val in self.values_mut() {
|
||||
*val *= scalar.inlined_clone();
|
||||
*val *= scalar.clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -199,7 +199,7 @@ macro_rules! impl_neg {
|
||||
|
||||
fn neg(mut self) -> Self::Output {
|
||||
for v_i in self.values_mut() {
|
||||
*v_i = -v_i.inlined_clone();
|
||||
*v_i = -v_i.clone();
|
||||
}
|
||||
self
|
||||
}
|
||||
@ -233,25 +233,25 @@ macro_rules! impl_div {
|
||||
matrix
|
||||
});
|
||||
impl_bin_op!(Div, div, <'a, T: ClosedDiv>(matrix: $matrix_type<T>, scalar: &T) -> $matrix_type<T> {
|
||||
matrix / scalar.inlined_clone()
|
||||
matrix / scalar.clone()
|
||||
});
|
||||
impl_bin_op!(Div, div, <'a, T: ClosedDiv>(matrix: &'a $matrix_type<T>, scalar: T) -> $matrix_type<T> {
|
||||
let new_values = matrix.values()
|
||||
.iter()
|
||||
.map(|v_i| v_i.inlined_clone() / scalar.inlined_clone())
|
||||
.map(|v_i| v_i.clone() / scalar.clone())
|
||||
.collect();
|
||||
$matrix_type::try_from_pattern_and_values(matrix.pattern().clone(), new_values)
|
||||
.unwrap()
|
||||
});
|
||||
impl_bin_op!(Div, div, <'a, T: ClosedDiv>(matrix: &'a $matrix_type<T>, scalar: &'a T) -> $matrix_type<T> {
|
||||
matrix / scalar.inlined_clone()
|
||||
matrix / scalar.clone()
|
||||
});
|
||||
|
||||
impl<T> DivAssign<T> for $matrix_type<T>
|
||||
where T : Scalar + ClosedAdd + ClosedMul + ClosedDiv + Zero + One
|
||||
{
|
||||
fn div_assign(&mut self, scalar: T) {
|
||||
self.values_mut().iter_mut().for_each(|v_i| *v_i /= scalar.inlined_clone());
|
||||
self.values_mut().iter_mut().for_each(|v_i| *v_i /= scalar.clone());
|
||||
}
|
||||
}
|
||||
|
||||
@ -259,7 +259,7 @@ macro_rules! impl_div {
|
||||
where T : Scalar + ClosedAdd + ClosedMul + ClosedDiv + Zero + One
|
||||
{
|
||||
fn div_assign(&mut self, scalar: &'a T) {
|
||||
*self /= scalar.inlined_clone();
|
||||
*self /= scalar.clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -34,13 +34,13 @@ where
|
||||
let a_lane_i = a.get_lane(i).unwrap();
|
||||
let mut c_lane_i = c.get_lane_mut(i).unwrap();
|
||||
for c_ij in c_lane_i.values_mut() {
|
||||
*c_ij = beta.inlined_clone() * c_ij.inlined_clone();
|
||||
*c_ij = beta.clone() * c_ij.clone();
|
||||
}
|
||||
|
||||
for (&k, a_ik) in a_lane_i.minor_indices().iter().zip(a_lane_i.values()) {
|
||||
let b_lane_k = b.get_lane(k).unwrap();
|
||||
let (mut c_lane_i_cols, mut c_lane_i_values) = c_lane_i.indices_and_values_mut();
|
||||
let alpha_aik = alpha.inlined_clone() * a_ik.inlined_clone();
|
||||
let alpha_aik = alpha.clone() * a_ik.clone();
|
||||
for (j, b_kj) in b_lane_k.minor_indices().iter().zip(b_lane_k.values()) {
|
||||
// Determine the location in C to append the value
|
||||
let (c_local_idx, _) = c_lane_i_cols
|
||||
@ -49,7 +49,7 @@ where
|
||||
.find(|(_, c_col)| *c_col == j)
|
||||
.ok_or_else(spmm_cs_unexpected_entry)?;
|
||||
|
||||
c_lane_i_values[c_local_idx] += alpha_aik.inlined_clone() * b_kj.inlined_clone();
|
||||
c_lane_i_values[c_local_idx] += alpha_aik.clone() * b_kj.clone();
|
||||
c_lane_i_cols = &c_lane_i_cols[c_local_idx..];
|
||||
c_lane_i_values = &mut c_lane_i_values[c_local_idx..];
|
||||
}
|
||||
@ -81,7 +81,7 @@ where
|
||||
for (mut c_lane_i, a_lane_i) in c.lane_iter_mut().zip(a.lane_iter()) {
|
||||
if beta != T::one() {
|
||||
for c_ij in c_lane_i.values_mut() {
|
||||
*c_ij *= beta.inlined_clone();
|
||||
*c_ij *= beta.clone();
|
||||
}
|
||||
}
|
||||
|
||||
@ -97,7 +97,7 @@ where
|
||||
.enumerate()
|
||||
.find(|(_, c_col)| *c_col == a_col)
|
||||
.ok_or_else(spadd_cs_unexpected_entry)?;
|
||||
c_vals[c_idx] += alpha.inlined_clone() * a_val.inlined_clone();
|
||||
c_vals[c_idx] += alpha.clone() * a_val.clone();
|
||||
c_minors = &c_minors[c_idx..];
|
||||
c_vals = &mut c_vals[c_idx..];
|
||||
}
|
||||
@ -106,14 +106,14 @@ where
|
||||
Op::Transpose(a) => {
|
||||
if beta != T::one() {
|
||||
for c_ij in c.values_mut() {
|
||||
*c_ij *= beta.inlined_clone();
|
||||
*c_ij *= beta.clone();
|
||||
}
|
||||
}
|
||||
|
||||
for (i, a_lane_i) in a.lane_iter().enumerate() {
|
||||
for (&j, a_val) in a_lane_i.minor_indices().iter().zip(a_lane_i.values()) {
|
||||
let a_val = a_val.inlined_clone();
|
||||
let alpha = alpha.inlined_clone();
|
||||
let a_val = a_val.clone();
|
||||
let alpha = alpha.clone();
|
||||
match c.get_entry_mut(j, i).unwrap() {
|
||||
SparseEntryMut::NonZero(c_ji) => *c_ji += alpha * a_val,
|
||||
SparseEntryMut::Zero => return Err(spadd_cs_unexpected_entry()),
|
||||
@ -149,10 +149,9 @@ pub fn spmm_cs_dense<T>(
|
||||
Op::NoOp(ref b) => b.index((k, j)),
|
||||
Op::Transpose(ref b) => b.index((j, k)),
|
||||
};
|
||||
dot_ij += a_ik.inlined_clone() * b_contrib.inlined_clone();
|
||||
dot_ij += a_ik.clone() * b_contrib.clone();
|
||||
}
|
||||
*c_ij = beta.inlined_clone() * c_ij.inlined_clone()
|
||||
+ alpha.inlined_clone() * dot_ij;
|
||||
*c_ij = beta.clone() * c_ij.clone() + alpha.clone() * dot_ij;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -163,19 +162,19 @@ pub fn spmm_cs_dense<T>(
|
||||
for k in 0..a.pattern().major_dim() {
|
||||
let a_row_k = a.get_lane(k).unwrap();
|
||||
for (&i, a_ki) in a_row_k.minor_indices().iter().zip(a_row_k.values()) {
|
||||
let gamma_ki = alpha.inlined_clone() * a_ki.inlined_clone();
|
||||
let gamma_ki = alpha.clone() * a_ki.clone();
|
||||
let mut c_row_i = c.row_mut(i);
|
||||
match b {
|
||||
Op::NoOp(ref b) => {
|
||||
let b_row_k = b.row(k);
|
||||
for (c_ij, b_kj) in c_row_i.iter_mut().zip(b_row_k.iter()) {
|
||||
*c_ij += gamma_ki.inlined_clone() * b_kj.inlined_clone();
|
||||
*c_ij += gamma_ki.clone() * b_kj.clone();
|
||||
}
|
||||
}
|
||||
Op::Transpose(ref b) => {
|
||||
let b_col_k = b.column(k);
|
||||
for (c_ij, b_jk) in c_row_i.iter_mut().zip(b_col_k.iter()) {
|
||||
*c_ij += gamma_ki.inlined_clone() * b_jk.inlined_clone();
|
||||
*c_ij += gamma_ki.clone() * b_jk.clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -179,7 +179,7 @@ fn spsolve_csc_lower_triangular_no_transpose<T: RealField>(
|
||||
// Note: The remaining entries are below the diagonal
|
||||
for (&i, l_ik) in row_indices.iter().zip(l_values) {
|
||||
let x_ij = &mut x_col_j[i];
|
||||
*x_ij -= l_ik.inlined_clone() * x_kj;
|
||||
*x_ij -= l_ik.clone() * x_kj;
|
||||
}
|
||||
|
||||
x_col_j[k] = x_kj;
|
||||
|
121
src/base/blas.rs
121
src/base/blas.rs
@ -47,36 +47,36 @@ where
|
||||
// because the `for` loop below won't be very efficient on those.
|
||||
if (R::is::<U2>() || R2::is::<U2>()) && (C::is::<U1>() || C2::is::<U1>()) {
|
||||
unsafe {
|
||||
let a = conjugate(self.get_unchecked((0, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((0, 0)).inlined_clone();
|
||||
let b = conjugate(self.get_unchecked((1, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((1, 0)).inlined_clone();
|
||||
let a = conjugate(self.get_unchecked((0, 0)).clone())
|
||||
* rhs.get_unchecked((0, 0)).clone();
|
||||
let b = conjugate(self.get_unchecked((1, 0)).clone())
|
||||
* rhs.get_unchecked((1, 0)).clone();
|
||||
|
||||
return a + b;
|
||||
}
|
||||
}
|
||||
if (R::is::<U3>() || R2::is::<U3>()) && (C::is::<U1>() || C2::is::<U1>()) {
|
||||
unsafe {
|
||||
let a = conjugate(self.get_unchecked((0, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((0, 0)).inlined_clone();
|
||||
let b = conjugate(self.get_unchecked((1, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((1, 0)).inlined_clone();
|
||||
let c = conjugate(self.get_unchecked((2, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((2, 0)).inlined_clone();
|
||||
let a = conjugate(self.get_unchecked((0, 0)).clone())
|
||||
* rhs.get_unchecked((0, 0)).clone();
|
||||
let b = conjugate(self.get_unchecked((1, 0)).clone())
|
||||
* rhs.get_unchecked((1, 0)).clone();
|
||||
let c = conjugate(self.get_unchecked((2, 0)).clone())
|
||||
* rhs.get_unchecked((2, 0)).clone();
|
||||
|
||||
return a + b + c;
|
||||
}
|
||||
}
|
||||
if (R::is::<U4>() || R2::is::<U4>()) && (C::is::<U1>() || C2::is::<U1>()) {
|
||||
unsafe {
|
||||
let mut a = conjugate(self.get_unchecked((0, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((0, 0)).inlined_clone();
|
||||
let mut b = conjugate(self.get_unchecked((1, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((1, 0)).inlined_clone();
|
||||
let c = conjugate(self.get_unchecked((2, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((2, 0)).inlined_clone();
|
||||
let d = conjugate(self.get_unchecked((3, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((3, 0)).inlined_clone();
|
||||
let mut a = conjugate(self.get_unchecked((0, 0)).clone())
|
||||
* rhs.get_unchecked((0, 0)).clone();
|
||||
let mut b = conjugate(self.get_unchecked((1, 0)).clone())
|
||||
* rhs.get_unchecked((1, 0)).clone();
|
||||
let c = conjugate(self.get_unchecked((2, 0)).clone())
|
||||
* rhs.get_unchecked((2, 0)).clone();
|
||||
let d = conjugate(self.get_unchecked((3, 0)).clone())
|
||||
* rhs.get_unchecked((3, 0)).clone();
|
||||
|
||||
a += c;
|
||||
b += d;
|
||||
@ -117,36 +117,36 @@ where
|
||||
|
||||
while self.nrows() - i >= 8 {
|
||||
acc0 += unsafe {
|
||||
conjugate(self.get_unchecked((i, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i, j)).inlined_clone()
|
||||
conjugate(self.get_unchecked((i, j)).clone())
|
||||
* rhs.get_unchecked((i, j)).clone()
|
||||
};
|
||||
acc1 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 1, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 1, j)).inlined_clone()
|
||||
conjugate(self.get_unchecked((i + 1, j)).clone())
|
||||
* rhs.get_unchecked((i + 1, j)).clone()
|
||||
};
|
||||
acc2 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 2, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 2, j)).inlined_clone()
|
||||
conjugate(self.get_unchecked((i + 2, j)).clone())
|
||||
* rhs.get_unchecked((i + 2, j)).clone()
|
||||
};
|
||||
acc3 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 3, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 3, j)).inlined_clone()
|
||||
conjugate(self.get_unchecked((i + 3, j)).clone())
|
||||
* rhs.get_unchecked((i + 3, j)).clone()
|
||||
};
|
||||
acc4 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 4, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 4, j)).inlined_clone()
|
||||
conjugate(self.get_unchecked((i + 4, j)).clone())
|
||||
* rhs.get_unchecked((i + 4, j)).clone()
|
||||
};
|
||||
acc5 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 5, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 5, j)).inlined_clone()
|
||||
conjugate(self.get_unchecked((i + 5, j)).clone())
|
||||
* rhs.get_unchecked((i + 5, j)).clone()
|
||||
};
|
||||
acc6 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 6, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 6, j)).inlined_clone()
|
||||
conjugate(self.get_unchecked((i + 6, j)).clone())
|
||||
* rhs.get_unchecked((i + 6, j)).clone()
|
||||
};
|
||||
acc7 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 7, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 7, j)).inlined_clone()
|
||||
conjugate(self.get_unchecked((i + 7, j)).clone())
|
||||
* rhs.get_unchecked((i + 7, j)).clone()
|
||||
};
|
||||
i += 8;
|
||||
}
|
||||
@ -158,8 +158,8 @@ where
|
||||
|
||||
for k in i..self.nrows() {
|
||||
res += unsafe {
|
||||
conjugate(self.get_unchecked((k, j)).inlined_clone())
|
||||
* rhs.get_unchecked((k, j)).inlined_clone()
|
||||
conjugate(self.get_unchecked((k, j)).clone())
|
||||
* rhs.get_unchecked((k, j)).clone()
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -266,8 +266,7 @@ where
|
||||
for j in 0..self.nrows() {
|
||||
for i in 0..self.ncols() {
|
||||
res += unsafe {
|
||||
self.get_unchecked((j, i)).inlined_clone()
|
||||
* rhs.get_unchecked((i, j)).inlined_clone()
|
||||
self.get_unchecked((j, i)).clone() * rhs.get_unchecked((i, j)).clone()
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -398,9 +397,9 @@ where
|
||||
|
||||
// TODO: avoid bound checks.
|
||||
let col2 = a.column(0);
|
||||
let val = unsafe { x.vget_unchecked(0).inlined_clone() };
|
||||
self.axpy(alpha.inlined_clone() * val, &col2, beta);
|
||||
self[0] += alpha.inlined_clone() * dot(&a.slice_range(1.., 0), &x.rows_range(1..));
|
||||
let val = unsafe { x.vget_unchecked(0).clone() };
|
||||
self.axpy(alpha.clone() * val, &col2, beta);
|
||||
self[0] += alpha.clone() * dot(&a.slice_range(1.., 0), &x.rows_range(1..));
|
||||
|
||||
for j in 1..dim2 {
|
||||
let col2 = a.column(j);
|
||||
@ -408,11 +407,11 @@ where
|
||||
|
||||
let val;
|
||||
unsafe {
|
||||
val = x.vget_unchecked(j).inlined_clone();
|
||||
*self.vget_unchecked_mut(j) += alpha.inlined_clone() * dot;
|
||||
val = x.vget_unchecked(j).clone();
|
||||
*self.vget_unchecked_mut(j) += alpha.clone() * dot;
|
||||
}
|
||||
self.rows_range_mut(j + 1..).axpy(
|
||||
alpha.inlined_clone() * val,
|
||||
alpha.clone() * val,
|
||||
&col2.rows_range(j + 1..),
|
||||
T::one(),
|
||||
);
|
||||
@ -538,13 +537,12 @@ where
|
||||
if beta.is_zero() {
|
||||
for j in 0..ncols2 {
|
||||
let val = unsafe { self.vget_unchecked_mut(j) };
|
||||
*val = alpha.inlined_clone() * dot(&a.column(j), x)
|
||||
*val = alpha.clone() * dot(&a.column(j), x)
|
||||
}
|
||||
} else {
|
||||
for j in 0..ncols2 {
|
||||
let val = unsafe { self.vget_unchecked_mut(j) };
|
||||
*val = alpha.inlined_clone() * dot(&a.column(j), x)
|
||||
+ beta.inlined_clone() * val.inlined_clone();
|
||||
*val = alpha.clone() * dot(&a.column(j), x) + beta.clone() * val.clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -648,9 +646,9 @@ where
|
||||
|
||||
for j in 0..ncols1 {
|
||||
// TODO: avoid bound checks.
|
||||
let val = unsafe { conjugate(y.vget_unchecked(j).inlined_clone()) };
|
||||
let val = unsafe { conjugate(y.vget_unchecked(j).clone()) };
|
||||
self.column_mut(j)
|
||||
.axpy(alpha.inlined_clone() * val, x, beta.inlined_clone());
|
||||
.axpy(alpha.clone() * val, x, beta.clone());
|
||||
}
|
||||
}
|
||||
|
||||
@ -813,12 +811,8 @@ where
|
||||
|
||||
for j1 in 0..ncols1 {
|
||||
// TODO: avoid bound checks.
|
||||
self.column_mut(j1).gemv_tr(
|
||||
alpha.inlined_clone(),
|
||||
a,
|
||||
&b.column(j1),
|
||||
beta.inlined_clone(),
|
||||
);
|
||||
self.column_mut(j1)
|
||||
.gemv_tr(alpha.clone(), a, &b.column(j1), beta.clone());
|
||||
}
|
||||
}
|
||||
|
||||
@ -875,7 +869,8 @@ where
|
||||
|
||||
for j1 in 0..ncols1 {
|
||||
// TODO: avoid bound checks.
|
||||
self.column_mut(j1).gemv_ad(alpha, a, &b.column(j1), beta);
|
||||
self.column_mut(j1)
|
||||
.gemv_ad(alpha.clone(), a, &b.column(j1), beta.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -909,13 +904,13 @@ where
|
||||
assert!(dim1 == dim2 && dim1 == dim3, "ger: dimensions mismatch.");
|
||||
|
||||
for j in 0..dim1 {
|
||||
let val = unsafe { conjugate(y.vget_unchecked(j).inlined_clone()) };
|
||||
let val = unsafe { conjugate(y.vget_unchecked(j).clone()) };
|
||||
let subdim = Dynamic::new(dim1 - j);
|
||||
// TODO: avoid bound checks.
|
||||
self.generic_slice_mut((j, j), (subdim, Const::<1>)).axpy(
|
||||
alpha.inlined_clone() * val,
|
||||
alpha.clone() * val,
|
||||
&x.rows_range(j..),
|
||||
beta.inlined_clone(),
|
||||
beta.clone(),
|
||||
);
|
||||
}
|
||||
}
|
||||
@ -1076,11 +1071,11 @@ where
|
||||
ShapeConstraint: DimEq<D1, D2> + DimEq<D1, R3> + DimEq<D2, R3> + DimEq<C3, D4>,
|
||||
{
|
||||
work.gemv(T::one(), lhs, &mid.column(0), T::zero());
|
||||
self.ger(alpha.inlined_clone(), work, &lhs.column(0), beta);
|
||||
self.ger(alpha.clone(), work, &lhs.column(0), beta);
|
||||
|
||||
for j in 1..mid.ncols() {
|
||||
work.gemv(T::one(), lhs, &mid.column(j), T::zero());
|
||||
self.ger(alpha.inlined_clone(), work, &lhs.column(j), T::one());
|
||||
self.ger(alpha.clone(), work, &lhs.column(j), T::one());
|
||||
}
|
||||
}
|
||||
|
||||
@ -1170,12 +1165,12 @@ where
|
||||
{
|
||||
work.gemv(T::one(), mid, &rhs.column(0), T::zero());
|
||||
self.column_mut(0)
|
||||
.gemv_tr(alpha.inlined_clone(), rhs, work, beta.inlined_clone());
|
||||
.gemv_tr(alpha.clone(), rhs, work, beta.clone());
|
||||
|
||||
for j in 1..rhs.ncols() {
|
||||
work.gemv(T::one(), mid, &rhs.column(j), T::zero());
|
||||
self.column_mut(j)
|
||||
.gemv_tr(alpha.inlined_clone(), rhs, work, beta.inlined_clone());
|
||||
.gemv_tr(alpha.clone(), rhs, work, beta.clone());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -44,8 +44,8 @@ unsafe fn array_axcpy<Status, T>(
|
||||
{
|
||||
for i in 0..len {
|
||||
let y = Status::assume_init_mut(y.get_unchecked_mut(i * stride1));
|
||||
*y = a.inlined_clone() * x.get_unchecked(i * stride2).inlined_clone() * c.inlined_clone()
|
||||
+ beta.inlined_clone() * y.inlined_clone();
|
||||
*y =
|
||||
a.clone() * x.get_unchecked(i * stride2).clone() * c.clone() + beta.clone() * y.clone();
|
||||
}
|
||||
}
|
||||
|
||||
@ -66,9 +66,7 @@ fn array_axc<Status, T>(
|
||||
unsafe {
|
||||
Status::init(
|
||||
y.get_unchecked_mut(i * stride1),
|
||||
a.inlined_clone()
|
||||
* x.get_unchecked(i * stride2).inlined_clone()
|
||||
* c.inlined_clone(),
|
||||
a.clone() * x.get_unchecked(i * stride2).clone() * c.clone(),
|
||||
);
|
||||
}
|
||||
}
|
||||
@ -150,24 +148,24 @@ pub unsafe fn gemv_uninit<Status, T, D1: Dim, R2: Dim, C2: Dim, D3: Dim, SA, SB,
|
||||
y.apply(|e| Status::init(e, T::zero()));
|
||||
} else {
|
||||
// SAFETY: this is UB if y is uninitialized.
|
||||
y.apply(|e| *Status::assume_init_mut(e) *= beta.inlined_clone());
|
||||
y.apply(|e| *Status::assume_init_mut(e) *= beta.clone());
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// TODO: avoid bound checks.
|
||||
let col2 = a.column(0);
|
||||
let val = x.vget_unchecked(0).inlined_clone();
|
||||
let val = x.vget_unchecked(0).clone();
|
||||
|
||||
// SAFETY: this is the call that makes this method unsafe: it is UB if Status = Uninit and beta != 0.
|
||||
axcpy_uninit(status, y, alpha.inlined_clone(), &col2, val, beta);
|
||||
axcpy_uninit(status, y, alpha.clone(), &col2, val, beta);
|
||||
|
||||
for j in 1..ncols2 {
|
||||
let col2 = a.column(j);
|
||||
let val = x.vget_unchecked(j).inlined_clone();
|
||||
let val = x.vget_unchecked(j).clone();
|
||||
|
||||
// SAFETY: safe because y was initialized above.
|
||||
axcpy_uninit(status, y, alpha.inlined_clone(), &col2, val, T::one());
|
||||
axcpy_uninit(status, y, alpha.clone(), &col2, val, T::one());
|
||||
}
|
||||
}
|
||||
|
||||
@ -254,7 +252,7 @@ pub unsafe fn gemm_uninit<
|
||||
y.apply(|e| Status::init(e, T::zero()));
|
||||
} else {
|
||||
// SAFETY: this is UB if Status = Uninit
|
||||
y.apply(|e| *Status::assume_init_mut(e) *= beta.inlined_clone());
|
||||
y.apply(|e| *Status::assume_init_mut(e) *= beta.clone());
|
||||
}
|
||||
return;
|
||||
}
|
||||
@ -314,10 +312,10 @@ pub unsafe fn gemm_uninit<
|
||||
gemv_uninit(
|
||||
status,
|
||||
&mut y.column_mut(j1),
|
||||
alpha.inlined_clone(),
|
||||
alpha.clone(),
|
||||
a,
|
||||
&b.column(j1),
|
||||
beta.inlined_clone(),
|
||||
beta.clone(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
@ -45,7 +45,7 @@ where
|
||||
{
|
||||
let mut res = Self::identity();
|
||||
for i in 0..scaling.len() {
|
||||
res[(i, i)] = scaling[i].inlined_clone();
|
||||
res[(i, i)] = scaling[i].clone();
|
||||
}
|
||||
|
||||
res
|
||||
@ -85,13 +85,13 @@ impl<T: RealField> Matrix3<T> {
|
||||
let zero = T::zero();
|
||||
let one = T::one();
|
||||
Matrix3::new(
|
||||
scaling.x,
|
||||
zero,
|
||||
pt.x - pt.x * scaling.x,
|
||||
zero,
|
||||
scaling.y,
|
||||
pt.y - pt.y * scaling.y,
|
||||
zero,
|
||||
scaling.x.clone(),
|
||||
zero.clone(),
|
||||
pt.x.clone() - pt.x.clone() * scaling.x.clone(),
|
||||
zero.clone(),
|
||||
scaling.y.clone(),
|
||||
pt.y.clone() - pt.y.clone() * scaling.y.clone(),
|
||||
zero.clone(),
|
||||
zero,
|
||||
one,
|
||||
)
|
||||
@ -125,20 +125,20 @@ impl<T: RealField> Matrix4<T> {
|
||||
let zero = T::zero();
|
||||
let one = T::one();
|
||||
Matrix4::new(
|
||||
scaling.x,
|
||||
zero,
|
||||
zero,
|
||||
pt.x - pt.x * scaling.x,
|
||||
zero,
|
||||
scaling.y,
|
||||
zero,
|
||||
pt.y - pt.y * scaling.y,
|
||||
zero,
|
||||
zero,
|
||||
scaling.z,
|
||||
pt.z - pt.z * scaling.z,
|
||||
zero,
|
||||
zero,
|
||||
scaling.x.clone(),
|
||||
zero.clone(),
|
||||
zero.clone(),
|
||||
pt.x.clone() - pt.x.clone() * scaling.x.clone(),
|
||||
zero.clone(),
|
||||
scaling.y.clone(),
|
||||
zero.clone(),
|
||||
pt.y.clone() - pt.y.clone() * scaling.y.clone(),
|
||||
zero.clone(),
|
||||
zero.clone(),
|
||||
scaling.z.clone(),
|
||||
pt.z.clone() - pt.z.clone() * scaling.z.clone(),
|
||||
zero.clone(),
|
||||
zero.clone(),
|
||||
zero,
|
||||
one,
|
||||
)
|
||||
@ -336,7 +336,7 @@ impl<T: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: Storage<T, D
|
||||
{
|
||||
for i in 0..scaling.len() {
|
||||
let mut to_scale = self.fixed_rows_mut::<1>(i);
|
||||
to_scale *= scaling[i].inlined_clone();
|
||||
to_scale *= scaling[i].clone();
|
||||
}
|
||||
}
|
||||
|
||||
@ -352,7 +352,7 @@ impl<T: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: Storage<T, D
|
||||
{
|
||||
for i in 0..scaling.len() {
|
||||
let mut to_scale = self.fixed_columns_mut::<1>(i);
|
||||
to_scale *= scaling[i].inlined_clone();
|
||||
to_scale *= scaling[i].clone();
|
||||
}
|
||||
}
|
||||
|
||||
@ -366,7 +366,7 @@ impl<T: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: Storage<T, D
|
||||
{
|
||||
for i in 0..D::dim() {
|
||||
for j in 0..D::dim() - 1 {
|
||||
let add = shift[j].inlined_clone() * self[(D::dim() - 1, i)].inlined_clone();
|
||||
let add = shift[j].clone() * self[(D::dim() - 1, i)].clone();
|
||||
self[(j, i)] += add;
|
||||
}
|
||||
}
|
||||
@ -440,7 +440,7 @@ impl<T: RealField, S: Storage<T, Const<3>, Const<3>>> SquareMatrix<T, Const<3>,
|
||||
let transform = self.fixed_slice::<2, 2>(0, 0);
|
||||
let translation = self.fixed_slice::<2, 1>(0, 2);
|
||||
let normalizer = self.fixed_slice::<1, 2>(2, 0);
|
||||
let n = normalizer.tr_dot(&pt.coords) + unsafe { *self.get_unchecked((2, 2)) };
|
||||
let n = normalizer.tr_dot(&pt.coords) + unsafe { self.get_unchecked((2, 2)).clone() };
|
||||
|
||||
if !n.is_zero() {
|
||||
(transform * pt + translation) / n
|
||||
@ -457,7 +457,7 @@ impl<T: RealField, S: Storage<T, Const<4>, Const<4>>> SquareMatrix<T, Const<4>,
|
||||
let transform = self.fixed_slice::<3, 3>(0, 0);
|
||||
let translation = self.fixed_slice::<3, 1>(0, 3);
|
||||
let normalizer = self.fixed_slice::<1, 3>(3, 0);
|
||||
let n = normalizer.tr_dot(&pt.coords) + unsafe { *self.get_unchecked((3, 3)) };
|
||||
let n = normalizer.tr_dot(&pt.coords) + unsafe { self.get_unchecked((3, 3)).clone() };
|
||||
|
||||
if !n.is_zero() {
|
||||
(transform * pt + translation) / n
|
||||
|
@ -64,7 +64,7 @@ macro_rules! component_binop_impl(
|
||||
for j in 0 .. res.ncols() {
|
||||
for i in 0 .. res.nrows() {
|
||||
unsafe {
|
||||
res.get_unchecked_mut((i, j)).$op_assign(rhs.get_unchecked((i, j)).inlined_clone());
|
||||
res.get_unchecked_mut((i, j)).$op_assign(rhs.get_unchecked((i, j)).clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -91,7 +91,7 @@ macro_rules! component_binop_impl(
|
||||
for j in 0 .. self.ncols() {
|
||||
for i in 0 .. self.nrows() {
|
||||
unsafe {
|
||||
let res = alpha.inlined_clone() * a.get_unchecked((i, j)).inlined_clone().$op(b.get_unchecked((i, j)).inlined_clone());
|
||||
let res = alpha.clone() * a.get_unchecked((i, j)).clone().$op(b.get_unchecked((i, j)).clone());
|
||||
*self.get_unchecked_mut((i, j)) = res;
|
||||
}
|
||||
}
|
||||
@ -101,8 +101,8 @@ macro_rules! component_binop_impl(
|
||||
for j in 0 .. self.ncols() {
|
||||
for i in 0 .. self.nrows() {
|
||||
unsafe {
|
||||
let res = alpha.inlined_clone() * a.get_unchecked((i, j)).inlined_clone().$op(b.get_unchecked((i, j)).inlined_clone());
|
||||
*self.get_unchecked_mut((i, j)) = beta.inlined_clone() * self.get_unchecked((i, j)).inlined_clone() + res;
|
||||
let res = alpha.clone() * a.get_unchecked((i, j)).clone().$op(b.get_unchecked((i, j)).clone());
|
||||
*self.get_unchecked_mut((i, j)) = beta.clone() * self.get_unchecked((i, j)).clone() + res;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -124,7 +124,7 @@ macro_rules! component_binop_impl(
|
||||
for j in 0 .. self.ncols() {
|
||||
for i in 0 .. self.nrows() {
|
||||
unsafe {
|
||||
self.get_unchecked_mut((i, j)).$op_assign(rhs.get_unchecked((i, j)).inlined_clone());
|
||||
self.get_unchecked_mut((i, j)).$op_assign(rhs.get_unchecked((i, j)).clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -347,7 +347,7 @@ impl<T: Scalar, R1: Dim, C1: Dim, SA: Storage<T, R1, C1>> Matrix<T, R1, C1, SA>
|
||||
SA: StorageMut<T, R1, C1>,
|
||||
{
|
||||
for e in self.iter_mut() {
|
||||
*e += rhs.inlined_clone()
|
||||
*e += rhs.clone()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -104,8 +104,7 @@ where
|
||||
unsafe {
|
||||
for i in 0..nrows.value() {
|
||||
for j in 0..ncols.value() {
|
||||
*res.get_unchecked_mut((i, j)) =
|
||||
MaybeUninit::new(iter.next().unwrap().inlined_clone())
|
||||
*res.get_unchecked_mut((i, j)) = MaybeUninit::new(iter.next().unwrap().clone())
|
||||
}
|
||||
}
|
||||
|
||||
@ -166,7 +165,7 @@ where
|
||||
let mut res = Self::zeros_generic(nrows, ncols);
|
||||
|
||||
for i in 0..crate::min(nrows.value(), ncols.value()) {
|
||||
unsafe { *res.get_unchecked_mut((i, i)) = elt.inlined_clone() }
|
||||
unsafe { *res.get_unchecked_mut((i, i)) = elt.clone() }
|
||||
}
|
||||
|
||||
res
|
||||
@ -188,7 +187,7 @@ where
|
||||
);
|
||||
|
||||
for (i, elt) in elts.iter().enumerate() {
|
||||
unsafe { *res.get_unchecked_mut((i, i)) = elt.inlined_clone() }
|
||||
unsafe { *res.get_unchecked_mut((i, i)) = elt.clone() }
|
||||
}
|
||||
|
||||
res
|
||||
@ -232,7 +231,7 @@ where
|
||||
|
||||
// TODO: optimize that.
|
||||
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| {
|
||||
rows[i][(0, j)].inlined_clone()
|
||||
rows[i][(0, j)].clone()
|
||||
})
|
||||
}
|
||||
|
||||
@ -274,7 +273,7 @@ where
|
||||
|
||||
// TODO: optimize that.
|
||||
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| {
|
||||
columns[j][i].inlined_clone()
|
||||
columns[j][i].clone()
|
||||
})
|
||||
}
|
||||
|
||||
@ -358,7 +357,7 @@ where
|
||||
|
||||
for i in 0..diag.len() {
|
||||
unsafe {
|
||||
*res.get_unchecked_mut((i, i)) = diag.vget_unchecked(i).inlined_clone();
|
||||
*res.get_unchecked_mut((i, i)) = diag.vget_unchecked(i).clone();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -509,11 +509,7 @@ where
|
||||
let (nrows, ncols) = arr[0].shape_generic();
|
||||
|
||||
Self::from_fn_generic(nrows, ncols, |i, j| {
|
||||
[
|
||||
arr[0][(i, j)].inlined_clone(),
|
||||
arr[1][(i, j)].inlined_clone(),
|
||||
]
|
||||
.into()
|
||||
[arr[0][(i, j)].clone(), arr[1][(i, j)].clone()].into()
|
||||
})
|
||||
}
|
||||
}
|
||||
@ -531,10 +527,10 @@ where
|
||||
|
||||
Self::from_fn_generic(nrows, ncols, |i, j| {
|
||||
[
|
||||
arr[0][(i, j)].inlined_clone(),
|
||||
arr[1][(i, j)].inlined_clone(),
|
||||
arr[2][(i, j)].inlined_clone(),
|
||||
arr[3][(i, j)].inlined_clone(),
|
||||
arr[0][(i, j)].clone(),
|
||||
arr[1][(i, j)].clone(),
|
||||
arr[2][(i, j)].clone(),
|
||||
arr[3][(i, j)].clone(),
|
||||
]
|
||||
.into()
|
||||
})
|
||||
@ -554,14 +550,14 @@ where
|
||||
|
||||
Self::from_fn_generic(nrows, ncols, |i, j| {
|
||||
[
|
||||
arr[0][(i, j)].inlined_clone(),
|
||||
arr[1][(i, j)].inlined_clone(),
|
||||
arr[2][(i, j)].inlined_clone(),
|
||||
arr[3][(i, j)].inlined_clone(),
|
||||
arr[4][(i, j)].inlined_clone(),
|
||||
arr[5][(i, j)].inlined_clone(),
|
||||
arr[6][(i, j)].inlined_clone(),
|
||||
arr[7][(i, j)].inlined_clone(),
|
||||
arr[0][(i, j)].clone(),
|
||||
arr[1][(i, j)].clone(),
|
||||
arr[2][(i, j)].clone(),
|
||||
arr[3][(i, j)].clone(),
|
||||
arr[4][(i, j)].clone(),
|
||||
arr[5][(i, j)].clone(),
|
||||
arr[6][(i, j)].clone(),
|
||||
arr[7][(i, j)].clone(),
|
||||
]
|
||||
.into()
|
||||
})
|
||||
@ -580,22 +576,22 @@ where
|
||||
|
||||
Self::from_fn_generic(nrows, ncols, |i, j| {
|
||||
[
|
||||
arr[0][(i, j)].inlined_clone(),
|
||||
arr[1][(i, j)].inlined_clone(),
|
||||
arr[2][(i, j)].inlined_clone(),
|
||||
arr[3][(i, j)].inlined_clone(),
|
||||
arr[4][(i, j)].inlined_clone(),
|
||||
arr[5][(i, j)].inlined_clone(),
|
||||
arr[6][(i, j)].inlined_clone(),
|
||||
arr[7][(i, j)].inlined_clone(),
|
||||
arr[8][(i, j)].inlined_clone(),
|
||||
arr[9][(i, j)].inlined_clone(),
|
||||
arr[10][(i, j)].inlined_clone(),
|
||||
arr[11][(i, j)].inlined_clone(),
|
||||
arr[12][(i, j)].inlined_clone(),
|
||||
arr[13][(i, j)].inlined_clone(),
|
||||
arr[14][(i, j)].inlined_clone(),
|
||||
arr[15][(i, j)].inlined_clone(),
|
||||
arr[0][(i, j)].clone(),
|
||||
arr[1][(i, j)].clone(),
|
||||
arr[2][(i, j)].clone(),
|
||||
arr[3][(i, j)].clone(),
|
||||
arr[4][(i, j)].clone(),
|
||||
arr[5][(i, j)].clone(),
|
||||
arr[6][(i, j)].clone(),
|
||||
arr[7][(i, j)].clone(),
|
||||
arr[8][(i, j)].clone(),
|
||||
arr[9][(i, j)].clone(),
|
||||
arr[10][(i, j)].clone(),
|
||||
arr[11][(i, j)].clone(),
|
||||
arr[12][(i, j)].clone(),
|
||||
arr[13][(i, j)].clone(),
|
||||
arr[14][(i, j)].clone(),
|
||||
arr[15][(i, j)].clone(),
|
||||
]
|
||||
.into()
|
||||
})
|
||||
|
@ -70,7 +70,7 @@ impl<T: Scalar + Zero, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
// Safety: all indices are in range.
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(destination) =
|
||||
MaybeUninit::new(src.vget_unchecked(*source).inlined_clone());
|
||||
MaybeUninit::new(src.vget_unchecked(*source).clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -96,7 +96,7 @@ impl<T: Scalar + Zero, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
// NOTE: this is basically a copy_frow but wrapping the values insnide of MaybeUninit.
|
||||
res.column_mut(destination)
|
||||
.zip_apply(&self.column(*source), |out, e| {
|
||||
*out = MaybeUninit::new(e.inlined_clone())
|
||||
*out = MaybeUninit::new(e.clone())
|
||||
});
|
||||
}
|
||||
|
||||
@ -120,7 +120,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
assert_eq!(diag.len(), min_nrows_ncols, "Mismatched dimensions.");
|
||||
|
||||
for i in 0..min_nrows_ncols {
|
||||
unsafe { *self.get_unchecked_mut((i, i)) = diag.vget_unchecked(i).inlined_clone() }
|
||||
unsafe { *self.get_unchecked_mut((i, i)) = diag.vget_unchecked(i).clone() }
|
||||
}
|
||||
}
|
||||
|
||||
@ -177,7 +177,7 @@ impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
T: Scalar,
|
||||
{
|
||||
for e in self.iter_mut() {
|
||||
*e = val.inlined_clone()
|
||||
*e = val.clone()
|
||||
}
|
||||
}
|
||||
|
||||
@ -201,7 +201,7 @@ impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
let n = cmp::min(nrows, ncols);
|
||||
|
||||
for i in 0..n {
|
||||
unsafe { *self.get_unchecked_mut((i, i)) = val.inlined_clone() }
|
||||
unsafe { *self.get_unchecked_mut((i, i)) = val.clone() }
|
||||
}
|
||||
}
|
||||
|
||||
@ -213,7 +213,7 @@ impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
{
|
||||
assert!(i < self.nrows(), "Row index out of bounds.");
|
||||
for j in 0..self.ncols() {
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.clone() }
|
||||
}
|
||||
}
|
||||
|
||||
@ -225,7 +225,7 @@ impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
{
|
||||
assert!(j < self.ncols(), "Row index out of bounds.");
|
||||
for i in 0..self.nrows() {
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.clone() }
|
||||
}
|
||||
}
|
||||
|
||||
@ -243,7 +243,7 @@ impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
{
|
||||
for j in 0..self.ncols() {
|
||||
for i in (j + shift)..self.nrows() {
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.clone() }
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -264,7 +264,7 @@ impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
// TODO: is there a more efficient way to avoid the min ?
|
||||
// (necessary for rectangular matrices)
|
||||
for i in 0..cmp::min(j + 1 - shift, self.nrows()) {
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
|
||||
unsafe { *self.get_unchecked_mut((i, j)) = val.clone() }
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -281,7 +281,7 @@ impl<T: Scalar, D: Dim, S: RawStorageMut<T, D, D>> Matrix<T, D, D, S> {
|
||||
for j in 0..dim {
|
||||
for i in j + 1..dim {
|
||||
unsafe {
|
||||
*self.get_unchecked_mut((i, j)) = self.get_unchecked((j, i)).inlined_clone();
|
||||
*self.get_unchecked_mut((i, j)) = self.get_unchecked((j, i)).clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -296,7 +296,7 @@ impl<T: Scalar, D: Dim, S: RawStorageMut<T, D, D>> Matrix<T, D, D, S> {
|
||||
for j in 1..self.ncols() {
|
||||
for i in 0..j {
|
||||
unsafe {
|
||||
*self.get_unchecked_mut((i, j)) = self.get_unchecked((j, i)).inlined_clone();
|
||||
*self.get_unchecked_mut((i, j)) = self.get_unchecked((j, i)).clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -647,7 +647,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
{
|
||||
let mut res = unsafe { self.insert_columns_generic_uninitialized(i, Const::<D>) };
|
||||
res.fixed_columns_mut::<D>(i)
|
||||
.fill_with(|| MaybeUninit::new(val.inlined_clone()));
|
||||
.fill_with(|| MaybeUninit::new(val.clone()));
|
||||
|
||||
// Safety: the result is now fully initialized. The added columns have
|
||||
// been initialized by the `fill_with` above, and the rest have
|
||||
@ -665,7 +665,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
{
|
||||
let mut res = unsafe { self.insert_columns_generic_uninitialized(i, Dynamic::new(n)) };
|
||||
res.columns_mut(i, n)
|
||||
.fill_with(|| MaybeUninit::new(val.inlined_clone()));
|
||||
.fill_with(|| MaybeUninit::new(val.clone()));
|
||||
|
||||
// Safety: the result is now fully initialized. The added columns have
|
||||
// been initialized by the `fill_with` above, and the rest have
|
||||
@ -740,7 +740,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
{
|
||||
let mut res = unsafe { self.insert_rows_generic_uninitialized(i, Const::<D>) };
|
||||
res.fixed_rows_mut::<D>(i)
|
||||
.fill_with(|| MaybeUninit::new(val.inlined_clone()));
|
||||
.fill_with(|| MaybeUninit::new(val.clone()));
|
||||
|
||||
// Safety: the result is now fully initialized. The added rows have
|
||||
// been initialized by the `fill_with` above, and the rest have
|
||||
@ -758,7 +758,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
{
|
||||
let mut res = unsafe { self.insert_rows_generic_uninitialized(i, Dynamic::new(n)) };
|
||||
res.rows_mut(i, n)
|
||||
.fill_with(|| MaybeUninit::new(val.inlined_clone()));
|
||||
.fill_with(|| MaybeUninit::new(val.clone()));
|
||||
|
||||
// Safety: the result is now fully initialized. The added rows have
|
||||
// been initialized by the `fill_with` above, and the rest have
|
||||
@ -896,7 +896,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
|
||||
if new_ncols.value() > ncols {
|
||||
res.columns_range_mut(ncols..)
|
||||
.fill_with(|| MaybeUninit::new(val.inlined_clone()));
|
||||
.fill_with(|| MaybeUninit::new(val.clone()));
|
||||
}
|
||||
|
||||
// Safety: the result is now fully initialized by `reallocate_copy` and
|
||||
@ -933,12 +933,12 @@ impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
|
||||
if new_ncols.value() > ncols {
|
||||
res.columns_range_mut(ncols..)
|
||||
.fill_with(|| MaybeUninit::new(val.inlined_clone()));
|
||||
.fill_with(|| MaybeUninit::new(val.clone()));
|
||||
}
|
||||
|
||||
if new_nrows.value() > nrows {
|
||||
res.slice_range_mut(nrows.., ..cmp::min(ncols, new_ncols.value()))
|
||||
.fill_with(|| MaybeUninit::new(val.inlined_clone()));
|
||||
.fill_with(|| MaybeUninit::new(val.clone()));
|
||||
}
|
||||
|
||||
// Safety: the result is now fully initialized by `reallocate_copy` and
|
||||
|
@ -26,7 +26,7 @@ impl<T: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Stor
|
||||
DefaultAllocator: Allocator<T, D>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.axpy(t.inlined_clone(), rhs, T::one() - t);
|
||||
res.axpy(t.clone(), rhs, T::one() - t);
|
||||
res
|
||||
}
|
||||
|
||||
@ -109,14 +109,14 @@ impl<T: RealField, D: Dim, S: Storage<T, D>> Unit<Vector<T, D, S>> {
|
||||
return Some(Unit::new_unchecked(self.clone_owned()));
|
||||
}
|
||||
|
||||
let hang = c_hang.acos();
|
||||
let s_hang = (T::one() - c_hang * c_hang).sqrt();
|
||||
let hang = c_hang.clone().acos();
|
||||
let s_hang = (T::one() - c_hang.clone() * c_hang).sqrt();
|
||||
|
||||
// TODO: what if s_hang is 0.0 ? The result is not well-defined.
|
||||
if relative_eq!(s_hang, T::zero(), epsilon = epsilon) {
|
||||
None
|
||||
} else {
|
||||
let ta = ((T::one() - t) * hang).sin() / s_hang;
|
||||
let ta = ((T::one() - t.clone()) * hang.clone()).sin() / s_hang.clone();
|
||||
let tb = (t * hang).sin() / s_hang;
|
||||
let mut res = self.scale(ta);
|
||||
res.axpy(tb, &**rhs, T::one());
|
||||
|
@ -567,13 +567,13 @@ impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
SB: Storage<T, R2, C2>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
{
|
||||
assert!(self.shape() == other.shape());
|
||||
self.iter()
|
||||
.zip(other.iter())
|
||||
.all(|(a, b)| a.relative_eq(b, eps, max_relative))
|
||||
.all(|(a, b)| a.relative_eq(b, eps.clone(), max_relative.clone()))
|
||||
}
|
||||
|
||||
/// Tests whether `self` and `rhs` are exactly equal.
|
||||
@ -668,7 +668,7 @@ impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
for j in 0..res.ncols() {
|
||||
for i in 0..res.nrows() {
|
||||
*res.get_unchecked_mut((i, j)) =
|
||||
MaybeUninit::new(self.get_unchecked((i, j)).inlined_clone());
|
||||
MaybeUninit::new(self.get_unchecked((i, j)).clone());
|
||||
}
|
||||
}
|
||||
|
||||
@ -704,7 +704,7 @@ impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
unsafe {
|
||||
Status::init(
|
||||
out.get_unchecked_mut((j, i)),
|
||||
self.get_unchecked((i, j)).inlined_clone(),
|
||||
self.get_unchecked((i, j)).clone(),
|
||||
);
|
||||
}
|
||||
}
|
||||
@ -758,7 +758,7 @@ impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
for i in 0..nrows.value() {
|
||||
// Safety: all indices are in range.
|
||||
unsafe {
|
||||
let a = self.data.get_unchecked(i, j).inlined_clone();
|
||||
let a = self.data.get_unchecked(i, j).clone();
|
||||
*res.data.get_unchecked_mut(i, j) = MaybeUninit::new(f(a));
|
||||
}
|
||||
}
|
||||
@ -827,7 +827,7 @@ impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
for i in 0..nrows.value() {
|
||||
// Safety: all indices are in range.
|
||||
unsafe {
|
||||
let a = self.data.get_unchecked(i, j).inlined_clone();
|
||||
let a = self.data.get_unchecked(i, j).clone();
|
||||
*res.data.get_unchecked_mut(i, j) = MaybeUninit::new(f(i, j, a));
|
||||
}
|
||||
}
|
||||
@ -863,8 +863,8 @@ impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
for i in 0..nrows.value() {
|
||||
// Safety: all indices are in range.
|
||||
unsafe {
|
||||
let a = self.data.get_unchecked(i, j).inlined_clone();
|
||||
let b = rhs.data.get_unchecked(i, j).inlined_clone();
|
||||
let a = self.data.get_unchecked(i, j).clone();
|
||||
let b = rhs.data.get_unchecked(i, j).clone();
|
||||
*res.data.get_unchecked_mut(i, j) = MaybeUninit::new(f(a, b))
|
||||
}
|
||||
}
|
||||
@ -912,9 +912,9 @@ impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
for i in 0..nrows.value() {
|
||||
// Safety: all indices are in range.
|
||||
unsafe {
|
||||
let a = self.data.get_unchecked(i, j).inlined_clone();
|
||||
let b = b.data.get_unchecked(i, j).inlined_clone();
|
||||
let c = c.data.get_unchecked(i, j).inlined_clone();
|
||||
let a = self.data.get_unchecked(i, j).clone();
|
||||
let b = b.data.get_unchecked(i, j).clone();
|
||||
let c = c.data.get_unchecked(i, j).clone();
|
||||
*res.data.get_unchecked_mut(i, j) = MaybeUninit::new(f(a, b, c))
|
||||
}
|
||||
}
|
||||
@ -939,7 +939,7 @@ impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
for i in 0..nrows.value() {
|
||||
// Safety: all indices are in range.
|
||||
unsafe {
|
||||
let a = self.data.get_unchecked(i, j).inlined_clone();
|
||||
let a = self.data.get_unchecked(i, j).clone();
|
||||
res = f(res, a)
|
||||
}
|
||||
}
|
||||
@ -978,8 +978,8 @@ impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
for j in 0..ncols.value() {
|
||||
for i in 0..nrows.value() {
|
||||
unsafe {
|
||||
let a = self.data.get_unchecked(i, j).inlined_clone();
|
||||
let b = rhs.data.get_unchecked(i, j).inlined_clone();
|
||||
let a = self.data.get_unchecked(i, j).clone();
|
||||
let b = rhs.data.get_unchecked(i, j).clone();
|
||||
res = f(res, a, b)
|
||||
}
|
||||
}
|
||||
@ -1033,7 +1033,7 @@ impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
for i in 0..nrows {
|
||||
unsafe {
|
||||
let e = self.data.get_unchecked_mut(i, j);
|
||||
let rhs = rhs.get_unchecked((i, j)).inlined_clone();
|
||||
let rhs = rhs.get_unchecked((i, j)).clone();
|
||||
f(e, rhs)
|
||||
}
|
||||
}
|
||||
@ -1078,8 +1078,8 @@ impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
for i in 0..nrows {
|
||||
unsafe {
|
||||
let e = self.data.get_unchecked_mut(i, j);
|
||||
let b = b.get_unchecked((i, j)).inlined_clone();
|
||||
let c = c.get_unchecked((i, j)).inlined_clone();
|
||||
let b = b.get_unchecked((i, j)).clone();
|
||||
let c = c.get_unchecked((i, j)).clone();
|
||||
f(e, b, c)
|
||||
}
|
||||
}
|
||||
@ -1248,8 +1248,7 @@ impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
for j in 0..ncols {
|
||||
for i in 0..nrows {
|
||||
unsafe {
|
||||
*self.get_unchecked_mut((i, j)) =
|
||||
slice.get_unchecked(i + j * nrows).inlined_clone();
|
||||
*self.get_unchecked_mut((i, j)) = slice.get_unchecked(i + j * nrows).clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1273,7 +1272,7 @@ impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
for j in 0..self.ncols() {
|
||||
for i in 0..self.nrows() {
|
||||
unsafe {
|
||||
*self.get_unchecked_mut((i, j)) = other.get_unchecked((i, j)).inlined_clone();
|
||||
*self.get_unchecked_mut((i, j)) = other.get_unchecked((i, j)).clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1298,7 +1297,7 @@ impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
for j in 0..ncols {
|
||||
for i in 0..nrows {
|
||||
unsafe {
|
||||
*self.get_unchecked_mut((i, j)) = other.get_unchecked((j, i)).inlined_clone();
|
||||
*self.get_unchecked_mut((i, j)) = other.get_unchecked((j, i)).clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1400,7 +1399,7 @@ impl<T: SimdComplexField, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C
|
||||
unsafe {
|
||||
Status::init(
|
||||
out.get_unchecked_mut((j, i)),
|
||||
self.get_unchecked((i, j)).simd_conjugate(),
|
||||
self.get_unchecked((i, j)).clone().simd_conjugate(),
|
||||
);
|
||||
}
|
||||
}
|
||||
@ -1475,7 +1474,7 @@ impl<T: SimdComplexField, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C
|
||||
where
|
||||
DefaultAllocator: Allocator<T, R, C>,
|
||||
{
|
||||
self.map(|e| e.simd_unscale(real))
|
||||
self.map(|e| e.simd_unscale(real.clone()))
|
||||
}
|
||||
|
||||
/// Multiplies each component of the complex matrix `self` by the given real.
|
||||
@ -1485,7 +1484,7 @@ impl<T: SimdComplexField, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C
|
||||
where
|
||||
DefaultAllocator: Allocator<T, R, C>,
|
||||
{
|
||||
self.map(|e| e.simd_scale(real))
|
||||
self.map(|e| e.simd_scale(real.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
@ -1493,19 +1492,19 @@ impl<T: SimdComplexField, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R
|
||||
/// The conjugate of the complex matrix `self` computed in-place.
|
||||
#[inline]
|
||||
pub fn conjugate_mut(&mut self) {
|
||||
self.apply(|e| *e = e.simd_conjugate())
|
||||
self.apply(|e| *e = e.clone().simd_conjugate())
|
||||
}
|
||||
|
||||
/// Divides each component of the complex matrix `self` by the given real.
|
||||
#[inline]
|
||||
pub fn unscale_mut(&mut self, real: T::SimdRealField) {
|
||||
self.apply(|e| *e = e.simd_unscale(real))
|
||||
self.apply(|e| *e = e.clone().simd_unscale(real.clone()))
|
||||
}
|
||||
|
||||
/// Multiplies each component of the complex matrix `self` by the given real.
|
||||
#[inline]
|
||||
pub fn scale_mut(&mut self, real: T::SimdRealField) {
|
||||
self.apply(|e| *e = e.simd_scale(real))
|
||||
self.apply(|e| *e = e.clone().simd_scale(real.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
@ -1528,18 +1527,18 @@ impl<T: SimdComplexField, D: Dim, S: RawStorageMut<T, D, D>> Matrix<T, D, D, S>
|
||||
for i in 0..dim {
|
||||
for j in 0..i {
|
||||
unsafe {
|
||||
let ref_ij = self.get_unchecked_mut((i, j)) as *mut T;
|
||||
let ref_ji = self.get_unchecked_mut((j, i)) as *mut T;
|
||||
let conj_ij = (*ref_ij).simd_conjugate();
|
||||
let conj_ji = (*ref_ji).simd_conjugate();
|
||||
*ref_ij = conj_ji;
|
||||
*ref_ji = conj_ij;
|
||||
let ref_ij = self.get_unchecked((i, j)).clone();
|
||||
let ref_ji = self.get_unchecked((j, i)).clone();
|
||||
let conj_ij = ref_ij.simd_conjugate();
|
||||
let conj_ji = ref_ji.simd_conjugate();
|
||||
*self.get_unchecked_mut((i, j)) = conj_ji;
|
||||
*self.get_unchecked_mut((j, i)) = conj_ij;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let diag = unsafe { self.get_unchecked_mut((i, i)) };
|
||||
*diag = diag.simd_conjugate();
|
||||
*diag = diag.clone().simd_conjugate();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1577,7 +1576,7 @@ impl<T: Scalar, D: Dim, S: RawStorage<T, D, D>> SquareMatrix<T, D, S> {
|
||||
// Safety: all indices are in range.
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(i) =
|
||||
MaybeUninit::new(f(self.get_unchecked((i, i)).inlined_clone()));
|
||||
MaybeUninit::new(f(self.get_unchecked((i, i)).clone()));
|
||||
}
|
||||
}
|
||||
|
||||
@ -1601,7 +1600,7 @@ impl<T: Scalar, D: Dim, S: RawStorage<T, D, D>> SquareMatrix<T, D, S> {
|
||||
let mut res = T::zero();
|
||||
|
||||
for i in 0..dim.value() {
|
||||
res += unsafe { self.get_unchecked((i, i)).inlined_clone() };
|
||||
res += unsafe { self.get_unchecked((i, i)).clone() };
|
||||
}
|
||||
|
||||
res
|
||||
@ -1723,7 +1722,7 @@ impl<T, R: Dim, C: Dim, S> AbsDiffEq for Matrix<T, R, C, S>
|
||||
where
|
||||
T: Scalar + AbsDiffEq,
|
||||
S: RawStorage<T, R, C>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
type Epsilon = T::Epsilon;
|
||||
|
||||
@ -1736,7 +1735,7 @@ where
|
||||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||||
self.iter()
|
||||
.zip(other.iter())
|
||||
.all(|(a, b)| a.abs_diff_eq(b, epsilon))
|
||||
.all(|(a, b)| a.abs_diff_eq(b, epsilon.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
@ -1744,7 +1743,7 @@ impl<T, R: Dim, C: Dim, S> RelativeEq for Matrix<T, R, C, S>
|
||||
where
|
||||
T: Scalar + RelativeEq,
|
||||
S: Storage<T, R, C>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn default_max_relative() -> Self::Epsilon {
|
||||
@ -1766,7 +1765,7 @@ impl<T, R: Dim, C: Dim, S> UlpsEq for Matrix<T, R, C, S>
|
||||
where
|
||||
T: Scalar + UlpsEq,
|
||||
S: RawStorage<T, R, C>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn default_max_ulps() -> u32 {
|
||||
@ -1778,7 +1777,7 @@ where
|
||||
assert!(self.shape() == other.shape());
|
||||
self.iter()
|
||||
.zip(other.iter())
|
||||
.all(|(a, b)| a.ulps_eq(b, epsilon, max_ulps))
|
||||
.all(|(a, b)| a.ulps_eq(b, epsilon.clone(), max_ulps.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
@ -2029,9 +2028,8 @@ impl<T: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: RawStorag
|
||||
);
|
||||
|
||||
unsafe {
|
||||
self.get_unchecked((0, 0)).inlined_clone() * b.get_unchecked((1, 0)).inlined_clone()
|
||||
- self.get_unchecked((1, 0)).inlined_clone()
|
||||
* b.get_unchecked((0, 0)).inlined_clone()
|
||||
self.get_unchecked((0, 0)).clone() * b.get_unchecked((1, 0)).clone()
|
||||
- self.get_unchecked((1, 0)).clone() * b.get_unchecked((0, 0)).clone()
|
||||
}
|
||||
}
|
||||
|
||||
@ -2073,18 +2071,12 @@ impl<T: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: RawStorag
|
||||
let by = b.get_unchecked((1, 0));
|
||||
let bz = b.get_unchecked((2, 0));
|
||||
|
||||
*res.get_unchecked_mut((0, 0)) = MaybeUninit::new(
|
||||
ay.inlined_clone() * bz.inlined_clone()
|
||||
- az.inlined_clone() * by.inlined_clone(),
|
||||
);
|
||||
*res.get_unchecked_mut((1, 0)) = MaybeUninit::new(
|
||||
az.inlined_clone() * bx.inlined_clone()
|
||||
- ax.inlined_clone() * bz.inlined_clone(),
|
||||
);
|
||||
*res.get_unchecked_mut((2, 0)) = MaybeUninit::new(
|
||||
ax.inlined_clone() * by.inlined_clone()
|
||||
- ay.inlined_clone() * bx.inlined_clone(),
|
||||
);
|
||||
*res.get_unchecked_mut((0, 0)) =
|
||||
MaybeUninit::new(ay.clone() * bz.clone() - az.clone() * by.clone());
|
||||
*res.get_unchecked_mut((1, 0)) =
|
||||
MaybeUninit::new(az.clone() * bx.clone() - ax.clone() * bz.clone());
|
||||
*res.get_unchecked_mut((2, 0)) =
|
||||
MaybeUninit::new(ax.clone() * by.clone() - ay.clone() * bx.clone());
|
||||
|
||||
// Safety: res is now fully initialized.
|
||||
res.assume_init()
|
||||
@ -2104,18 +2096,12 @@ impl<T: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: RawStorag
|
||||
let by = b.get_unchecked((0, 1));
|
||||
let bz = b.get_unchecked((0, 2));
|
||||
|
||||
*res.get_unchecked_mut((0, 0)) = MaybeUninit::new(
|
||||
ay.inlined_clone() * bz.inlined_clone()
|
||||
- az.inlined_clone() * by.inlined_clone(),
|
||||
);
|
||||
*res.get_unchecked_mut((0, 1)) = MaybeUninit::new(
|
||||
az.inlined_clone() * bx.inlined_clone()
|
||||
- ax.inlined_clone() * bz.inlined_clone(),
|
||||
);
|
||||
*res.get_unchecked_mut((0, 2)) = MaybeUninit::new(
|
||||
ax.inlined_clone() * by.inlined_clone()
|
||||
- ay.inlined_clone() * bx.inlined_clone(),
|
||||
);
|
||||
*res.get_unchecked_mut((0, 0)) =
|
||||
MaybeUninit::new(ay.clone() * bz.clone() - az.clone() * by.clone());
|
||||
*res.get_unchecked_mut((0, 1)) =
|
||||
MaybeUninit::new(az.clone() * bx.clone() - ax.clone() * bz.clone());
|
||||
*res.get_unchecked_mut((0, 2)) =
|
||||
MaybeUninit::new(ax.clone() * by.clone() - ay.clone() * bx.clone());
|
||||
|
||||
// Safety: res is now fully initialized.
|
||||
res.assume_init()
|
||||
@ -2131,13 +2117,13 @@ impl<T: Scalar + Field, S: RawStorage<T, U3>> Vector<T, U3, S> {
|
||||
pub fn cross_matrix(&self) -> OMatrix<T, U3, U3> {
|
||||
OMatrix::<T, U3, U3>::new(
|
||||
T::zero(),
|
||||
-self[2].inlined_clone(),
|
||||
self[1].inlined_clone(),
|
||||
self[2].inlined_clone(),
|
||||
-self[2].clone(),
|
||||
self[1].clone(),
|
||||
self[2].clone(),
|
||||
T::zero(),
|
||||
-self[0].inlined_clone(),
|
||||
-self[1].inlined_clone(),
|
||||
self[0].inlined_clone(),
|
||||
-self[0].clone(),
|
||||
-self[1].clone(),
|
||||
self[0].clone(),
|
||||
T::zero(),
|
||||
)
|
||||
}
|
||||
@ -2170,7 +2156,7 @@ impl<T, R: Dim, C: Dim, S> AbsDiffEq for Unit<Matrix<T, R, C, S>>
|
||||
where
|
||||
T: Scalar + AbsDiffEq,
|
||||
S: RawStorage<T, R, C>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
type Epsilon = T::Epsilon;
|
||||
|
||||
@ -2189,7 +2175,7 @@ impl<T, R: Dim, C: Dim, S> RelativeEq for Unit<Matrix<T, R, C, S>>
|
||||
where
|
||||
T: Scalar + RelativeEq,
|
||||
S: Storage<T, R, C>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn default_max_relative() -> Self::Epsilon {
|
||||
@ -2212,7 +2198,7 @@ impl<T, R: Dim, C: Dim, S> UlpsEq for Unit<Matrix<T, R, C, S>>
|
||||
where
|
||||
T: Scalar + UlpsEq,
|
||||
S: RawStorage<T, R, C>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn default_max_ulps() -> u32 {
|
||||
|
@ -40,8 +40,8 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
T: SimdComplexField,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.unwrap_or(&T::zero()).simd_norm1(),
|
||||
|a, b| a.simd_max(b.simd_norm1()),
|
||||
|e| e.unwrap_or(&T::zero()).clone().simd_norm1(),
|
||||
|a, b| a.simd_max(b.clone().simd_norm1()),
|
||||
)
|
||||
}
|
||||
|
||||
@ -60,8 +60,8 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
T: SimdPartialOrd + Zero,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.inlined_clone()).unwrap_or_else(T::zero),
|
||||
|a, b| a.simd_max(b.inlined_clone()),
|
||||
|e| e.map(|e| e.clone()).unwrap_or_else(T::zero),
|
||||
|a, b| a.simd_max(b.clone()),
|
||||
)
|
||||
}
|
||||
|
||||
@ -101,10 +101,10 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
{
|
||||
self.fold_with(
|
||||
|e| {
|
||||
e.map(|e| e.simd_norm1())
|
||||
e.map(|e| e.clone().simd_norm1())
|
||||
.unwrap_or_else(T::SimdRealField::zero)
|
||||
},
|
||||
|a, b| a.simd_min(b.simd_norm1()),
|
||||
|a, b| a.simd_min(b.clone().simd_norm1()),
|
||||
)
|
||||
}
|
||||
|
||||
@ -123,8 +123,8 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
T: SimdPartialOrd + Zero,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.inlined_clone()).unwrap_or_else(T::zero),
|
||||
|a, b| a.simd_min(b.inlined_clone()),
|
||||
|e| e.map(|e| e.clone()).unwrap_or_else(T::zero),
|
||||
|a, b| a.simd_min(b.clone()),
|
||||
)
|
||||
}
|
||||
|
||||
@ -149,12 +149,12 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
{
|
||||
assert!(!self.is_empty(), "The input matrix must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.get_unchecked((0, 0)).norm1() };
|
||||
let mut the_max = unsafe { self.get_unchecked((0, 0)).clone().norm1() };
|
||||
let mut the_ij = (0, 0);
|
||||
|
||||
for j in 0..self.ncols() {
|
||||
for i in 0..self.nrows() {
|
||||
let val = unsafe { self.get_unchecked((i, j)).norm1() };
|
||||
let val = unsafe { self.get_unchecked((i, j)).clone().norm1() };
|
||||
|
||||
if val > the_max {
|
||||
the_max = val;
|
||||
@ -224,11 +224,11 @@ impl<T: Scalar, D: Dim, S: RawStorage<T, D>> Vector<T, D, S> {
|
||||
{
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.vget_unchecked(0).norm1() };
|
||||
let mut the_max = unsafe { self.vget_unchecked(0).clone().norm1() };
|
||||
let mut the_i = 0;
|
||||
|
||||
for i in 1..self.nrows() {
|
||||
let val = unsafe { self.vget_unchecked(i).norm1() };
|
||||
let val = unsafe { self.vget_unchecked(i).clone().norm1() };
|
||||
|
||||
if val > the_max {
|
||||
the_max = val;
|
||||
@ -268,7 +268,7 @@ impl<T: Scalar, D: Dim, S: RawStorage<T, D>> Vector<T, D, S> {
|
||||
}
|
||||
}
|
||||
|
||||
(the_i, the_max.inlined_clone())
|
||||
(the_i, the_max.clone())
|
||||
}
|
||||
|
||||
/// Computes the index of the vector component with the largest value.
|
||||
@ -350,7 +350,7 @@ impl<T: Scalar, D: Dim, S: RawStorage<T, D>> Vector<T, D, S> {
|
||||
}
|
||||
}
|
||||
|
||||
(the_i, the_min.inlined_clone())
|
||||
(the_i, the_min.clone())
|
||||
}
|
||||
|
||||
/// Computes the index of the vector component with the smallest value.
|
||||
|
@ -328,7 +328,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
|
||||
{
|
||||
let n = self.norm();
|
||||
let le = n.simd_le(min_norm);
|
||||
let le = n.clone().simd_le(min_norm);
|
||||
let val = self.unscale(n);
|
||||
SimdOption::new(val, le)
|
||||
}
|
||||
@ -377,7 +377,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
|
||||
{
|
||||
let n = self.norm();
|
||||
let scaled = self.scale(max / n);
|
||||
let scaled = self.scale(max.clone() / n.clone());
|
||||
let use_scaled = n.simd_gt(max);
|
||||
scaled.select(use_scaled, self.clone_owned())
|
||||
}
|
||||
@ -413,7 +413,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: StorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
T: SimdComplexField,
|
||||
{
|
||||
let n = self.norm();
|
||||
self.unscale_mut(n);
|
||||
self.unscale_mut(n.clone());
|
||||
|
||||
n
|
||||
}
|
||||
@ -433,8 +433,13 @@ impl<T: Scalar, R: Dim, C: Dim, S: StorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
|
||||
{
|
||||
let n = self.norm();
|
||||
let le = n.simd_le(min_norm);
|
||||
self.apply(|e| *e = e.simd_unscale(n).select(le, *e));
|
||||
let le = n.clone().simd_le(min_norm);
|
||||
self.apply(|e| {
|
||||
*e = e
|
||||
.clone()
|
||||
.simd_unscale(n.clone())
|
||||
.select(le.clone(), e.clone())
|
||||
});
|
||||
SimdOption::new(n, le)
|
||||
}
|
||||
|
||||
@ -451,7 +456,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: StorageMut<T, R, C>> Matrix<T, R, C, S> {
|
||||
if n <= min_norm {
|
||||
None
|
||||
} else {
|
||||
self.unscale_mut(n);
|
||||
self.unscale_mut(n.clone());
|
||||
Some(n)
|
||||
}
|
||||
}
|
||||
@ -572,7 +577,7 @@ where
|
||||
&& f(&Self::canonical_basis_element(1));
|
||||
} else if vs.len() == 1 {
|
||||
let v = &vs[0];
|
||||
let res = Self::from_column_slice(&[-v[1], v[0]]);
|
||||
let res = Self::from_column_slice(&[-v[1].clone(), v[0].clone()]);
|
||||
|
||||
let _ = f(&res.normalize());
|
||||
}
|
||||
@ -588,10 +593,10 @@ where
|
||||
let v = &vs[0];
|
||||
let mut a;
|
||||
|
||||
if v[0].norm1() > v[1].norm1() {
|
||||
a = Self::from_column_slice(&[v[2], T::zero(), -v[0]]);
|
||||
if v[0].clone().norm1() > v[1].clone().norm1() {
|
||||
a = Self::from_column_slice(&[v[2].clone(), T::zero(), -v[0].clone()]);
|
||||
} else {
|
||||
a = Self::from_column_slice(&[T::zero(), -v[2], v[1]]);
|
||||
a = Self::from_column_slice(&[T::zero(), -v[2].clone(), v[1].clone()]);
|
||||
};
|
||||
|
||||
let _ = a.normalize_mut();
|
||||
|
@ -116,7 +116,7 @@ where
|
||||
#[inline]
|
||||
pub fn neg_mut(&mut self) {
|
||||
for e in self.iter_mut() {
|
||||
*e = -e.inlined_clone()
|
||||
*e = -e.clone()
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -163,12 +163,12 @@ macro_rules! componentwise_binop_impl(
|
||||
let arr2 = rhs.data.as_slice_unchecked();
|
||||
let out = out.data.as_mut_slice_unchecked();
|
||||
for i in 0 .. arr1.len() {
|
||||
Status::init(out.get_unchecked_mut(i), arr1.get_unchecked(i).inlined_clone().$method(arr2.get_unchecked(i).inlined_clone()));
|
||||
Status::init(out.get_unchecked_mut(i), arr1.get_unchecked(i).clone().$method(arr2.get_unchecked(i).clone()));
|
||||
}
|
||||
} else {
|
||||
for j in 0 .. self.ncols() {
|
||||
for i in 0 .. self.nrows() {
|
||||
let val = self.get_unchecked((i, j)).inlined_clone().$method(rhs.get_unchecked((i, j)).inlined_clone());
|
||||
let val = self.get_unchecked((i, j)).clone().$method(rhs.get_unchecked((i, j)).clone());
|
||||
Status::init(out.get_unchecked_mut((i, j)), val);
|
||||
}
|
||||
}
|
||||
@ -193,12 +193,12 @@ macro_rules! componentwise_binop_impl(
|
||||
let arr2 = rhs.data.as_slice_unchecked();
|
||||
|
||||
for i in 0 .. arr2.len() {
|
||||
arr1.get_unchecked_mut(i).$method_assign(arr2.get_unchecked(i).inlined_clone());
|
||||
arr1.get_unchecked_mut(i).$method_assign(arr2.get_unchecked(i).clone());
|
||||
}
|
||||
} else {
|
||||
for j in 0 .. rhs.ncols() {
|
||||
for i in 0 .. rhs.nrows() {
|
||||
self.get_unchecked_mut((i, j)).$method_assign(rhs.get_unchecked((i, j)).inlined_clone())
|
||||
self.get_unchecked_mut((i, j)).$method_assign(rhs.get_unchecked((i, j)).clone())
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -221,14 +221,14 @@ macro_rules! componentwise_binop_impl(
|
||||
let arr2 = rhs.data.as_mut_slice_unchecked();
|
||||
|
||||
for i in 0 .. arr1.len() {
|
||||
let res = arr1.get_unchecked(i).inlined_clone().$method(arr2.get_unchecked(i).inlined_clone());
|
||||
let res = arr1.get_unchecked(i).clone().$method(arr2.get_unchecked(i).clone());
|
||||
*arr2.get_unchecked_mut(i) = res;
|
||||
}
|
||||
} else {
|
||||
for j in 0 .. self.ncols() {
|
||||
for i in 0 .. self.nrows() {
|
||||
let r = rhs.get_unchecked_mut((i, j));
|
||||
*r = self.get_unchecked((i, j)).inlined_clone().$method(r.inlined_clone())
|
||||
*r = self.get_unchecked((i, j)).clone().$method(r.clone())
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -472,7 +472,7 @@ macro_rules! componentwise_scalarop_impl(
|
||||
|
||||
// for left in res.iter_mut() {
|
||||
for left in res.as_mut_slice().iter_mut() {
|
||||
*left = left.inlined_clone().$method(rhs.inlined_clone())
|
||||
*left = left.clone().$method(rhs.clone())
|
||||
}
|
||||
|
||||
res
|
||||
@ -498,7 +498,7 @@ macro_rules! componentwise_scalarop_impl(
|
||||
fn $method_assign(&mut self, rhs: T) {
|
||||
for j in 0 .. self.ncols() {
|
||||
for i in 0 .. self.nrows() {
|
||||
unsafe { self.get_unchecked_mut((i, j)).$method_assign(rhs.inlined_clone()) };
|
||||
unsafe { self.get_unchecked_mut((i, j)).$method_assign(rhs.clone()) };
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -815,11 +815,11 @@ where
|
||||
for j1 in 0..ncols1.value() {
|
||||
for j2 in 0..ncols2.value() {
|
||||
for i1 in 0..nrows1.value() {
|
||||
let coeff = self.get_unchecked((i1, j1)).inlined_clone();
|
||||
let coeff = self.get_unchecked((i1, j1)).clone();
|
||||
|
||||
for i2 in 0..nrows2.value() {
|
||||
*data_res = MaybeUninit::new(
|
||||
coeff.inlined_clone() * rhs.get_unchecked((i2, j2)).inlined_clone(),
|
||||
coeff.clone() * rhs.get_unchecked((i2, j2)).clone(),
|
||||
);
|
||||
data_res = data_res.offset(1);
|
||||
}
|
||||
|
@ -60,7 +60,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
pub fn is_identity(&self, eps: T::Epsilon) -> bool
|
||||
where
|
||||
T: Zero + One + RelativeEq,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
let (nrows, ncols) = self.shape();
|
||||
let d;
|
||||
@ -70,7 +70,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
|
||||
for i in d..nrows {
|
||||
for j in 0..ncols {
|
||||
if !relative_eq!(self[(i, j)], T::zero(), epsilon = eps) {
|
||||
if !relative_eq!(self[(i, j)], T::zero(), epsilon = eps.clone()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -81,7 +81,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
|
||||
for i in 0..nrows {
|
||||
for j in d..ncols {
|
||||
if !relative_eq!(self[(i, j)], T::zero(), epsilon = eps) {
|
||||
if !relative_eq!(self[(i, j)], T::zero(), epsilon = eps.clone()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -92,8 +92,8 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
for i in 1..d {
|
||||
for j in 0..i {
|
||||
// TODO: use unsafe indexing.
|
||||
if !relative_eq!(self[(i, j)], T::zero(), epsilon = eps)
|
||||
|| !relative_eq!(self[(j, i)], T::zero(), epsilon = eps)
|
||||
if !relative_eq!(self[(i, j)], T::zero(), epsilon = eps.clone())
|
||||
|| !relative_eq!(self[(j, i)], T::zero(), epsilon = eps.clone())
|
||||
{
|
||||
return false;
|
||||
}
|
||||
@ -102,7 +102,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
|
||||
// Diagonal elements of the sub-square matrix.
|
||||
for i in 0..d {
|
||||
if !relative_eq!(self[(i, i)], T::one(), epsilon = eps) {
|
||||
if !relative_eq!(self[(i, i)], T::one(), epsilon = eps.clone()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -122,7 +122,7 @@ impl<T: ComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
where
|
||||
T: Zero + One + ClosedAdd + ClosedMul + RelativeEq,
|
||||
S: Storage<T, R, C>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
DefaultAllocator: Allocator<T, R, C> + Allocator<T, C, C>,
|
||||
{
|
||||
(self.ad_mul(self)).is_identity(eps)
|
||||
|
@ -1,20 +1,8 @@
|
||||
use std::any::Any;
|
||||
use std::fmt::Debug;
|
||||
|
||||
/// The basic scalar type for all structures of `nalgebra`.
|
||||
///
|
||||
/// This does not make any assumption on the algebraic properties of `Self`.
|
||||
pub trait Scalar: 'static + Clone + PartialEq + Debug {
|
||||
#[inline(always)]
|
||||
/// Performance hack: Clone doesn't get inlined for Copy types in debug mode, so make it inline anyway.
|
||||
fn inlined_clone(&self) -> Self {
|
||||
self.clone()
|
||||
}
|
||||
}
|
||||
pub trait Scalar: 'static + Clone + PartialEq + Debug {}
|
||||
|
||||
impl<T: Copy + PartialEq + Debug + Any> Scalar for T {
|
||||
#[inline(always)]
|
||||
fn inlined_clone(&self) -> T {
|
||||
*self
|
||||
}
|
||||
}
|
||||
impl<T: 'static + Clone + PartialEq + Debug> Scalar for T {}
|
||||
|
@ -216,11 +216,11 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
T::zero()
|
||||
} else {
|
||||
let val = self.iter().cloned().fold((T::zero(), T::zero()), |a, b| {
|
||||
(a.0 + b.inlined_clone() * b.inlined_clone(), a.1 + b)
|
||||
(a.0 + b.clone() * b.clone(), a.1 + b)
|
||||
});
|
||||
let denom = T::one() / crate::convert::<_, T>(self.len() as f64);
|
||||
let vd = val.1 * denom.inlined_clone();
|
||||
val.0 * denom - vd.inlined_clone() * vd
|
||||
let vd = val.1 * denom.clone();
|
||||
val.0 * denom - vd.clone() * vd
|
||||
}
|
||||
}
|
||||
|
||||
@ -289,15 +289,14 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
let (nrows, ncols) = self.shape_generic();
|
||||
|
||||
let mut mean = self.column_mean();
|
||||
mean.apply(|e| *e = -(e.inlined_clone() * e.inlined_clone()));
|
||||
mean.apply(|e| *e = -(e.clone() * e.clone()));
|
||||
|
||||
let denom = T::one() / crate::convert::<_, T>(ncols.value() as f64);
|
||||
self.compress_columns(mean, |out, col| {
|
||||
for i in 0..nrows.value() {
|
||||
unsafe {
|
||||
let val = col.vget_unchecked(i);
|
||||
*out.vget_unchecked_mut(i) +=
|
||||
denom.inlined_clone() * val.inlined_clone() * val.inlined_clone()
|
||||
*out.vget_unchecked_mut(i) += denom.clone() * val.clone() * val.clone()
|
||||
}
|
||||
}
|
||||
})
|
||||
@ -397,7 +396,7 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
let (nrows, ncols) = self.shape_generic();
|
||||
let denom = T::one() / crate::convert::<_, T>(ncols.value() as f64);
|
||||
self.compress_columns(OVector::zeros_generic(nrows, Const::<1>), |out, col| {
|
||||
out.axpy(denom.inlined_clone(), &col, T::one())
|
||||
out.axpy(denom.clone(), &col, T::one())
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -11,7 +11,7 @@ macro_rules! impl_swizzle {
|
||||
#[must_use]
|
||||
pub fn $name(&self) -> $Result<T>
|
||||
where D::Typenum: Cmp<typenum::$BaseDim, Output=Greater> {
|
||||
$Result::new($(self[$i].inlined_clone()),*)
|
||||
$Result::new($(self[$i].clone()),*)
|
||||
}
|
||||
)*
|
||||
)*
|
||||
|
@ -170,7 +170,7 @@ impl<T: Normed> Unit<T> {
|
||||
#[inline]
|
||||
pub fn new_and_get(mut value: T) -> (Self, T::Norm) {
|
||||
let n = value.norm();
|
||||
value.unscale_mut(n);
|
||||
value.unscale_mut(n.clone());
|
||||
(Unit { value }, n)
|
||||
}
|
||||
|
||||
@ -184,9 +184,9 @@ impl<T: Normed> Unit<T> {
|
||||
{
|
||||
let sq_norm = value.norm_squared();
|
||||
|
||||
if sq_norm > min_norm * min_norm {
|
||||
if sq_norm > min_norm.clone() * min_norm {
|
||||
let n = sq_norm.simd_sqrt();
|
||||
value.unscale_mut(n);
|
||||
value.unscale_mut(n.clone());
|
||||
Some((Unit { value }, n))
|
||||
} else {
|
||||
None
|
||||
@ -201,7 +201,7 @@ impl<T: Normed> Unit<T> {
|
||||
#[inline]
|
||||
pub fn renormalize(&mut self) -> T::Norm {
|
||||
let n = self.norm();
|
||||
self.value.unscale_mut(n);
|
||||
self.value.unscale_mut(n.clone());
|
||||
n
|
||||
}
|
||||
|
||||
|
@ -87,7 +87,10 @@ where
|
||||
pub fn normalize(&self) -> Self {
|
||||
let real_norm = self.real.norm();
|
||||
|
||||
Self::from_real_and_dual(self.real / real_norm, self.dual / real_norm)
|
||||
Self::from_real_and_dual(
|
||||
self.real.clone() / real_norm.clone(),
|
||||
self.dual.clone() / real_norm,
|
||||
)
|
||||
}
|
||||
|
||||
/// Normalizes this quaternion.
|
||||
@ -107,8 +110,8 @@ where
|
||||
#[inline]
|
||||
pub fn normalize_mut(&mut self) -> T {
|
||||
let real_norm = self.real.norm();
|
||||
self.real /= real_norm;
|
||||
self.dual /= real_norm;
|
||||
self.real /= real_norm.clone();
|
||||
self.dual /= real_norm.clone();
|
||||
real_norm
|
||||
}
|
||||
|
||||
@ -182,7 +185,7 @@ where
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let mut res = *self;
|
||||
let mut res = self.clone();
|
||||
if res.try_inverse_mut() {
|
||||
Some(res)
|
||||
} else {
|
||||
@ -216,7 +219,7 @@ where
|
||||
{
|
||||
let inverted = self.real.try_inverse_mut();
|
||||
if inverted {
|
||||
self.dual = -self.real * self.dual * self.real;
|
||||
self.dual = -self.real.clone() * self.dual.clone() * self.real.clone();
|
||||
true
|
||||
} else {
|
||||
false
|
||||
@ -246,7 +249,7 @@ where
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn lerp(&self, other: &Self, t: T) -> Self {
|
||||
self * (T::one() - t) + other * t
|
||||
self * (T::one() - t.clone()) + other * t
|
||||
}
|
||||
}
|
||||
|
||||
@ -293,15 +296,15 @@ where
|
||||
let dq: Dq<T> = Dq::<T>::deserialize(deserializer)?;
|
||||
|
||||
Ok(Self {
|
||||
real: Quaternion::new(dq[3], dq[0], dq[1], dq[2]),
|
||||
dual: Quaternion::new(dq[7], dq[4], dq[5], dq[6]),
|
||||
real: Quaternion::new(dq[3].clone(), dq[0].clone(), dq[1].clone(), dq[2].clone()),
|
||||
dual: Quaternion::new(dq[7].clone(), dq[4].clone(), dq[5].clone(), dq[6].clone()),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: RealField> DualQuaternion<T> {
|
||||
fn to_vector(self) -> OVector<T, U8> {
|
||||
(*self.as_ref()).into()
|
||||
self.as_ref().clone().into()
|
||||
}
|
||||
}
|
||||
|
||||
@ -315,9 +318,9 @@ impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq for DualQuaternion<T> {
|
||||
|
||||
#[inline]
|
||||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||||
self.to_vector().abs_diff_eq(&other.to_vector(), epsilon) ||
|
||||
self.clone().to_vector().abs_diff_eq(&other.clone().to_vector(), epsilon.clone()) ||
|
||||
// Account for the double-covering of S², i.e. q = -q
|
||||
self.to_vector().iter().zip(other.to_vector().iter()).all(|(a, b)| a.abs_diff_eq(&-*b, epsilon))
|
||||
self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.abs_diff_eq(&-b.clone(), epsilon.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
@ -334,9 +337,9 @@ impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq for DualQuaternion<T> {
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool {
|
||||
self.to_vector().relative_eq(&other.to_vector(), epsilon, max_relative) ||
|
||||
self.clone().to_vector().relative_eq(&other.clone().to_vector(), epsilon.clone(), max_relative.clone()) ||
|
||||
// Account for the double-covering of S², i.e. q = -q
|
||||
self.to_vector().iter().zip(other.to_vector().iter()).all(|(a, b)| a.relative_eq(&-*b, epsilon, max_relative))
|
||||
self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.relative_eq(&-b.clone(), epsilon.clone(), max_relative.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
@ -348,9 +351,9 @@ impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for DualQuaternion<T> {
|
||||
|
||||
#[inline]
|
||||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||||
self.to_vector().ulps_eq(&other.to_vector(), epsilon, max_ulps) ||
|
||||
self.clone().to_vector().ulps_eq(&other.clone().to_vector(), epsilon.clone(), max_ulps.clone()) ||
|
||||
// Account for the double-covering of S², i.e. q = -q.
|
||||
self.to_vector().iter().zip(other.to_vector().iter()).all(|(a, b)| a.ulps_eq(&-*b, epsilon, max_ulps))
|
||||
self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.ulps_eq(&-b.clone(), epsilon.clone(), max_ulps.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
@ -381,13 +384,13 @@ impl<T: SimdRealField> Normed for DualQuaternion<T> {
|
||||
|
||||
#[inline]
|
||||
fn scale_mut(&mut self, n: Self::Norm) {
|
||||
self.real.scale_mut(n);
|
||||
self.real.scale_mut(n.clone());
|
||||
self.dual.scale_mut(n);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn unscale_mut(&mut self, n: Self::Norm) {
|
||||
self.real.unscale_mut(n);
|
||||
self.real.unscale_mut(n.clone());
|
||||
self.dual.unscale_mut(n);
|
||||
}
|
||||
}
|
||||
@ -471,10 +474,10 @@ where
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use inverse_mut()?"]
|
||||
pub fn inverse(&self) -> Self {
|
||||
let real = Unit::new_unchecked(self.as_ref().real)
|
||||
let real = Unit::new_unchecked(self.as_ref().real.clone())
|
||||
.inverse()
|
||||
.into_inner();
|
||||
let dual = -real * self.as_ref().dual * real;
|
||||
let dual = -real.clone() * self.as_ref().dual.clone() * real.clone();
|
||||
UnitDualQuaternion::new_unchecked(DualQuaternion { real, dual })
|
||||
}
|
||||
|
||||
@ -495,8 +498,10 @@ where
|
||||
#[inline]
|
||||
pub fn inverse_mut(&mut self) {
|
||||
let quat = self.as_mut_unchecked();
|
||||
quat.real = Unit::new_unchecked(quat.real).inverse().into_inner();
|
||||
quat.dual = -quat.real * quat.dual * quat.real;
|
||||
quat.real = Unit::new_unchecked(quat.real.clone())
|
||||
.inverse()
|
||||
.into_inner();
|
||||
quat.dual = -quat.real.clone() * quat.dual.clone() * quat.real.clone();
|
||||
}
|
||||
|
||||
/// The unit dual quaternion needed to make `self` and `other` coincide.
|
||||
@ -639,16 +644,16 @@ where
|
||||
T: RealField,
|
||||
{
|
||||
let two = T::one() + T::one();
|
||||
let half = T::one() / two;
|
||||
let half = T::one() / two.clone();
|
||||
|
||||
// Invert one of the quaternions if we've got a longest-path
|
||||
// interpolation.
|
||||
let other = {
|
||||
let dot_product = self.as_ref().real.coords.dot(&other.as_ref().real.coords);
|
||||
if dot_product < T::zero() {
|
||||
-*other
|
||||
-other.clone()
|
||||
} else {
|
||||
*other
|
||||
other.clone()
|
||||
}
|
||||
};
|
||||
|
||||
@ -661,21 +666,21 @@ where
|
||||
let inverse_norm_squared = T::one() / norm_squared;
|
||||
let inverse_norm = inverse_norm_squared.sqrt();
|
||||
|
||||
let mut angle = two * difference.real.scalar().acos();
|
||||
let mut pitch = -two * difference.dual.scalar() * inverse_norm;
|
||||
let direction = difference.real.vector() * inverse_norm;
|
||||
let mut angle = two.clone() * difference.real.scalar().acos();
|
||||
let mut pitch = -two * difference.dual.scalar() * inverse_norm.clone();
|
||||
let direction = difference.real.vector() * inverse_norm.clone();
|
||||
let moment = (difference.dual.vector()
|
||||
- direction * (pitch * difference.real.scalar() * half))
|
||||
- direction.clone() * (pitch.clone() * difference.real.scalar() * half.clone()))
|
||||
* inverse_norm;
|
||||
|
||||
angle *= t;
|
||||
angle *= t.clone();
|
||||
pitch *= t;
|
||||
|
||||
let sin = (half * angle).sin();
|
||||
let cos = (half * angle).cos();
|
||||
let real = Quaternion::from_parts(cos, direction * sin);
|
||||
let sin = (half.clone() * angle.clone()).sin();
|
||||
let cos = (half.clone() * angle).cos();
|
||||
let real = Quaternion::from_parts(cos.clone(), direction.clone() * sin.clone());
|
||||
let dual = Quaternion::from_parts(
|
||||
-pitch * half * sin,
|
||||
-pitch.clone() * half.clone() * sin.clone(),
|
||||
moment * sin + direction * (pitch * half * cos),
|
||||
);
|
||||
|
||||
@ -703,7 +708,7 @@ where
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn rotation(&self) -> UnitQuaternion<T> {
|
||||
Unit::new_unchecked(self.as_ref().real)
|
||||
Unit::new_unchecked(self.as_ref().real.clone())
|
||||
}
|
||||
|
||||
/// Return the translation part of this unit dual quaternion.
|
||||
@ -725,7 +730,7 @@ where
|
||||
pub fn translation(&self) -> Translation3<T> {
|
||||
let two = T::one() + T::one();
|
||||
Translation3::from(
|
||||
((self.as_ref().dual * self.as_ref().real.conjugate()) * two)
|
||||
((self.as_ref().dual.clone() * self.as_ref().real.clone().conjugate()) * two)
|
||||
.vector()
|
||||
.into_owned(),
|
||||
)
|
||||
|
@ -186,7 +186,7 @@ where
|
||||
pub fn from_parts(translation: Translation3<T>, rotation: UnitQuaternion<T>) -> Self {
|
||||
let half: T = crate::convert(0.5f64);
|
||||
UnitDualQuaternion::new_unchecked(DualQuaternion {
|
||||
real: rotation.into_inner(),
|
||||
real: rotation.clone().into_inner(),
|
||||
dual: Quaternion::from_parts(T::zero(), translation.vector)
|
||||
* rotation.into_inner()
|
||||
* half,
|
||||
@ -210,6 +210,8 @@ where
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn from_isometry(isometry: &Isometry3<T>) -> Self {
|
||||
// TODO: take the isometry by-move instead of cloning it.
|
||||
let isometry = isometry.clone();
|
||||
UnitDualQuaternion::from_parts(isometry.translation, isometry.rotation)
|
||||
}
|
||||
|
||||
|
@ -122,7 +122,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn to_superset(&self) -> Transform<T2, C, 3> {
|
||||
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
|
||||
Transform::from_matrix_unchecked(self.clone().to_homogeneous().to_superset())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -141,7 +141,7 @@ impl<T1: RealField, T2: RealField + SupersetOf<T1>> SubsetOf<Matrix4<T2>>
|
||||
{
|
||||
#[inline]
|
||||
fn to_superset(&self) -> Matrix4<T2> {
|
||||
self.to_homogeneous().to_superset()
|
||||
self.clone().to_homogeneous().to_superset()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -417,7 +417,7 @@ dual_quaternion_op_impl!(
|
||||
(U4, U1), (U4, U1);
|
||||
self: &'a UnitDualQuaternion<T>, rhs: &'b UnitQuaternion<T>,
|
||||
Output = UnitDualQuaternion<T> => U1, U4;
|
||||
self * UnitDualQuaternion::<T>::new_unchecked(DualQuaternion::from_real(rhs.into_inner()));
|
||||
self * UnitDualQuaternion::<T>::new_unchecked(DualQuaternion::from_real(rhs.clone().into_inner()));
|
||||
'a, 'b);
|
||||
|
||||
dual_quaternion_op_impl!(
|
||||
@ -433,7 +433,7 @@ dual_quaternion_op_impl!(
|
||||
(U4, U1), (U4, U1);
|
||||
self: UnitDualQuaternion<T>, rhs: &'b UnitQuaternion<T>,
|
||||
Output = UnitDualQuaternion<T> => U3, U3;
|
||||
self * UnitDualQuaternion::<T>::new_unchecked(DualQuaternion::from_real(rhs.into_inner()));
|
||||
self * UnitDualQuaternion::<T>::new_unchecked(DualQuaternion::from_real(rhs.clone().into_inner()));
|
||||
'b);
|
||||
|
||||
dual_quaternion_op_impl!(
|
||||
@ -449,7 +449,7 @@ dual_quaternion_op_impl!(
|
||||
(U4, U1), (U4, U1);
|
||||
self: &'a UnitQuaternion<T>, rhs: &'b UnitDualQuaternion<T>,
|
||||
Output = UnitDualQuaternion<T> => U1, U4;
|
||||
UnitDualQuaternion::<T>::new_unchecked(DualQuaternion::from_real(self.into_inner())) * rhs;
|
||||
UnitDualQuaternion::<T>::new_unchecked(DualQuaternion::from_real(self.clone().into_inner())) * rhs;
|
||||
'a, 'b);
|
||||
|
||||
dual_quaternion_op_impl!(
|
||||
@ -457,7 +457,7 @@ dual_quaternion_op_impl!(
|
||||
(U4, U1), (U4, U1);
|
||||
self: &'a UnitQuaternion<T>, rhs: UnitDualQuaternion<T>,
|
||||
Output = UnitDualQuaternion<T> => U3, U3;
|
||||
UnitDualQuaternion::<T>::new_unchecked(DualQuaternion::from_real(self.into_inner())) * rhs;
|
||||
UnitDualQuaternion::<T>::new_unchecked(DualQuaternion::from_real(self.clone().into_inner())) * rhs;
|
||||
'a);
|
||||
|
||||
dual_quaternion_op_impl!(
|
||||
@ -520,7 +520,7 @@ dual_quaternion_op_impl!(
|
||||
#[allow(clippy::suspicious_arithmetic_impl)]
|
||||
{
|
||||
UnitDualQuaternion::<T>::new_unchecked(
|
||||
DualQuaternion::from_real(self.into_inner())
|
||||
DualQuaternion::from_real(self.clone().into_inner())
|
||||
) * rhs.inverse()
|
||||
}; 'a, 'b);
|
||||
|
||||
@ -532,7 +532,7 @@ dual_quaternion_op_impl!(
|
||||
#[allow(clippy::suspicious_arithmetic_impl)]
|
||||
{
|
||||
UnitDualQuaternion::<T>::new_unchecked(
|
||||
DualQuaternion::from_real(self.into_inner())
|
||||
DualQuaternion::from_real(self.clone().into_inner())
|
||||
) * rhs.inverse()
|
||||
}; 'a);
|
||||
|
||||
@ -566,7 +566,7 @@ dual_quaternion_op_impl!(
|
||||
(U4, U1), (U3, U1);
|
||||
self: &'a UnitDualQuaternion<T>, rhs: &'b Translation3<T>,
|
||||
Output = UnitDualQuaternion<T> => U3, U1;
|
||||
self * UnitDualQuaternion::<T>::from_parts(*rhs, UnitQuaternion::identity());
|
||||
self * UnitDualQuaternion::<T>::from_parts(rhs.clone(), UnitQuaternion::identity());
|
||||
'a, 'b);
|
||||
|
||||
dual_quaternion_op_impl!(
|
||||
@ -582,7 +582,7 @@ dual_quaternion_op_impl!(
|
||||
(U4, U1), (U3, U3);
|
||||
self: UnitDualQuaternion<T>, rhs: &'b Translation3<T>,
|
||||
Output = UnitDualQuaternion<T> => U3, U1;
|
||||
self * UnitDualQuaternion::<T>::from_parts(*rhs, UnitQuaternion::identity());
|
||||
self * UnitDualQuaternion::<T>::from_parts(rhs.clone(), UnitQuaternion::identity());
|
||||
'b);
|
||||
|
||||
dual_quaternion_op_impl!(
|
||||
@ -634,7 +634,7 @@ dual_quaternion_op_impl!(
|
||||
(U3, U1), (U4, U1);
|
||||
self: &'b Translation3<T>, rhs: &'a UnitDualQuaternion<T>,
|
||||
Output = UnitDualQuaternion<T> => U3, U1;
|
||||
UnitDualQuaternion::<T>::from_parts(*self, UnitQuaternion::identity()) * rhs;
|
||||
UnitDualQuaternion::<T>::from_parts(self.clone(), UnitQuaternion::identity()) * rhs;
|
||||
'a, 'b);
|
||||
|
||||
dual_quaternion_op_impl!(
|
||||
@ -642,7 +642,7 @@ dual_quaternion_op_impl!(
|
||||
(U3, U1), (U4, U1);
|
||||
self: &'a Translation3<T>, rhs: UnitDualQuaternion<T>,
|
||||
Output = UnitDualQuaternion<T> => U3, U1;
|
||||
UnitDualQuaternion::<T>::from_parts(*self, UnitQuaternion::identity()) * rhs;
|
||||
UnitDualQuaternion::<T>::from_parts(self.clone(), UnitQuaternion::identity()) * rhs;
|
||||
'a);
|
||||
|
||||
dual_quaternion_op_impl!(
|
||||
@ -666,7 +666,7 @@ dual_quaternion_op_impl!(
|
||||
(U3, U1), (U4, U1);
|
||||
self: &'b Translation3<T>, rhs: &'a UnitDualQuaternion<T>,
|
||||
Output = UnitDualQuaternion<T> => U3, U1;
|
||||
UnitDualQuaternion::<T>::from_parts(*self, UnitQuaternion::identity()) / rhs;
|
||||
UnitDualQuaternion::<T>::from_parts(self.clone(), UnitQuaternion::identity()) / rhs;
|
||||
'a, 'b);
|
||||
|
||||
dual_quaternion_op_impl!(
|
||||
@ -674,7 +674,7 @@ dual_quaternion_op_impl!(
|
||||
(U3, U1), (U4, U1);
|
||||
self: &'a Translation3<T>, rhs: UnitDualQuaternion<T>,
|
||||
Output = UnitDualQuaternion<T> => U3, U1;
|
||||
UnitDualQuaternion::<T>::from_parts(*self, UnitQuaternion::identity()) / rhs;
|
||||
UnitDualQuaternion::<T>::from_parts(self.clone(), UnitQuaternion::identity()) / rhs;
|
||||
'a);
|
||||
|
||||
dual_quaternion_op_impl!(
|
||||
@ -828,7 +828,7 @@ dual_quaternion_op_impl!(
|
||||
(U4, U1), (U3, U1) for SB: Storage<T, U3> ;
|
||||
self: &'a UnitDualQuaternion<T>, rhs: &'b Vector<T, U3, SB>,
|
||||
Output = Vector3<T> => U3, U1;
|
||||
Unit::new_unchecked(self.as_ref().real) * rhs;
|
||||
Unit::new_unchecked(self.as_ref().real.clone()) * rhs;
|
||||
'a, 'b);
|
||||
|
||||
dual_quaternion_op_impl!(
|
||||
@ -862,9 +862,9 @@ dual_quaternion_op_impl!(
|
||||
Output = Point3<T> => U3, U1;
|
||||
{
|
||||
let two: T = crate::convert(2.0f64);
|
||||
let q_point = Quaternion::from_parts(T::zero(), rhs.coords);
|
||||
let q_point = Quaternion::from_parts(T::zero(), rhs.coords.clone());
|
||||
Point::from(
|
||||
((self.as_ref().real * q_point + self.as_ref().dual * two) * self.as_ref().real.conjugate())
|
||||
((self.as_ref().real.clone() * q_point + self.as_ref().dual.clone() * two) * self.as_ref().real.clone().conjugate())
|
||||
.vector()
|
||||
.into_owned(),
|
||||
)
|
||||
@ -1117,7 +1117,7 @@ dual_quaternion_op_impl!(
|
||||
MulAssign, mul_assign;
|
||||
(U4, U1), (U4, U1);
|
||||
self: UnitDualQuaternion<T>, rhs: &'b UnitQuaternion<T>;
|
||||
*self *= *rhs; 'b);
|
||||
*self *= rhs.clone(); 'b);
|
||||
|
||||
// UnitDualQuaternion ÷= UnitQuaternion
|
||||
dual_quaternion_op_impl!(
|
||||
@ -1153,7 +1153,7 @@ dual_quaternion_op_impl!(
|
||||
MulAssign, mul_assign;
|
||||
(U4, U1), (U4, U1);
|
||||
self: UnitDualQuaternion<T>, rhs: &'b Translation3<T>;
|
||||
*self *= *rhs; 'b);
|
||||
*self *= rhs.clone(); 'b);
|
||||
|
||||
// UnitDualQuaternion ÷= Translation3
|
||||
dual_quaternion_op_impl!(
|
||||
@ -1219,8 +1219,8 @@ macro_rules! scalar_op_impl(
|
||||
#[inline]
|
||||
fn $op(self, n: T) -> Self::Output {
|
||||
DualQuaternion::from_real_and_dual(
|
||||
self.real.$op(n),
|
||||
self.dual.$op(n)
|
||||
self.real.clone().$op(n.clone()),
|
||||
self.dual.clone().$op(n)
|
||||
)
|
||||
}
|
||||
}
|
||||
@ -1232,8 +1232,8 @@ macro_rules! scalar_op_impl(
|
||||
#[inline]
|
||||
fn $op(self, n: T) -> Self::Output {
|
||||
DualQuaternion::from_real_and_dual(
|
||||
self.real.$op(n),
|
||||
self.dual.$op(n)
|
||||
self.real.clone().$op(n.clone()),
|
||||
self.dual.clone().$op(n)
|
||||
)
|
||||
}
|
||||
}
|
||||
@ -1243,7 +1243,7 @@ macro_rules! scalar_op_impl(
|
||||
|
||||
#[inline]
|
||||
fn $op_assign(&mut self, n: T) {
|
||||
self.real.$op_assign(n);
|
||||
self.real.$op_assign(n.clone());
|
||||
self.dual.$op_assign(n);
|
||||
}
|
||||
}
|
||||
|
@ -272,7 +272,7 @@ where
|
||||
#[must_use]
|
||||
pub fn inv_mul(&self, rhs: &Isometry<T, R, D>) -> Self {
|
||||
let inv_rot1 = self.rotation.inverse();
|
||||
let tr_12 = rhs.translation.vector - self.translation.vector;
|
||||
let tr_12 = &rhs.translation.vector - &self.translation.vector;
|
||||
Isometry::from_parts(
|
||||
inv_rot1.transform_vector(&tr_12).into(),
|
||||
inv_rot1 * rhs.rotation.clone(),
|
||||
@ -437,7 +437,7 @@ where
|
||||
#[must_use]
|
||||
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
|
||||
self.rotation
|
||||
.inverse_transform_point(&(pt - self.translation.vector))
|
||||
.inverse_transform_point(&(pt - &self.translation.vector))
|
||||
}
|
||||
|
||||
/// Transform the given vector by the inverse of this isometry, ignoring the
|
||||
@ -574,7 +574,7 @@ where
|
||||
impl<T: RealField, R, const D: usize> AbsDiffEq for Isometry<T, R, D>
|
||||
where
|
||||
R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
type Epsilon = T::Epsilon;
|
||||
|
||||
@ -585,7 +585,8 @@ where
|
||||
|
||||
#[inline]
|
||||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||||
self.translation.abs_diff_eq(&other.translation, epsilon)
|
||||
self.translation
|
||||
.abs_diff_eq(&other.translation, epsilon.clone())
|
||||
&& self.rotation.abs_diff_eq(&other.rotation, epsilon)
|
||||
}
|
||||
}
|
||||
@ -593,7 +594,7 @@ where
|
||||
impl<T: RealField, R, const D: usize> RelativeEq for Isometry<T, R, D>
|
||||
where
|
||||
R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn default_max_relative() -> Self::Epsilon {
|
||||
@ -608,7 +609,7 @@ where
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool {
|
||||
self.translation
|
||||
.relative_eq(&other.translation, epsilon, max_relative)
|
||||
.relative_eq(&other.translation, epsilon.clone(), max_relative.clone())
|
||||
&& self
|
||||
.rotation
|
||||
.relative_eq(&other.rotation, epsilon, max_relative)
|
||||
@ -618,7 +619,7 @@ where
|
||||
impl<T: RealField, R, const D: usize> UlpsEq for Isometry<T, R, D>
|
||||
where
|
||||
R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn default_max_ulps() -> u32 {
|
||||
@ -628,7 +629,7 @@ where
|
||||
#[inline]
|
||||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||||
self.translation
|
||||
.ulps_eq(&other.translation, epsilon, max_ulps)
|
||||
.ulps_eq(&other.translation, epsilon.clone(), max_ulps.clone())
|
||||
&& self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
|
||||
}
|
||||
}
|
||||
|
@ -31,7 +31,10 @@ impl<T: SimdRealField> Isometry3<T> {
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let tr = self.translation.vector.lerp(&other.translation.vector, t);
|
||||
let tr = self
|
||||
.translation
|
||||
.vector
|
||||
.lerp(&other.translation.vector, t.clone());
|
||||
let rot = self.rotation.slerp(&other.rotation, t);
|
||||
Self::from_parts(tr.into(), rot)
|
||||
}
|
||||
@ -65,7 +68,10 @@ impl<T: SimdRealField> Isometry3<T> {
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let tr = self.translation.vector.lerp(&other.translation.vector, t);
|
||||
let tr = self
|
||||
.translation
|
||||
.vector
|
||||
.lerp(&other.translation.vector, t.clone());
|
||||
let rot = self.rotation.try_slerp(&other.rotation, t, epsilon)?;
|
||||
Some(Self::from_parts(tr.into(), rot))
|
||||
}
|
||||
@ -101,7 +107,10 @@ impl<T: SimdRealField> IsometryMatrix3<T> {
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let tr = self.translation.vector.lerp(&other.translation.vector, t);
|
||||
let tr = self
|
||||
.translation
|
||||
.vector
|
||||
.lerp(&other.translation.vector, t.clone());
|
||||
let rot = self.rotation.slerp(&other.rotation, t);
|
||||
Self::from_parts(tr.into(), rot)
|
||||
}
|
||||
@ -135,7 +144,10 @@ impl<T: SimdRealField> IsometryMatrix3<T> {
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let tr = self.translation.vector.lerp(&other.translation.vector, t);
|
||||
let tr = self
|
||||
.translation
|
||||
.vector
|
||||
.lerp(&other.translation.vector, t.clone());
|
||||
let rot = self.rotation.try_slerp(&other.rotation, t, epsilon)?;
|
||||
Some(Self::from_parts(tr.into(), rot))
|
||||
}
|
||||
@ -172,7 +184,10 @@ impl<T: SimdRealField> Isometry2<T> {
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let tr = self.translation.vector.lerp(&other.translation.vector, t);
|
||||
let tr = self
|
||||
.translation
|
||||
.vector
|
||||
.lerp(&other.translation.vector, t.clone());
|
||||
let rot = self.rotation.slerp(&other.rotation, t);
|
||||
Self::from_parts(tr.into(), rot)
|
||||
}
|
||||
@ -209,7 +224,10 @@ impl<T: SimdRealField> IsometryMatrix2<T> {
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let tr = self.translation.vector.lerp(&other.translation.vector, t);
|
||||
let tr = self
|
||||
.translation
|
||||
.vector
|
||||
.lerp(&other.translation.vector, t.clone());
|
||||
let rot = self.rotation.slerp(&other.rotation, t);
|
||||
Self::from_parts(tr.into(), rot)
|
||||
}
|
||||
|
@ -201,7 +201,7 @@ md_assign_impl_all!(
|
||||
const D; for; where;
|
||||
self: Isometry<T, Rotation<T, D>, D>, rhs: Rotation<T, D>;
|
||||
[val] => self.rotation *= rhs;
|
||||
[ref] => self.rotation *= *rhs;
|
||||
[ref] => self.rotation *= rhs.clone();
|
||||
);
|
||||
|
||||
md_assign_impl_all!(
|
||||
@ -220,7 +220,7 @@ md_assign_impl_all!(
|
||||
const; for; where;
|
||||
self: Isometry<T, UnitQuaternion<T>, 3>, rhs: UnitQuaternion<T>;
|
||||
[val] => self.rotation *= rhs;
|
||||
[ref] => self.rotation *= *rhs;
|
||||
[ref] => self.rotation *= rhs.clone();
|
||||
);
|
||||
|
||||
md_assign_impl_all!(
|
||||
@ -239,7 +239,7 @@ md_assign_impl_all!(
|
||||
const; for; where;
|
||||
self: Isometry<T, UnitComplex<T>, 2>, rhs: UnitComplex<T>;
|
||||
[val] => self.rotation *= rhs;
|
||||
[ref] => self.rotation *= *rhs;
|
||||
[ref] => self.rotation *= rhs.clone();
|
||||
);
|
||||
|
||||
md_assign_impl_all!(
|
||||
@ -368,9 +368,9 @@ isometry_from_composition_impl_all!(
|
||||
D;
|
||||
self: Rotation<T, D>, right: Translation<T, D>, Output = Isometry<T, Rotation<T, D>, D>;
|
||||
[val val] => Isometry::from_parts(Translation::from(&self * right.vector), self);
|
||||
[ref val] => Isometry::from_parts(Translation::from(self * right.vector), *self);
|
||||
[ref val] => Isometry::from_parts(Translation::from(self * right.vector), self.clone());
|
||||
[val ref] => Isometry::from_parts(Translation::from(&self * &right.vector), self);
|
||||
[ref ref] => Isometry::from_parts(Translation::from(self * &right.vector), *self);
|
||||
[ref ref] => Isometry::from_parts(Translation::from(self * &right.vector), self.clone());
|
||||
);
|
||||
|
||||
// UnitQuaternion × Translation
|
||||
@ -380,9 +380,9 @@ isometry_from_composition_impl_all!(
|
||||
self: UnitQuaternion<T>, right: Translation<T, 3>,
|
||||
Output = Isometry<T, UnitQuaternion<T>, 3>;
|
||||
[val val] => Isometry::from_parts(Translation::from(&self * right.vector), self);
|
||||
[ref val] => Isometry::from_parts(Translation::from( self * right.vector), *self);
|
||||
[ref val] => Isometry::from_parts(Translation::from( self * right.vector), self.clone());
|
||||
[val ref] => Isometry::from_parts(Translation::from(&self * &right.vector), self);
|
||||
[ref ref] => Isometry::from_parts(Translation::from( self * &right.vector), *self);
|
||||
[ref ref] => Isometry::from_parts(Translation::from( self * &right.vector), self.clone());
|
||||
);
|
||||
|
||||
// Isometry × Rotation
|
||||
@ -392,9 +392,9 @@ isometry_from_composition_impl_all!(
|
||||
self: Isometry<T, Rotation<T, D>, D>, rhs: Rotation<T, D>,
|
||||
Output = Isometry<T, Rotation<T, D>, D>;
|
||||
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation, self.rotation * rhs);
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation * *rhs);
|
||||
[ref ref] => Isometry::from_parts(self.translation, self.rotation * *rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs);
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
|
||||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
|
||||
);
|
||||
|
||||
// Rotation × Isometry
|
||||
@ -419,9 +419,9 @@ isometry_from_composition_impl_all!(
|
||||
self: Isometry<T, Rotation<T, D>, D>, rhs: Rotation<T, D>,
|
||||
Output = Isometry<T, Rotation<T, D>, D>;
|
||||
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation, self.rotation / rhs);
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation / *rhs);
|
||||
[ref ref] => Isometry::from_parts(self.translation, self.rotation / *rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs);
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
|
||||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
|
||||
);
|
||||
|
||||
// Rotation ÷ Isometry
|
||||
@ -444,9 +444,9 @@ isometry_from_composition_impl_all!(
|
||||
self: Isometry<T, UnitQuaternion<T>, 3>, rhs: UnitQuaternion<T>,
|
||||
Output = Isometry<T, UnitQuaternion<T>, 3>;
|
||||
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation, self.rotation * rhs);
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation * *rhs);
|
||||
[ref ref] => Isometry::from_parts(self.translation, self.rotation * *rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs);
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
|
||||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
|
||||
);
|
||||
|
||||
// UnitQuaternion × Isometry
|
||||
@ -471,9 +471,9 @@ isometry_from_composition_impl_all!(
|
||||
self: Isometry<T, UnitQuaternion<T>, 3>, rhs: UnitQuaternion<T>,
|
||||
Output = Isometry<T, UnitQuaternion<T>, 3>;
|
||||
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation, self.rotation / rhs);
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation / *rhs);
|
||||
[ref ref] => Isometry::from_parts(self.translation, self.rotation / *rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs);
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
|
||||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
|
||||
);
|
||||
|
||||
// UnitQuaternion ÷ Isometry
|
||||
@ -495,9 +495,9 @@ isometry_from_composition_impl_all!(
|
||||
D;
|
||||
self: Translation<T, D>, right: Rotation<T, D>, Output = Isometry<T, Rotation<T, D>, D>;
|
||||
[val val] => Isometry::from_parts(self, right);
|
||||
[ref val] => Isometry::from_parts(*self, right);
|
||||
[val ref] => Isometry::from_parts(self, *right);
|
||||
[ref ref] => Isometry::from_parts(*self, *right);
|
||||
[ref val] => Isometry::from_parts(self.clone(), right);
|
||||
[val ref] => Isometry::from_parts(self, right.clone());
|
||||
[ref ref] => Isometry::from_parts(self.clone(), right.clone());
|
||||
);
|
||||
|
||||
// Translation × UnitQuaternion
|
||||
@ -506,9 +506,9 @@ isometry_from_composition_impl_all!(
|
||||
;
|
||||
self: Translation<T, 3>, right: UnitQuaternion<T>, Output = Isometry<T, UnitQuaternion<T>, 3>;
|
||||
[val val] => Isometry::from_parts(self, right);
|
||||
[ref val] => Isometry::from_parts(*self, right);
|
||||
[val ref] => Isometry::from_parts(self, *right);
|
||||
[ref ref] => Isometry::from_parts(*self, *right);
|
||||
[ref val] => Isometry::from_parts(self.clone(), right);
|
||||
[val ref] => Isometry::from_parts(self, right.clone());
|
||||
[ref ref] => Isometry::from_parts(self.clone(), right.clone());
|
||||
);
|
||||
|
||||
// Isometry × UnitComplex
|
||||
@ -518,9 +518,9 @@ isometry_from_composition_impl_all!(
|
||||
self: Isometry<T, UnitComplex<T>, 2>, rhs: UnitComplex<T>,
|
||||
Output = Isometry<T, UnitComplex<T>, 2>;
|
||||
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation, self.rotation * rhs);
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation * *rhs);
|
||||
[ref ref] => Isometry::from_parts(self.translation, self.rotation * *rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs);
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
|
||||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
|
||||
);
|
||||
|
||||
// Isometry ÷ UnitComplex
|
||||
@ -530,7 +530,7 @@ isometry_from_composition_impl_all!(
|
||||
self: Isometry<T, UnitComplex<T>, 2>, rhs: UnitComplex<T>,
|
||||
Output = Isometry<T, UnitComplex<T>, 2>;
|
||||
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation, self.rotation / rhs);
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation / *rhs);
|
||||
[ref ref] => Isometry::from_parts(self.translation, self.rotation / *rhs);
|
||||
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs);
|
||||
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
|
||||
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
|
||||
);
|
||||
|
@ -23,12 +23,12 @@ pub struct Orthographic3<T> {
|
||||
matrix: Matrix4<T>,
|
||||
}
|
||||
|
||||
impl<T: RealField> Copy for Orthographic3<T> {}
|
||||
impl<T: RealField + Copy> Copy for Orthographic3<T> {}
|
||||
|
||||
impl<T: RealField> Clone for Orthographic3<T> {
|
||||
#[inline]
|
||||
fn clone(&self) -> Self {
|
||||
Self::from_matrix_unchecked(self.matrix)
|
||||
Self::from_matrix_unchecked(self.matrix.clone())
|
||||
}
|
||||
}
|
||||
|
||||
@ -175,13 +175,13 @@ impl<T: RealField> Orthographic3<T> {
|
||||
);
|
||||
|
||||
let half: T = crate::convert(0.5);
|
||||
let width = zfar * (vfov * half).tan();
|
||||
let height = width / aspect;
|
||||
let width = zfar.clone() * (vfov.clone() * half.clone()).tan();
|
||||
let height = width.clone() / aspect;
|
||||
|
||||
Self::new(
|
||||
-width * half,
|
||||
width * half,
|
||||
-height * half,
|
||||
-width.clone() * half.clone(),
|
||||
width * half.clone(),
|
||||
-height.clone() * half.clone(),
|
||||
height * half,
|
||||
znear,
|
||||
zfar,
|
||||
@ -208,19 +208,19 @@ impl<T: RealField> Orthographic3<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn inverse(&self) -> Matrix4<T> {
|
||||
let mut res = self.to_homogeneous();
|
||||
let mut res = self.clone().to_homogeneous();
|
||||
|
||||
let inv_m11 = T::one() / self.matrix[(0, 0)];
|
||||
let inv_m22 = T::one() / self.matrix[(1, 1)];
|
||||
let inv_m33 = T::one() / self.matrix[(2, 2)];
|
||||
let inv_m11 = T::one() / self.matrix[(0, 0)].clone();
|
||||
let inv_m22 = T::one() / self.matrix[(1, 1)].clone();
|
||||
let inv_m33 = T::one() / self.matrix[(2, 2)].clone();
|
||||
|
||||
res[(0, 0)] = inv_m11;
|
||||
res[(1, 1)] = inv_m22;
|
||||
res[(2, 2)] = inv_m33;
|
||||
res[(0, 0)] = inv_m11.clone();
|
||||
res[(1, 1)] = inv_m22.clone();
|
||||
res[(2, 2)] = inv_m33.clone();
|
||||
|
||||
res[(0, 3)] = -self.matrix[(0, 3)] * inv_m11;
|
||||
res[(1, 3)] = -self.matrix[(1, 3)] * inv_m22;
|
||||
res[(2, 3)] = -self.matrix[(2, 3)] * inv_m33;
|
||||
res[(0, 3)] = -self.matrix[(0, 3)].clone() * inv_m11;
|
||||
res[(1, 3)] = -self.matrix[(1, 3)].clone() * inv_m22;
|
||||
res[(2, 3)] = -self.matrix[(2, 3)].clone() * inv_m33;
|
||||
|
||||
res
|
||||
}
|
||||
@ -335,7 +335,7 @@ impl<T: RealField> Orthographic3<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn left(&self) -> T {
|
||||
(-T::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)]
|
||||
(-T::one() - self.matrix[(0, 3)].clone()) / self.matrix[(0, 0)].clone()
|
||||
}
|
||||
|
||||
/// The right offset of the view cuboid.
|
||||
@ -352,7 +352,7 @@ impl<T: RealField> Orthographic3<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn right(&self) -> T {
|
||||
(T::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)]
|
||||
(T::one() - self.matrix[(0, 3)].clone()) / self.matrix[(0, 0)].clone()
|
||||
}
|
||||
|
||||
/// The bottom offset of the view cuboid.
|
||||
@ -369,7 +369,7 @@ impl<T: RealField> Orthographic3<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn bottom(&self) -> T {
|
||||
(-T::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)]
|
||||
(-T::one() - self.matrix[(1, 3)].clone()) / self.matrix[(1, 1)].clone()
|
||||
}
|
||||
|
||||
/// The top offset of the view cuboid.
|
||||
@ -386,7 +386,7 @@ impl<T: RealField> Orthographic3<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn top(&self) -> T {
|
||||
(T::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)]
|
||||
(T::one() - self.matrix[(1, 3)].clone()) / self.matrix[(1, 1)].clone()
|
||||
}
|
||||
|
||||
/// The near plane offset of the view cuboid.
|
||||
@ -403,7 +403,7 @@ impl<T: RealField> Orthographic3<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn znear(&self) -> T {
|
||||
(T::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)]
|
||||
(T::one() + self.matrix[(2, 3)].clone()) / self.matrix[(2, 2)].clone()
|
||||
}
|
||||
|
||||
/// The far plane offset of the view cuboid.
|
||||
@ -420,7 +420,7 @@ impl<T: RealField> Orthographic3<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn zfar(&self) -> T {
|
||||
(-T::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)]
|
||||
(-T::one() + self.matrix[(2, 3)].clone()) / self.matrix[(2, 2)].clone()
|
||||
}
|
||||
|
||||
// TODO: when we get specialization, specialize the Mul impl instead.
|
||||
@ -454,9 +454,9 @@ impl<T: RealField> Orthographic3<T> {
|
||||
#[must_use]
|
||||
pub fn project_point(&self, p: &Point3<T>) -> Point3<T> {
|
||||
Point3::new(
|
||||
self.matrix[(0, 0)] * p[0] + self.matrix[(0, 3)],
|
||||
self.matrix[(1, 1)] * p[1] + self.matrix[(1, 3)],
|
||||
self.matrix[(2, 2)] * p[2] + self.matrix[(2, 3)],
|
||||
self.matrix[(0, 0)].clone() * p[0].clone() + self.matrix[(0, 3)].clone(),
|
||||
self.matrix[(1, 1)].clone() * p[1].clone() + self.matrix[(1, 3)].clone(),
|
||||
self.matrix[(2, 2)].clone() * p[2].clone() + self.matrix[(2, 3)].clone(),
|
||||
)
|
||||
}
|
||||
|
||||
@ -490,9 +490,9 @@ impl<T: RealField> Orthographic3<T> {
|
||||
#[must_use]
|
||||
pub fn unproject_point(&self, p: &Point3<T>) -> Point3<T> {
|
||||
Point3::new(
|
||||
(p[0] - self.matrix[(0, 3)]) / self.matrix[(0, 0)],
|
||||
(p[1] - self.matrix[(1, 3)]) / self.matrix[(1, 1)],
|
||||
(p[2] - self.matrix[(2, 3)]) / self.matrix[(2, 2)],
|
||||
(p[0].clone() - self.matrix[(0, 3)].clone()) / self.matrix[(0, 0)].clone(),
|
||||
(p[1].clone() - self.matrix[(1, 3)].clone()) / self.matrix[(1, 1)].clone(),
|
||||
(p[2].clone() - self.matrix[(2, 3)].clone()) / self.matrix[(2, 2)].clone(),
|
||||
)
|
||||
}
|
||||
|
||||
@ -522,9 +522,9 @@ impl<T: RealField> Orthographic3<T> {
|
||||
SB: Storage<T, U3>,
|
||||
{
|
||||
Vector3::new(
|
||||
self.matrix[(0, 0)] * p[0],
|
||||
self.matrix[(1, 1)] * p[1],
|
||||
self.matrix[(2, 2)] * p[2],
|
||||
self.matrix[(0, 0)].clone() * p[0].clone(),
|
||||
self.matrix[(1, 1)].clone() * p[1].clone(),
|
||||
self.matrix[(2, 2)].clone() * p[2].clone(),
|
||||
)
|
||||
}
|
||||
|
||||
@ -663,8 +663,8 @@ impl<T: RealField> Orthographic3<T> {
|
||||
left != right,
|
||||
"The left corner must not be equal to the right corner."
|
||||
);
|
||||
self.matrix[(0, 0)] = crate::convert::<_, T>(2.0) / (right - left);
|
||||
self.matrix[(0, 3)] = -(right + left) / (right - left);
|
||||
self.matrix[(0, 0)] = crate::convert::<_, T>(2.0) / (right.clone() - left.clone());
|
||||
self.matrix[(0, 3)] = -(right.clone() + left.clone()) / (right - left);
|
||||
}
|
||||
|
||||
/// Sets the view cuboid offsets along the `y` axis.
|
||||
@ -684,12 +684,12 @@ impl<T: RealField> Orthographic3<T> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn set_bottom_and_top(&mut self, bottom: T, top: T) {
|
||||
assert!(
|
||||
bottom != top,
|
||||
assert_ne!(
|
||||
bottom, top,
|
||||
"The top corner must not be equal to the bottom corner."
|
||||
);
|
||||
self.matrix[(1, 1)] = crate::convert::<_, T>(2.0) / (top - bottom);
|
||||
self.matrix[(1, 3)] = -(top + bottom) / (top - bottom);
|
||||
self.matrix[(1, 1)] = crate::convert::<_, T>(2.0) / (top.clone() - bottom.clone());
|
||||
self.matrix[(1, 3)] = -(top.clone() + bottom.clone()) / (top - bottom);
|
||||
}
|
||||
|
||||
/// Sets the near and far plane offsets of the view cuboid.
|
||||
@ -713,8 +713,8 @@ impl<T: RealField> Orthographic3<T> {
|
||||
zfar != znear,
|
||||
"The near-plane and far-plane must not be superimposed."
|
||||
);
|
||||
self.matrix[(2, 2)] = -crate::convert::<_, T>(2.0) / (zfar - znear);
|
||||
self.matrix[(2, 3)] = -(zfar + znear) / (zfar - znear);
|
||||
self.matrix[(2, 2)] = -crate::convert::<_, T>(2.0) / (zfar.clone() - znear.clone());
|
||||
self.matrix[(2, 3)] = -(zfar.clone() + znear.clone()) / (zfar - znear);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -24,12 +24,12 @@ pub struct Perspective3<T> {
|
||||
matrix: Matrix4<T>,
|
||||
}
|
||||
|
||||
impl<T: RealField> Copy for Perspective3<T> {}
|
||||
impl<T: RealField + Copy> Copy for Perspective3<T> {}
|
||||
|
||||
impl<T: RealField> Clone for Perspective3<T> {
|
||||
#[inline]
|
||||
fn clone(&self) -> Self {
|
||||
Self::from_matrix_unchecked(self.matrix)
|
||||
Self::from_matrix_unchecked(self.matrix.clone())
|
||||
}
|
||||
}
|
||||
|
||||
@ -99,7 +99,7 @@ impl<T: RealField> Perspective3<T> {
|
||||
/// Creates a new perspective matrix from the aspect ratio, y field of view, and near/far planes.
|
||||
pub fn new(aspect: T, fovy: T, znear: T, zfar: T) -> Self {
|
||||
assert!(
|
||||
!relative_eq!(zfar - znear, T::zero()),
|
||||
relative_ne!(zfar, znear),
|
||||
"The near-plane and far-plane must not be superimposed."
|
||||
);
|
||||
assert!(
|
||||
@ -124,18 +124,18 @@ impl<T: RealField> Perspective3<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn inverse(&self) -> Matrix4<T> {
|
||||
let mut res = self.to_homogeneous();
|
||||
let mut res = self.clone().to_homogeneous();
|
||||
|
||||
res[(0, 0)] = T::one() / self.matrix[(0, 0)];
|
||||
res[(1, 1)] = T::one() / self.matrix[(1, 1)];
|
||||
res[(0, 0)] = T::one() / self.matrix[(0, 0)].clone();
|
||||
res[(1, 1)] = T::one() / self.matrix[(1, 1)].clone();
|
||||
res[(2, 2)] = T::zero();
|
||||
|
||||
let m23 = self.matrix[(2, 3)];
|
||||
let m32 = self.matrix[(3, 2)];
|
||||
let m23 = self.matrix[(2, 3)].clone();
|
||||
let m32 = self.matrix[(3, 2)].clone();
|
||||
|
||||
res[(2, 3)] = T::one() / m32;
|
||||
res[(3, 2)] = T::one() / m23;
|
||||
res[(3, 3)] = -self.matrix[(2, 2)] / (m23 * m32);
|
||||
res[(2, 3)] = T::one() / m32.clone();
|
||||
res[(3, 2)] = T::one() / m23.clone();
|
||||
res[(3, 3)] = -self.matrix[(2, 2)].clone() / (m23 * m32);
|
||||
|
||||
res
|
||||
}
|
||||
@ -186,33 +186,35 @@ impl<T: RealField> Perspective3<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn aspect(&self) -> T {
|
||||
self.matrix[(1, 1)] / self.matrix[(0, 0)]
|
||||
self.matrix[(1, 1)].clone() / self.matrix[(0, 0)].clone()
|
||||
}
|
||||
|
||||
/// Gets the y field of view of the view frustum.
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn fovy(&self) -> T {
|
||||
(T::one() / self.matrix[(1, 1)]).atan() * crate::convert(2.0)
|
||||
(T::one() / self.matrix[(1, 1)].clone()).atan() * crate::convert(2.0)
|
||||
}
|
||||
|
||||
/// Gets the near plane offset of the view frustum.
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn znear(&self) -> T {
|
||||
let ratio = (-self.matrix[(2, 2)] + T::one()) / (-self.matrix[(2, 2)] - T::one());
|
||||
let ratio =
|
||||
(-self.matrix[(2, 2)].clone() + T::one()) / (-self.matrix[(2, 2)].clone() - T::one());
|
||||
|
||||
self.matrix[(2, 3)] / (ratio * crate::convert(2.0))
|
||||
- self.matrix[(2, 3)] / crate::convert(2.0)
|
||||
self.matrix[(2, 3)].clone() / (ratio * crate::convert(2.0))
|
||||
- self.matrix[(2, 3)].clone() / crate::convert(2.0)
|
||||
}
|
||||
|
||||
/// Gets the far plane offset of the view frustum.
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn zfar(&self) -> T {
|
||||
let ratio = (-self.matrix[(2, 2)] + T::one()) / (-self.matrix[(2, 2)] - T::one());
|
||||
let ratio =
|
||||
(-self.matrix[(2, 2)].clone() + T::one()) / (-self.matrix[(2, 2)].clone() - T::one());
|
||||
|
||||
(self.matrix[(2, 3)] - ratio * self.matrix[(2, 3)]) / crate::convert(2.0)
|
||||
(self.matrix[(2, 3)].clone() - ratio * self.matrix[(2, 3)].clone()) / crate::convert(2.0)
|
||||
}
|
||||
|
||||
// TODO: add a method to retrieve znear and zfar simultaneously?
|
||||
@ -222,11 +224,12 @@ impl<T: RealField> Perspective3<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn project_point(&self, p: &Point3<T>) -> Point3<T> {
|
||||
let inverse_denom = -T::one() / p[2];
|
||||
let inverse_denom = -T::one() / p[2].clone();
|
||||
Point3::new(
|
||||
self.matrix[(0, 0)] * p[0] * inverse_denom,
|
||||
self.matrix[(1, 1)] * p[1] * inverse_denom,
|
||||
(self.matrix[(2, 2)] * p[2] + self.matrix[(2, 3)]) * inverse_denom,
|
||||
self.matrix[(0, 0)].clone() * p[0].clone() * inverse_denom.clone(),
|
||||
self.matrix[(1, 1)].clone() * p[1].clone() * inverse_denom.clone(),
|
||||
(self.matrix[(2, 2)].clone() * p[2].clone() + self.matrix[(2, 3)].clone())
|
||||
* inverse_denom,
|
||||
)
|
||||
}
|
||||
|
||||
@ -234,11 +237,12 @@ impl<T: RealField> Perspective3<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn unproject_point(&self, p: &Point3<T>) -> Point3<T> {
|
||||
let inverse_denom = self.matrix[(2, 3)] / (p[2] + self.matrix[(2, 2)]);
|
||||
let inverse_denom =
|
||||
self.matrix[(2, 3)].clone() / (p[2].clone() + self.matrix[(2, 2)].clone());
|
||||
|
||||
Point3::new(
|
||||
p[0] * inverse_denom / self.matrix[(0, 0)],
|
||||
p[1] * inverse_denom / self.matrix[(1, 1)],
|
||||
p[0].clone() * inverse_denom.clone() / self.matrix[(0, 0)].clone(),
|
||||
p[1].clone() * inverse_denom.clone() / self.matrix[(1, 1)].clone(),
|
||||
-inverse_denom,
|
||||
)
|
||||
}
|
||||
@ -251,11 +255,11 @@ impl<T: RealField> Perspective3<T> {
|
||||
where
|
||||
SB: Storage<T, U3>,
|
||||
{
|
||||
let inverse_denom = -T::one() / p[2];
|
||||
let inverse_denom = -T::one() / p[2].clone();
|
||||
Vector3::new(
|
||||
self.matrix[(0, 0)] * p[0] * inverse_denom,
|
||||
self.matrix[(1, 1)] * p[1] * inverse_denom,
|
||||
self.matrix[(2, 2)],
|
||||
self.matrix[(0, 0)].clone() * p[0].clone() * inverse_denom.clone(),
|
||||
self.matrix[(1, 1)].clone() * p[1].clone() * inverse_denom,
|
||||
self.matrix[(2, 2)].clone(),
|
||||
)
|
||||
}
|
||||
|
||||
@ -267,15 +271,15 @@ impl<T: RealField> Perspective3<T> {
|
||||
!relative_eq!(aspect, T::zero()),
|
||||
"The aspect ratio must not be zero."
|
||||
);
|
||||
self.matrix[(0, 0)] = self.matrix[(1, 1)] / aspect;
|
||||
self.matrix[(0, 0)] = self.matrix[(1, 1)].clone() / aspect;
|
||||
}
|
||||
|
||||
/// Updates this perspective with a new y field of view of the view frustum.
|
||||
#[inline]
|
||||
pub fn set_fovy(&mut self, fovy: T) {
|
||||
let old_m22 = self.matrix[(1, 1)];
|
||||
let old_m22 = self.matrix[(1, 1)].clone();
|
||||
let new_m22 = T::one() / (fovy / crate::convert(2.0)).tan();
|
||||
self.matrix[(1, 1)] = new_m22;
|
||||
self.matrix[(1, 1)] = new_m22.clone();
|
||||
self.matrix[(0, 0)] *= new_m22 / old_m22;
|
||||
}
|
||||
|
||||
@ -296,8 +300,8 @@ impl<T: RealField> Perspective3<T> {
|
||||
/// Updates this perspective matrix with new near and far plane offsets of the view frustum.
|
||||
#[inline]
|
||||
pub fn set_znear_and_zfar(&mut self, znear: T, zfar: T) {
|
||||
self.matrix[(2, 2)] = (zfar + znear) / (znear - zfar);
|
||||
self.matrix[(2, 3)] = zfar * znear * crate::convert(2.0) / (znear - zfar);
|
||||
self.matrix[(2, 2)] = (zfar.clone() + znear.clone()) / (znear.clone() - zfar.clone());
|
||||
self.matrix[(2, 3)] = zfar.clone() * znear.clone() * crate::convert(2.0) / (znear - zfar);
|
||||
}
|
||||
}
|
||||
|
||||
@ -310,8 +314,8 @@ where
|
||||
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> Perspective3<T> {
|
||||
use crate::base::helper;
|
||||
let znear = r.gen();
|
||||
let zfar = helper::reject_rand(r, |&x: &T| !(x - znear).is_zero());
|
||||
let aspect = helper::reject_rand(r, |&x: &T| !x.is_zero());
|
||||
let zfar = helper::reject_rand(r, |x: &T| !(x.clone() - znear.clone()).is_zero());
|
||||
let aspect = helper::reject_rand(r, |x: &T| !x.is_zero());
|
||||
|
||||
Perspective3::new(aspect, r.gen(), znear, zfar)
|
||||
}
|
||||
@ -321,9 +325,9 @@ where
|
||||
impl<T: RealField + Arbitrary> Arbitrary for Perspective3<T> {
|
||||
fn arbitrary(g: &mut Gen) -> Self {
|
||||
use crate::base::helper;
|
||||
let znear = Arbitrary::arbitrary(g);
|
||||
let zfar = helper::reject(g, |&x: &T| !(x - znear).is_zero());
|
||||
let aspect = helper::reject(g, |&x: &T| !x.is_zero());
|
||||
let znear: T = Arbitrary::arbitrary(g);
|
||||
let zfar = helper::reject(g, |x: &T| !(x.clone() - znear.clone()).is_zero());
|
||||
let aspect = helper::reject(g, |x: &T| !x.is_zero());
|
||||
|
||||
Self::new(aspect, Arbitrary::arbitrary(g), znear, zfar)
|
||||
}
|
||||
|
@ -323,7 +323,7 @@ where
|
||||
|
||||
impl<T: Scalar + AbsDiffEq, D: DimName> AbsDiffEq for OPoint<T, D>
|
||||
where
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
DefaultAllocator: Allocator<T, D>,
|
||||
{
|
||||
type Epsilon = T::Epsilon;
|
||||
@ -341,7 +341,7 @@ where
|
||||
|
||||
impl<T: Scalar + RelativeEq, D: DimName> RelativeEq for OPoint<T, D>
|
||||
where
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
DefaultAllocator: Allocator<T, D>,
|
||||
{
|
||||
#[inline]
|
||||
@ -363,7 +363,7 @@ where
|
||||
|
||||
impl<T: Scalar + UlpsEq, D: DimName> UlpsEq for OPoint<T, D>
|
||||
where
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
DefaultAllocator: Allocator<T, D>,
|
||||
{
|
||||
#[inline]
|
||||
|
@ -104,8 +104,7 @@ where
|
||||
DefaultAllocator: Allocator<T, DimNameSum<D, U1>>,
|
||||
{
|
||||
if !v[D::dim()].is_zero() {
|
||||
let coords =
|
||||
v.generic_slice((0, 0), (D::name(), Const::<1>)) / v[D::dim()].inlined_clone();
|
||||
let coords = v.generic_slice((0, 0), (D::name(), Const::<1>)) / v[D::dim()].clone();
|
||||
Some(Self::from(coords))
|
||||
} else {
|
||||
None
|
||||
|
@ -66,7 +66,7 @@ where
|
||||
|
||||
#[inline]
|
||||
fn from_superset_unchecked(v: &OVector<T2, DimNameSum<D, U1>>) -> Self {
|
||||
let coords = v.generic_slice((0, 0), (D::name(), Const::<1>)) / v[D::dim()].inlined_clone();
|
||||
let coords = v.generic_slice((0, 0), (D::name(), Const::<1>)) / v[D::dim()].clone();
|
||||
Self {
|
||||
coords: crate::convert_unchecked(coords),
|
||||
}
|
||||
|
@ -208,7 +208,7 @@ where
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use conjugate_mut()?"]
|
||||
pub fn conjugate(&self) -> Self {
|
||||
Self::from_parts(self.w, -self.imag())
|
||||
Self::from_parts(self.w.clone(), -self.imag())
|
||||
}
|
||||
|
||||
/// Linear interpolation between two quaternion.
|
||||
@ -226,7 +226,7 @@ where
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn lerp(&self, other: &Self, t: T) -> Self {
|
||||
self * (T::one() - t) + other * t
|
||||
self * (T::one() - t.clone()) + other * t
|
||||
}
|
||||
|
||||
/// The vector part `(i, j, k)` of this quaternion.
|
||||
@ -256,7 +256,7 @@ where
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn scalar(&self) -> T {
|
||||
self.coords[3]
|
||||
self.coords[3].clone()
|
||||
}
|
||||
|
||||
/// Reinterprets this quaternion as a 4D vector.
|
||||
@ -385,7 +385,7 @@ where
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let mut res = *self;
|
||||
let mut res = self.clone();
|
||||
|
||||
if res.try_inverse_mut() {
|
||||
Some(res)
|
||||
@ -401,7 +401,7 @@ where
|
||||
#[must_use = "Did you mean to use try_inverse_mut()?"]
|
||||
pub fn simd_try_inverse(&self) -> SimdOption<Self> {
|
||||
let norm_squared = self.norm_squared();
|
||||
let ge = norm_squared.simd_ge(T::simd_default_epsilon());
|
||||
let ge = norm_squared.clone().simd_ge(T::simd_default_epsilon());
|
||||
SimdOption::new(self.conjugate() / norm_squared, ge)
|
||||
}
|
||||
|
||||
@ -511,7 +511,7 @@ where
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
if let Some((q, n)) = Unit::try_new_and_get(*self, T::zero()) {
|
||||
if let Some((q, n)) = Unit::try_new_and_get(self.clone(), T::zero()) {
|
||||
if let Some(axis) = Unit::try_new(self.vector().clone_owned(), T::zero()) {
|
||||
let angle = q.angle() / crate::convert(2.0f64);
|
||||
|
||||
@ -540,7 +540,7 @@ where
|
||||
let v = self.vector();
|
||||
let s = self.scalar();
|
||||
|
||||
Self::from_parts(n.simd_ln(), v.normalize() * (s / n).simd_acos())
|
||||
Self::from_parts(n.clone().simd_ln(), v.normalize() * (s / n).simd_acos())
|
||||
}
|
||||
|
||||
/// Compute the exponential of a quaternion.
|
||||
@ -577,11 +577,11 @@ where
|
||||
pub fn exp_eps(&self, eps: T) -> Self {
|
||||
let v = self.vector();
|
||||
let nn = v.norm_squared();
|
||||
let le = nn.simd_le(eps * eps);
|
||||
let le = nn.clone().simd_le(eps.clone() * eps);
|
||||
le.if_else(Self::identity, || {
|
||||
let w_exp = self.scalar().simd_exp();
|
||||
let n = nn.simd_sqrt();
|
||||
let nv = v * (w_exp * n.simd_sin() / n);
|
||||
let nv = v * (w_exp.clone() * n.clone().simd_sin() / n.clone());
|
||||
|
||||
Self::from_parts(w_exp * n.simd_cos(), nv)
|
||||
})
|
||||
@ -648,9 +648,9 @@ where
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn conjugate_mut(&mut self) {
|
||||
self.coords[0] = -self.coords[0];
|
||||
self.coords[1] = -self.coords[1];
|
||||
self.coords[2] = -self.coords[2];
|
||||
self.coords[0] = -self.coords[0].clone();
|
||||
self.coords[1] = -self.coords[1].clone();
|
||||
self.coords[2] = -self.coords[2].clone();
|
||||
}
|
||||
|
||||
/// Inverts this quaternion in-place if it is not zero.
|
||||
@ -671,8 +671,8 @@ where
|
||||
#[inline]
|
||||
pub fn try_inverse_mut(&mut self) -> T::SimdBool {
|
||||
let norm_squared = self.norm_squared();
|
||||
let ge = norm_squared.simd_ge(T::simd_default_epsilon());
|
||||
*self = ge.if_else(|| self.conjugate() / norm_squared, || *self);
|
||||
let ge = norm_squared.clone().simd_ge(T::simd_default_epsilon());
|
||||
*self = ge.if_else(|| self.conjugate() / norm_squared, || self.clone());
|
||||
ge
|
||||
}
|
||||
|
||||
@ -778,8 +778,8 @@ where
|
||||
#[must_use]
|
||||
pub fn cos(&self) -> Self {
|
||||
let z = self.imag().magnitude();
|
||||
let w = -self.w.simd_sin() * z.simd_sinhc();
|
||||
Self::from_parts(self.w.simd_cos() * z.simd_cosh(), self.imag() * w)
|
||||
let w = -self.w.clone().simd_sin() * z.clone().simd_sinhc();
|
||||
Self::from_parts(self.w.clone().simd_cos() * z.simd_cosh(), self.imag() * w)
|
||||
}
|
||||
|
||||
/// Calculates the quaternionic arccosinus.
|
||||
@ -818,8 +818,8 @@ where
|
||||
#[must_use]
|
||||
pub fn sin(&self) -> Self {
|
||||
let z = self.imag().magnitude();
|
||||
let w = self.w.simd_cos() * z.simd_sinhc();
|
||||
Self::from_parts(self.w.simd_sin() * z.simd_cosh(), self.imag() * w)
|
||||
let w = self.w.clone().simd_cos() * z.clone().simd_sinhc();
|
||||
Self::from_parts(self.w.clone().simd_sin() * z.simd_cosh(), self.imag() * w)
|
||||
}
|
||||
|
||||
/// Calculates the quaternionic arcsinus.
|
||||
@ -838,7 +838,7 @@ where
|
||||
let u = Self::from_imag(self.imag().normalize());
|
||||
let identity = Self::identity();
|
||||
|
||||
let z = ((u * self) + (identity - self.squared()).sqrt()).ln();
|
||||
let z = ((u.clone() * self) + (identity - self.squared()).sqrt()).ln();
|
||||
|
||||
-(u * z)
|
||||
}
|
||||
@ -880,8 +880,8 @@ where
|
||||
T: RealField,
|
||||
{
|
||||
let u = Self::from_imag(self.imag().normalize());
|
||||
let num = u + self;
|
||||
let den = u - self;
|
||||
let num = u.clone() + self;
|
||||
let den = u.clone() - self;
|
||||
let fr = num.right_div(&den).unwrap();
|
||||
let ln = fr.ln();
|
||||
(u.half()) * ln
|
||||
@ -954,7 +954,7 @@ where
|
||||
#[must_use]
|
||||
pub fn acosh(&self) -> Self {
|
||||
let identity = Self::identity();
|
||||
(self + (self + identity).sqrt() * (self - identity).sqrt()).ln()
|
||||
(self + (self + identity.clone()).sqrt() * (self - identity).sqrt()).ln()
|
||||
}
|
||||
|
||||
/// Calculates the hyperbolic quaternionic tangent.
|
||||
@ -992,7 +992,7 @@ where
|
||||
#[must_use]
|
||||
pub fn atanh(&self) -> Self {
|
||||
let identity = Self::identity();
|
||||
((identity + self).ln() - (identity - self).ln()).half()
|
||||
((identity.clone() + self).ln() - (identity - self).ln()).half()
|
||||
}
|
||||
}
|
||||
|
||||
@ -1006,9 +1006,9 @@ impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq for Quaternion<T> {
|
||||
|
||||
#[inline]
|
||||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||||
self.as_vector().abs_diff_eq(other.as_vector(), epsilon) ||
|
||||
self.as_vector().abs_diff_eq(other.as_vector(), epsilon.clone()) ||
|
||||
// Account for the double-covering of S², i.e. q = -q
|
||||
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.abs_diff_eq(&-*b, epsilon))
|
||||
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.abs_diff_eq(&-b.clone(), epsilon.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
@ -1025,9 +1025,9 @@ impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq for Quaternion<T> {
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool {
|
||||
self.as_vector().relative_eq(other.as_vector(), epsilon, max_relative) ||
|
||||
self.as_vector().relative_eq(other.as_vector(), epsilon.clone(), max_relative.clone()) ||
|
||||
// Account for the double-covering of S², i.e. q = -q
|
||||
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.relative_eq(&-*b, epsilon, max_relative))
|
||||
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.relative_eq(&-b.clone(), epsilon.clone(), max_relative.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
@ -1039,9 +1039,9 @@ impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for Quaternion<T> {
|
||||
|
||||
#[inline]
|
||||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||||
self.as_vector().ulps_eq(other.as_vector(), epsilon, max_ulps) ||
|
||||
self.as_vector().ulps_eq(other.as_vector(), epsilon.clone(), max_ulps.clone()) ||
|
||||
// Account for the double-covering of S², i.e. q = -q.
|
||||
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.ulps_eq(&-*b, epsilon, max_ulps))
|
||||
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.ulps_eq(&-b.clone(), epsilon.clone(), max_ulps.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
@ -1063,7 +1063,7 @@ impl<T: Scalar + ClosedNeg + PartialEq> PartialEq for UnitQuaternion<T> {
|
||||
fn eq(&self, rhs: &Self) -> bool {
|
||||
self.coords == rhs.coords ||
|
||||
// Account for the double-covering of S², i.e. q = -q
|
||||
self.coords.iter().zip(rhs.coords.iter()).all(|(a, b)| *a == -b.inlined_clone())
|
||||
self.coords.iter().zip(rhs.coords.iter()).all(|(a, b)| *a == -b.clone())
|
||||
}
|
||||
}
|
||||
|
||||
@ -1279,14 +1279,14 @@ where
|
||||
T: RealField,
|
||||
{
|
||||
let coords = if self.coords.dot(&other.coords) < T::zero() {
|
||||
Unit::new_unchecked(self.coords).try_slerp(
|
||||
&Unit::new_unchecked(-other.coords),
|
||||
Unit::new_unchecked(self.coords.clone()).try_slerp(
|
||||
&Unit::new_unchecked(-other.coords.clone()),
|
||||
t,
|
||||
epsilon,
|
||||
)
|
||||
} else {
|
||||
Unit::new_unchecked(self.coords).try_slerp(
|
||||
&Unit::new_unchecked(other.coords),
|
||||
Unit::new_unchecked(self.coords.clone()).try_slerp(
|
||||
&Unit::new_unchecked(other.coords.clone()),
|
||||
t,
|
||||
epsilon,
|
||||
)
|
||||
@ -1479,31 +1479,31 @@ where
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn to_rotation_matrix(self) -> Rotation<T, 3> {
|
||||
let i = self.as_ref()[0];
|
||||
let j = self.as_ref()[1];
|
||||
let k = self.as_ref()[2];
|
||||
let w = self.as_ref()[3];
|
||||
let i = self.as_ref()[0].clone();
|
||||
let j = self.as_ref()[1].clone();
|
||||
let k = self.as_ref()[2].clone();
|
||||
let w = self.as_ref()[3].clone();
|
||||
|
||||
let ww = w * w;
|
||||
let ii = i * i;
|
||||
let jj = j * j;
|
||||
let kk = k * k;
|
||||
let ij = i * j * crate::convert(2.0f64);
|
||||
let wk = w * k * crate::convert(2.0f64);
|
||||
let wj = w * j * crate::convert(2.0f64);
|
||||
let ik = i * k * crate::convert(2.0f64);
|
||||
let jk = j * k * crate::convert(2.0f64);
|
||||
let wi = w * i * crate::convert(2.0f64);
|
||||
let ww = w.clone() * w.clone();
|
||||
let ii = i.clone() * i.clone();
|
||||
let jj = j.clone() * j.clone();
|
||||
let kk = k.clone() * k.clone();
|
||||
let ij = i.clone() * j.clone() * crate::convert(2.0f64);
|
||||
let wk = w.clone() * k.clone() * crate::convert(2.0f64);
|
||||
let wj = w.clone() * j.clone() * crate::convert(2.0f64);
|
||||
let ik = i.clone() * k.clone() * crate::convert(2.0f64);
|
||||
let jk = j.clone() * k.clone() * crate::convert(2.0f64);
|
||||
let wi = w.clone() * i.clone() * crate::convert(2.0f64);
|
||||
|
||||
Rotation::from_matrix_unchecked(Matrix3::new(
|
||||
ww + ii - jj - kk,
|
||||
ij - wk,
|
||||
wj + ik,
|
||||
wk + ij,
|
||||
ww - ii + jj - kk,
|
||||
jk - wi,
|
||||
ik - wj,
|
||||
wi + jk,
|
||||
ww.clone() + ii.clone() - jj.clone() - kk.clone(),
|
||||
ij.clone() - wk.clone(),
|
||||
wj.clone() + ik.clone(),
|
||||
wk.clone() + ij.clone(),
|
||||
ww.clone() - ii.clone() + jj.clone() - kk.clone(),
|
||||
jk.clone() - wi.clone(),
|
||||
ik.clone() - wj.clone(),
|
||||
wi.clone() + jk.clone(),
|
||||
ww - ii - jj + kk,
|
||||
))
|
||||
}
|
||||
@ -1540,7 +1540,7 @@ where
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
self.to_rotation_matrix().euler_angles()
|
||||
self.clone().to_rotation_matrix().euler_angles()
|
||||
}
|
||||
|
||||
/// Converts this unit quaternion into its equivalent homogeneous transformation matrix.
|
||||
@ -1679,9 +1679,9 @@ where
|
||||
#[must_use]
|
||||
pub fn append_axisangle_linearized(&self, axisangle: &Vector3<T>) -> Self {
|
||||
let half: T = crate::convert(0.5);
|
||||
let q1 = self.into_inner();
|
||||
let q1 = self.clone().into_inner();
|
||||
let q2 = Quaternion::from_imag(axisangle * half);
|
||||
Unit::new_normalize(q1 + q2 * q1)
|
||||
Unit::new_normalize(&q1 + q2 * &q1)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -95,7 +95,12 @@ impl<T: SimdRealField> Quaternion<T> {
|
||||
where
|
||||
SB: Storage<T, U3>,
|
||||
{
|
||||
Self::new(scalar, vector[0], vector[1], vector[2])
|
||||
Self::new(
|
||||
scalar,
|
||||
vector[0].clone(),
|
||||
vector[1].clone(),
|
||||
vector[2].clone(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Constructs a real quaternion.
|
||||
@ -296,9 +301,9 @@ where
|
||||
let (sy, cy) = (yaw * crate::convert(0.5f64)).simd_sin_cos();
|
||||
|
||||
let q = Quaternion::new(
|
||||
cr * cp * cy + sr * sp * sy,
|
||||
sr * cp * cy - cr * sp * sy,
|
||||
cr * sp * cy + sr * cp * sy,
|
||||
cr.clone() * cp.clone() * cy.clone() + sr.clone() * sp.clone() * sy.clone(),
|
||||
sr.clone() * cp.clone() * cy.clone() - cr.clone() * sp.clone() * sy.clone(),
|
||||
cr.clone() * sp.clone() * cy.clone() + sr.clone() * cp.clone() * sy.clone(),
|
||||
cr * cp * sy - sr * sp * cy,
|
||||
);
|
||||
|
||||
@ -334,56 +339,65 @@ where
|
||||
pub fn from_rotation_matrix(rotmat: &Rotation3<T>) -> Self {
|
||||
// Robust matrix to quaternion transformation.
|
||||
// See https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion
|
||||
let tr = rotmat[(0, 0)] + rotmat[(1, 1)] + rotmat[(2, 2)];
|
||||
let tr = rotmat[(0, 0)].clone() + rotmat[(1, 1)].clone() + rotmat[(2, 2)].clone();
|
||||
let quarter: T = crate::convert(0.25);
|
||||
|
||||
let res = tr.simd_gt(T::zero()).if_else3(
|
||||
let res = tr.clone().simd_gt(T::zero()).if_else3(
|
||||
|| {
|
||||
let denom = (tr + T::one()).simd_sqrt() * crate::convert(2.0);
|
||||
let denom = (tr.clone() + T::one()).simd_sqrt() * crate::convert(2.0);
|
||||
Quaternion::new(
|
||||
quarter * denom,
|
||||
(rotmat[(2, 1)] - rotmat[(1, 2)]) / denom,
|
||||
(rotmat[(0, 2)] - rotmat[(2, 0)]) / denom,
|
||||
(rotmat[(1, 0)] - rotmat[(0, 1)]) / denom,
|
||||
quarter.clone() * denom.clone(),
|
||||
(rotmat[(2, 1)].clone() - rotmat[(1, 2)].clone()) / denom.clone(),
|
||||
(rotmat[(0, 2)].clone() - rotmat[(2, 0)].clone()) / denom.clone(),
|
||||
(rotmat[(1, 0)].clone() - rotmat[(0, 1)].clone()) / denom,
|
||||
)
|
||||
},
|
||||
(
|
||||
|| rotmat[(0, 0)].simd_gt(rotmat[(1, 1)]) & rotmat[(0, 0)].simd_gt(rotmat[(2, 2)]),
|
||||
|| {
|
||||
let denom = (T::one() + rotmat[(0, 0)] - rotmat[(1, 1)] - rotmat[(2, 2)])
|
||||
rotmat[(0, 0)].clone().simd_gt(rotmat[(1, 1)].clone())
|
||||
& rotmat[(0, 0)].clone().simd_gt(rotmat[(2, 2)].clone())
|
||||
},
|
||||
|| {
|
||||
let denom = (T::one() + rotmat[(0, 0)].clone()
|
||||
- rotmat[(1, 1)].clone()
|
||||
- rotmat[(2, 2)].clone())
|
||||
.simd_sqrt()
|
||||
* crate::convert(2.0);
|
||||
Quaternion::new(
|
||||
(rotmat[(2, 1)] - rotmat[(1, 2)]) / denom,
|
||||
quarter * denom,
|
||||
(rotmat[(0, 1)] + rotmat[(1, 0)]) / denom,
|
||||
(rotmat[(0, 2)] + rotmat[(2, 0)]) / denom,
|
||||
(rotmat[(2, 1)].clone() - rotmat[(1, 2)].clone()) / denom.clone(),
|
||||
quarter.clone() * denom.clone(),
|
||||
(rotmat[(0, 1)].clone() + rotmat[(1, 0)].clone()) / denom.clone(),
|
||||
(rotmat[(0, 2)].clone() + rotmat[(2, 0)].clone()) / denom,
|
||||
)
|
||||
},
|
||||
),
|
||||
(
|
||||
|| rotmat[(1, 1)].simd_gt(rotmat[(2, 2)]),
|
||||
|| rotmat[(1, 1)].clone().simd_gt(rotmat[(2, 2)].clone()),
|
||||
|| {
|
||||
let denom = (T::one() + rotmat[(1, 1)] - rotmat[(0, 0)] - rotmat[(2, 2)])
|
||||
let denom = (T::one() + rotmat[(1, 1)].clone()
|
||||
- rotmat[(0, 0)].clone()
|
||||
- rotmat[(2, 2)].clone())
|
||||
.simd_sqrt()
|
||||
* crate::convert(2.0);
|
||||
Quaternion::new(
|
||||
(rotmat[(0, 2)] - rotmat[(2, 0)]) / denom,
|
||||
(rotmat[(0, 1)] + rotmat[(1, 0)]) / denom,
|
||||
quarter * denom,
|
||||
(rotmat[(1, 2)] + rotmat[(2, 1)]) / denom,
|
||||
(rotmat[(0, 2)].clone() - rotmat[(2, 0)].clone()) / denom.clone(),
|
||||
(rotmat[(0, 1)].clone() + rotmat[(1, 0)].clone()) / denom.clone(),
|
||||
quarter.clone() * denom.clone(),
|
||||
(rotmat[(1, 2)].clone() + rotmat[(2, 1)].clone()) / denom,
|
||||
)
|
||||
},
|
||||
),
|
||||
|| {
|
||||
let denom = (T::one() + rotmat[(2, 2)] - rotmat[(0, 0)] - rotmat[(1, 1)])
|
||||
let denom = (T::one() + rotmat[(2, 2)].clone()
|
||||
- rotmat[(0, 0)].clone()
|
||||
- rotmat[(1, 1)].clone())
|
||||
.simd_sqrt()
|
||||
* crate::convert(2.0);
|
||||
Quaternion::new(
|
||||
(rotmat[(1, 0)] - rotmat[(0, 1)]) / denom,
|
||||
(rotmat[(0, 2)] + rotmat[(2, 0)]) / denom,
|
||||
(rotmat[(1, 2)] + rotmat[(2, 1)]) / denom,
|
||||
quarter * denom,
|
||||
(rotmat[(1, 0)].clone() - rotmat[(0, 1)].clone()) / denom.clone(),
|
||||
(rotmat[(0, 2)].clone() + rotmat[(2, 0)].clone()) / denom.clone(),
|
||||
(rotmat[(1, 2)].clone() + rotmat[(2, 1)].clone()) / denom.clone(),
|
||||
quarter.clone() * denom,
|
||||
)
|
||||
},
|
||||
);
|
||||
@ -833,10 +847,10 @@ where
|
||||
|
||||
let max_eigenvector = eigen_matrix.eigenvectors.column(max_eigenvalue_index);
|
||||
UnitQuaternion::from_quaternion(Quaternion::new(
|
||||
max_eigenvector[0],
|
||||
max_eigenvector[1],
|
||||
max_eigenvector[2],
|
||||
max_eigenvector[3],
|
||||
max_eigenvector[0].clone(),
|
||||
max_eigenvector[1].clone(),
|
||||
max_eigenvector[2].clone(),
|
||||
max_eigenvector[3].clone(),
|
||||
))
|
||||
}
|
||||
}
|
||||
@ -868,13 +882,18 @@ where
|
||||
let twopi = Uniform::new(T::zero(), T::simd_two_pi());
|
||||
let theta1 = rng.sample(&twopi);
|
||||
let theta2 = rng.sample(&twopi);
|
||||
let s1 = theta1.simd_sin();
|
||||
let s1 = theta1.clone().simd_sin();
|
||||
let c1 = theta1.simd_cos();
|
||||
let s2 = theta2.simd_sin();
|
||||
let s2 = theta2.clone().simd_sin();
|
||||
let c2 = theta2.simd_cos();
|
||||
let r1 = (T::one() - x0).simd_sqrt();
|
||||
let r1 = (T::one() - x0.clone()).simd_sqrt();
|
||||
let r2 = x0.simd_sqrt();
|
||||
Unit::new_unchecked(Quaternion::new(s1 * r1, c1 * r1, s2 * r2, c2 * r2))
|
||||
Unit::new_unchecked(Quaternion::new(
|
||||
s1 * r1.clone(),
|
||||
c1 * r1,
|
||||
s2 * r2.clone(),
|
||||
c2 * r2,
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -167,7 +167,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn to_superset(&self) -> Transform<T2, C, 3> {
|
||||
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
|
||||
Transform::from_matrix_unchecked(self.clone().to_homogeneous().to_superset())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -184,7 +184,7 @@ where
|
||||
impl<T1: RealField, T2: RealField + SupersetOf<T1>> SubsetOf<Matrix4<T2>> for UnitQuaternion<T1> {
|
||||
#[inline]
|
||||
fn to_superset(&self) -> Matrix4<T2> {
|
||||
self.to_homogeneous().to_superset()
|
||||
self.clone().to_homogeneous().to_superset()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -159,10 +159,10 @@ quaternion_op_impl!(
|
||||
;
|
||||
self: &'a Quaternion<T>, rhs: &'b Quaternion<T>, Output = Quaternion<T>;
|
||||
Quaternion::new(
|
||||
self[3] * rhs[3] - self[0] * rhs[0] - self[1] * rhs[1] - self[2] * rhs[2],
|
||||
self[3] * rhs[0] + self[0] * rhs[3] + self[1] * rhs[2] - self[2] * rhs[1],
|
||||
self[3] * rhs[1] - self[0] * rhs[2] + self[1] * rhs[3] + self[2] * rhs[0],
|
||||
self[3] * rhs[2] + self[0] * rhs[1] - self[1] * rhs[0] + self[2] * rhs[3]);
|
||||
self[3].clone() * rhs[3].clone() - self[0].clone() * rhs[0].clone() - self[1].clone() * rhs[1].clone() - self[2].clone() * rhs[2].clone(),
|
||||
self[3].clone() * rhs[0].clone() + self[0].clone() * rhs[3].clone() + self[1].clone() * rhs[2].clone() - self[2].clone() * rhs[1].clone(),
|
||||
self[3].clone() * rhs[1].clone() - self[0].clone() * rhs[2].clone() + self[1].clone() * rhs[3].clone() + self[2].clone() * rhs[0].clone(),
|
||||
self[3].clone() * rhs[2].clone() + self[0].clone() * rhs[1].clone() - self[1].clone() * rhs[0].clone() + self[2].clone() * rhs[3].clone());
|
||||
'a, 'b);
|
||||
|
||||
quaternion_op_impl!(
|
||||
|
@ -45,7 +45,7 @@ impl<T: ComplexField, D: Dim, S: Storage<T, D>> Reflection<T, D, S> {
|
||||
/// represents a plane that passes through the origin.
|
||||
#[must_use]
|
||||
pub fn bias(&self) -> T {
|
||||
self.bias
|
||||
self.bias.clone()
|
||||
}
|
||||
|
||||
// TODO: naming convention: reflect_to, reflect_assign ?
|
||||
@ -60,7 +60,7 @@ impl<T: ComplexField, D: Dim, S: Storage<T, D>> Reflection<T, D, S> {
|
||||
// dot product, and then mutably. Somehow, this allows significantly
|
||||
// better optimizations of the dot product from the compiler.
|
||||
let m_two: T = crate::convert(-2.0f64);
|
||||
let factor = (self.axis.dotc(&rhs.column(i)) - self.bias) * m_two;
|
||||
let factor = (self.axis.dotc(&rhs.column(i)) - self.bias.clone()) * m_two;
|
||||
rhs.column_mut(i).axpy(factor, &self.axis, T::one());
|
||||
}
|
||||
}
|
||||
@ -76,9 +76,9 @@ impl<T: ComplexField, D: Dim, S: Storage<T, D>> Reflection<T, D, S> {
|
||||
// NOTE: we borrow the column twice here. First it is borrowed immutably for the
|
||||
// dot product, and then mutably. Somehow, this allows significantly
|
||||
// better optimizations of the dot product from the compiler.
|
||||
let m_two = sign.scale(crate::convert(-2.0f64));
|
||||
let factor = (self.axis.dotc(&rhs.column(i)) - self.bias) * m_two;
|
||||
rhs.column_mut(i).axpy(factor, &self.axis, sign);
|
||||
let m_two = sign.clone().scale(crate::convert(-2.0f64));
|
||||
let factor = (self.axis.dotc(&rhs.column(i)) - self.bias.clone()) * m_two;
|
||||
rhs.column_mut(i).axpy(factor, &self.axis, sign.clone());
|
||||
}
|
||||
}
|
||||
|
||||
@ -95,7 +95,7 @@ impl<T: ComplexField, D: Dim, S: Storage<T, D>> Reflection<T, D, S> {
|
||||
lhs.mul_to(&self.axis, work);
|
||||
|
||||
if !self.bias.is_zero() {
|
||||
work.add_scalar_mut(-self.bias);
|
||||
work.add_scalar_mut(-self.bias.clone());
|
||||
}
|
||||
|
||||
let m_two: T = crate::convert(-2.0f64);
|
||||
@ -116,10 +116,10 @@ impl<T: ComplexField, D: Dim, S: Storage<T, D>> Reflection<T, D, S> {
|
||||
lhs.mul_to(&self.axis, work);
|
||||
|
||||
if !self.bias.is_zero() {
|
||||
work.add_scalar_mut(-self.bias);
|
||||
work.add_scalar_mut(-self.bias.clone());
|
||||
}
|
||||
|
||||
let m_two = sign.scale(crate::convert(-2.0f64));
|
||||
let m_two = sign.clone().scale(crate::convert(-2.0f64));
|
||||
lhs.gerc(m_two, work, &self.axis, sign);
|
||||
}
|
||||
}
|
||||
|
@ -514,7 +514,7 @@ impl<T: Scalar + PartialEq, const D: usize> PartialEq for Rotation<T, D> {
|
||||
impl<T, const D: usize> AbsDiffEq for Rotation<T, D>
|
||||
where
|
||||
T: Scalar + AbsDiffEq,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
type Epsilon = T::Epsilon;
|
||||
|
||||
@ -532,7 +532,7 @@ where
|
||||
impl<T, const D: usize> RelativeEq for Rotation<T, D>
|
||||
where
|
||||
T: Scalar + RelativeEq,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn default_max_relative() -> Self::Epsilon {
|
||||
@ -554,7 +554,7 @@ where
|
||||
impl<T, const D: usize> UlpsEq for Rotation<T, D>
|
||||
where
|
||||
T: Scalar + UlpsEq,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn default_max_ulps() -> u32 {
|
||||
|
@ -23,8 +23,8 @@ impl<T: SimdRealField> Rotation2<T> {
|
||||
where
|
||||
T::Element: SimdRealField,
|
||||
{
|
||||
let c1 = UnitComplex::from(*self);
|
||||
let c2 = UnitComplex::from(*other);
|
||||
let c1 = UnitComplex::from(self.clone());
|
||||
let c2 = UnitComplex::from(other.clone());
|
||||
c1.slerp(&c2, t).into()
|
||||
}
|
||||
}
|
||||
@ -53,8 +53,8 @@ impl<T: SimdRealField> Rotation3<T> {
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let q1 = UnitQuaternion::from(*self);
|
||||
let q2 = UnitQuaternion::from(*other);
|
||||
let q1 = UnitQuaternion::from(self.clone());
|
||||
let q2 = UnitQuaternion::from(other.clone());
|
||||
q1.slerp(&q2, t).into()
|
||||
}
|
||||
|
||||
@ -74,8 +74,8 @@ impl<T: SimdRealField> Rotation3<T> {
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let q1 = UnitQuaternion::from(*self);
|
||||
let q2 = UnitQuaternion::from(*other);
|
||||
let q1 = UnitQuaternion::from(self.clone());
|
||||
let q2 = UnitQuaternion::from(other.clone());
|
||||
q1.try_slerp(&q2, t, epsilon).map(|q| q.into())
|
||||
}
|
||||
}
|
||||
|
@ -42,7 +42,7 @@ impl<T: SimdRealField> Rotation2<T> {
|
||||
/// ```
|
||||
pub fn new(angle: T) -> Self {
|
||||
let (sia, coa) = angle.simd_sin_cos();
|
||||
Self::from_matrix_unchecked(Matrix2::new(coa, -sia, sia, coa))
|
||||
Self::from_matrix_unchecked(Matrix2::new(coa.clone(), -sia.clone(), sia, coa))
|
||||
}
|
||||
|
||||
/// Builds a 2 dimensional rotation matrix from an angle in radian wrapped in a 1-dimensional vector.
|
||||
@ -52,7 +52,7 @@ impl<T: SimdRealField> Rotation2<T> {
|
||||
/// the `::new(angle)` method instead is more common.
|
||||
#[inline]
|
||||
pub fn from_scaled_axis<SB: Storage<T, U1>>(axisangle: Vector<T, U1, SB>) -> Self {
|
||||
Self::new(axisangle[0])
|
||||
Self::new(axisangle[0].clone())
|
||||
}
|
||||
}
|
||||
|
||||
@ -108,7 +108,7 @@ impl<T: SimdRealField> Rotation2<T> {
|
||||
let denom = rot.column(0).dot(&m.column(0)) + rot.column(1).dot(&m.column(1));
|
||||
|
||||
let angle = axis / (denom.abs() + T::default_epsilon());
|
||||
if angle.abs() > eps {
|
||||
if angle.clone().abs() > eps {
|
||||
rot = Self::new(angle) * rot;
|
||||
} else {
|
||||
break;
|
||||
@ -198,7 +198,7 @@ impl<T: SimdRealField> Rotation2<T> {
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let mut c = UnitComplex::from(*self);
|
||||
let mut c = UnitComplex::from(self.clone());
|
||||
let _ = c.renormalize();
|
||||
|
||||
*self = Self::from_matrix_eps(self.matrix(), T::default_epsilon(), 0, c.into())
|
||||
@ -236,7 +236,9 @@ impl<T: SimdRealField> Rotation2<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn angle(&self) -> T {
|
||||
self.matrix()[(1, 0)].simd_atan2(self.matrix()[(0, 0)])
|
||||
self.matrix()[(1, 0)]
|
||||
.clone()
|
||||
.simd_atan2(self.matrix()[(0, 0)].clone())
|
||||
}
|
||||
|
||||
/// The rotation angle needed to make `self` and `other` coincide.
|
||||
@ -382,27 +384,27 @@ where
|
||||
where
|
||||
SB: Storage<T, U3>,
|
||||
{
|
||||
angle.simd_ne(T::zero()).if_else(
|
||||
angle.clone().simd_ne(T::zero()).if_else(
|
||||
|| {
|
||||
let ux = axis.as_ref()[0];
|
||||
let uy = axis.as_ref()[1];
|
||||
let uz = axis.as_ref()[2];
|
||||
let sqx = ux * ux;
|
||||
let sqy = uy * uy;
|
||||
let sqz = uz * uz;
|
||||
let ux = axis.as_ref()[0].clone();
|
||||
let uy = axis.as_ref()[1].clone();
|
||||
let uz = axis.as_ref()[2].clone();
|
||||
let sqx = ux.clone() * ux.clone();
|
||||
let sqy = uy.clone() * uy.clone();
|
||||
let sqz = uz.clone() * uz.clone();
|
||||
let (sin, cos) = angle.simd_sin_cos();
|
||||
let one_m_cos = T::one() - cos;
|
||||
let one_m_cos = T::one() - cos.clone();
|
||||
|
||||
Self::from_matrix_unchecked(SMatrix::<T, 3, 3>::new(
|
||||
sqx + (T::one() - sqx) * cos,
|
||||
ux * uy * one_m_cos - uz * sin,
|
||||
ux * uz * one_m_cos + uy * sin,
|
||||
ux * uy * one_m_cos + uz * sin,
|
||||
sqy + (T::one() - sqy) * cos,
|
||||
uy * uz * one_m_cos - ux * sin,
|
||||
ux * uz * one_m_cos - uy * sin,
|
||||
sqx.clone() + (T::one() - sqx) * cos.clone(),
|
||||
ux.clone() * uy.clone() * one_m_cos.clone() - uz.clone() * sin.clone(),
|
||||
ux.clone() * uz.clone() * one_m_cos.clone() + uy.clone() * sin.clone(),
|
||||
ux.clone() * uy.clone() * one_m_cos.clone() + uz.clone() * sin.clone(),
|
||||
sqy.clone() + (T::one() - sqy) * cos.clone(),
|
||||
uy.clone() * uz.clone() * one_m_cos.clone() - ux.clone() * sin.clone(),
|
||||
ux.clone() * uz.clone() * one_m_cos.clone() - uy.clone() * sin.clone(),
|
||||
uy * uz * one_m_cos + ux * sin,
|
||||
sqz + (T::one() - sqz) * cos,
|
||||
sqz.clone() + (T::one() - sqz) * cos,
|
||||
))
|
||||
},
|
||||
Self::identity,
|
||||
@ -429,14 +431,14 @@ where
|
||||
let (sy, cy) = yaw.simd_sin_cos();
|
||||
|
||||
Self::from_matrix_unchecked(SMatrix::<T, 3, 3>::new(
|
||||
cy * cp,
|
||||
cy * sp * sr - sy * cr,
|
||||
cy * sp * cr + sy * sr,
|
||||
sy * cp,
|
||||
sy * sp * sr + cy * cr,
|
||||
sy * sp * cr - cy * sr,
|
||||
cy.clone() * cp.clone(),
|
||||
cy.clone() * sp.clone() * sr.clone() - sy.clone() * cr.clone(),
|
||||
cy.clone() * sp.clone() * cr.clone() + sy.clone() * sr.clone(),
|
||||
sy.clone() * cp.clone(),
|
||||
sy.clone() * sp.clone() * sr.clone() + cy.clone() * cr.clone(),
|
||||
sy * sp.clone() * cr.clone() - cy * sr.clone(),
|
||||
-sp,
|
||||
cp * sr,
|
||||
cp.clone() * sr,
|
||||
cp * cr,
|
||||
))
|
||||
}
|
||||
@ -479,7 +481,15 @@ where
|
||||
let yaxis = zaxis.cross(&xaxis).normalize();
|
||||
|
||||
Self::from_matrix_unchecked(SMatrix::<T, 3, 3>::new(
|
||||
xaxis.x, yaxis.x, zaxis.x, xaxis.y, yaxis.y, zaxis.y, xaxis.z, yaxis.z, zaxis.z,
|
||||
xaxis.x.clone(),
|
||||
yaxis.x.clone(),
|
||||
zaxis.x.clone(),
|
||||
xaxis.y.clone(),
|
||||
yaxis.y.clone(),
|
||||
zaxis.y.clone(),
|
||||
xaxis.z.clone(),
|
||||
yaxis.z.clone(),
|
||||
zaxis.z.clone(),
|
||||
))
|
||||
}
|
||||
|
||||
@ -735,7 +745,7 @@ where
|
||||
|
||||
let axisangle = axis / (denom.abs() + T::default_epsilon());
|
||||
|
||||
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, eps) {
|
||||
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, eps.clone()) {
|
||||
rot = Rotation3::from_axis_angle(&axis, angle) * rot;
|
||||
} else {
|
||||
break;
|
||||
@ -752,7 +762,7 @@ where
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let mut c = UnitQuaternion::from(*self);
|
||||
let mut c = UnitQuaternion::from(self.clone());
|
||||
let _ = c.renormalize();
|
||||
|
||||
*self = Self::from_matrix_eps(self.matrix(), T::default_epsilon(), 0, c.into())
|
||||
@ -774,7 +784,10 @@ impl<T: SimdRealField> Rotation3<T> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn angle(&self) -> T {
|
||||
((self.matrix()[(0, 0)] + self.matrix()[(1, 1)] + self.matrix()[(2, 2)] - T::one())
|
||||
((self.matrix()[(0, 0)].clone()
|
||||
+ self.matrix()[(1, 1)].clone()
|
||||
+ self.matrix()[(2, 2)].clone()
|
||||
- T::one())
|
||||
/ crate::convert(2.0))
|
||||
.simd_acos()
|
||||
}
|
||||
@ -800,10 +813,11 @@ impl<T: SimdRealField> Rotation3<T> {
|
||||
where
|
||||
T: RealField,
|
||||
{
|
||||
let rotmat = self.matrix();
|
||||
let axis = SVector::<T, 3>::new(
|
||||
self.matrix()[(2, 1)] - self.matrix()[(1, 2)],
|
||||
self.matrix()[(0, 2)] - self.matrix()[(2, 0)],
|
||||
self.matrix()[(1, 0)] - self.matrix()[(0, 1)],
|
||||
rotmat[(2, 1)].clone() - rotmat[(1, 2)].clone(),
|
||||
rotmat[(0, 2)].clone() - rotmat[(2, 0)].clone(),
|
||||
rotmat[(1, 0)].clone() - rotmat[(0, 1)].clone(),
|
||||
);
|
||||
|
||||
Unit::try_new(axis, T::default_epsilon())
|
||||
@ -911,16 +925,22 @@ impl<T: SimdRealField> Rotation3<T> {
|
||||
{
|
||||
// Implementation informed by "Computing Euler angles from a rotation matrix", by Gregory G. Slabaugh
|
||||
// https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.371.6578
|
||||
if self[(2, 0)].abs() < T::one() {
|
||||
let yaw = -self[(2, 0)].asin();
|
||||
let roll = (self[(2, 1)] / yaw.cos()).atan2(self[(2, 2)] / yaw.cos());
|
||||
let pitch = (self[(1, 0)] / yaw.cos()).atan2(self[(0, 0)] / yaw.cos());
|
||||
if self[(2, 0)].clone().abs() < T::one() {
|
||||
let yaw = -self[(2, 0)].clone().asin();
|
||||
let roll = (self[(2, 1)].clone() / yaw.clone().cos())
|
||||
.atan2(self[(2, 2)].clone() / yaw.clone().cos());
|
||||
let pitch = (self[(1, 0)].clone() / yaw.clone().cos())
|
||||
.atan2(self[(0, 0)].clone() / yaw.clone().cos());
|
||||
(roll, yaw, pitch)
|
||||
} else if self[(2, 0)] <= -T::one() {
|
||||
(self[(0, 1)].atan2(self[(0, 2)]), T::frac_pi_2(), T::zero())
|
||||
} else if self[(2, 0)].clone() <= -T::one() {
|
||||
(
|
||||
self[(0, 1)].clone().atan2(self[(0, 2)].clone()),
|
||||
T::frac_pi_2(),
|
||||
T::zero(),
|
||||
)
|
||||
} else {
|
||||
(
|
||||
-self[(0, 1)].atan2(-self[(0, 2)]),
|
||||
-self[(0, 1)].clone().atan2(-self[(0, 2)].clone()),
|
||||
-T::frac_pi_2(),
|
||||
T::zero(),
|
||||
)
|
||||
@ -947,8 +967,8 @@ where
|
||||
let theta = rng.sample(&twopi);
|
||||
let (ts, tc) = theta.simd_sin_cos();
|
||||
let a = SMatrix::<T, 3, 3>::new(
|
||||
tc,
|
||||
ts,
|
||||
tc.clone(),
|
||||
ts.clone(),
|
||||
T::zero(),
|
||||
-ts,
|
||||
tc,
|
||||
@ -962,10 +982,10 @@ where
|
||||
let phi = rng.sample(&twopi);
|
||||
let z = rng.sample(OpenClosed01);
|
||||
let (ps, pc) = phi.simd_sin_cos();
|
||||
let sqrt_z = z.simd_sqrt();
|
||||
let v = Vector3::new(pc * sqrt_z, ps * sqrt_z, (T::one() - z).simd_sqrt());
|
||||
let mut b = v * v.transpose();
|
||||
b += b;
|
||||
let sqrt_z = z.clone().simd_sqrt();
|
||||
let v = Vector3::new(pc * sqrt_z.clone(), ps * sqrt_z, (T::one() - z).simd_sqrt());
|
||||
let mut b = v.clone() * v.transpose();
|
||||
b += b.clone();
|
||||
b -= SMatrix::<T, 3, 3>::identity();
|
||||
|
||||
Rotation3::from_matrix_unchecked(b * a)
|
||||
|
@ -124,7 +124,7 @@ impl<T: Scalar, R, const D: usize> Similarity<T, R, D> {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn scaling(&self) -> T {
|
||||
self.scaling.inlined_clone()
|
||||
self.scaling.clone()
|
||||
}
|
||||
}
|
||||
|
||||
@ -151,9 +151,9 @@ where
|
||||
/// Inverts `self` in-place.
|
||||
#[inline]
|
||||
pub fn inverse_mut(&mut self) {
|
||||
self.scaling = T::one() / self.scaling;
|
||||
self.scaling = T::one() / self.scaling.clone();
|
||||
self.isometry.inverse_mut();
|
||||
self.isometry.translation.vector *= self.scaling;
|
||||
self.isometry.translation.vector *= self.scaling.clone();
|
||||
}
|
||||
|
||||
/// The similarity transformation that applies a scaling factor `scaling` before `self`.
|
||||
@ -165,7 +165,7 @@ where
|
||||
"The similarity scaling factor must not be zero."
|
||||
);
|
||||
|
||||
Self::from_isometry(self.isometry.clone(), self.scaling * scaling)
|
||||
Self::from_isometry(self.isometry.clone(), self.scaling.clone() * scaling)
|
||||
}
|
||||
|
||||
/// The similarity transformation that applies a scaling factor `scaling` after `self`.
|
||||
@ -178,9 +178,9 @@ where
|
||||
);
|
||||
|
||||
Self::from_parts(
|
||||
Translation::from(self.isometry.translation.vector * scaling),
|
||||
Translation::from(&self.isometry.translation.vector * scaling.clone()),
|
||||
self.isometry.rotation.clone(),
|
||||
self.scaling * scaling,
|
||||
self.scaling.clone() * scaling,
|
||||
)
|
||||
}
|
||||
|
||||
@ -203,7 +203,7 @@ where
|
||||
"The similarity scaling factor must not be zero."
|
||||
);
|
||||
|
||||
self.isometry.translation.vector *= scaling;
|
||||
self.isometry.translation.vector *= scaling.clone();
|
||||
self.scaling *= scaling;
|
||||
}
|
||||
|
||||
@ -336,7 +336,7 @@ impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D> {
|
||||
let mut res = self.isometry.to_homogeneous();
|
||||
|
||||
for e in res.fixed_slice_mut::<D, D>(0, 0).iter_mut() {
|
||||
*e *= self.scaling
|
||||
*e *= self.scaling.clone()
|
||||
}
|
||||
|
||||
res
|
||||
@ -361,7 +361,7 @@ where
|
||||
impl<T: RealField, R, const D: usize> AbsDiffEq for Similarity<T, R, D>
|
||||
where
|
||||
R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
type Epsilon = T::Epsilon;
|
||||
|
||||
@ -372,7 +372,7 @@ where
|
||||
|
||||
#[inline]
|
||||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||||
self.isometry.abs_diff_eq(&other.isometry, epsilon)
|
||||
self.isometry.abs_diff_eq(&other.isometry, epsilon.clone())
|
||||
&& self.scaling.abs_diff_eq(&other.scaling, epsilon)
|
||||
}
|
||||
}
|
||||
@ -380,7 +380,7 @@ where
|
||||
impl<T: RealField, R, const D: usize> RelativeEq for Similarity<T, R, D>
|
||||
where
|
||||
R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn default_max_relative() -> Self::Epsilon {
|
||||
@ -395,7 +395,7 @@ where
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool {
|
||||
self.isometry
|
||||
.relative_eq(&other.isometry, epsilon, max_relative)
|
||||
.relative_eq(&other.isometry, epsilon.clone(), max_relative.clone())
|
||||
&& self
|
||||
.scaling
|
||||
.relative_eq(&other.scaling, epsilon, max_relative)
|
||||
@ -405,7 +405,7 @@ where
|
||||
impl<T: RealField, R, const D: usize> UlpsEq for Similarity<T, R, D>
|
||||
where
|
||||
R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn default_max_ulps() -> u32 {
|
||||
@ -414,7 +414,8 @@ where
|
||||
|
||||
#[inline]
|
||||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||||
self.isometry.ulps_eq(&other.isometry, epsilon, max_ulps)
|
||||
self.isometry
|
||||
.ulps_eq(&other.isometry, epsilon.clone(), max_ulps.clone())
|
||||
&& self.scaling.ulps_eq(&other.scaling, epsilon, max_ulps)
|
||||
}
|
||||
}
|
||||
|
@ -222,7 +222,7 @@ md_assign_impl_all!(
|
||||
const D; for; where;
|
||||
self: Similarity<T, Rotation<T, D>, D>, rhs: Rotation<T, D>;
|
||||
[val] => self.isometry.rotation *= rhs;
|
||||
[ref] => self.isometry.rotation *= *rhs;
|
||||
[ref] => self.isometry.rotation *= rhs.clone();
|
||||
);
|
||||
|
||||
md_assign_impl_all!(
|
||||
@ -241,7 +241,7 @@ md_assign_impl_all!(
|
||||
const; for; where;
|
||||
self: Similarity<T, UnitQuaternion<T>, 3>, rhs: UnitQuaternion<T>;
|
||||
[val] => self.isometry.rotation *= rhs;
|
||||
[ref] => self.isometry.rotation *= *rhs;
|
||||
[ref] => self.isometry.rotation *= rhs.clone();
|
||||
);
|
||||
|
||||
md_assign_impl_all!(
|
||||
@ -260,7 +260,7 @@ md_assign_impl_all!(
|
||||
const; for; where;
|
||||
self: Similarity<T, UnitComplex<T>, 2>, rhs: UnitComplex<T>;
|
||||
[val] => self.isometry.rotation *= rhs;
|
||||
[ref] => self.isometry.rotation *= *rhs;
|
||||
[ref] => self.isometry.rotation *= rhs.clone();
|
||||
);
|
||||
|
||||
md_assign_impl_all!(
|
||||
|
@ -11,7 +11,7 @@ macro_rules! impl_swizzle {
|
||||
#[must_use]
|
||||
pub fn $name(&self) -> $Result<T>
|
||||
where <Const<D> as ToTypenum>::Typenum: Cmp<typenum::$BaseDim, Output=Greater> {
|
||||
$Result::new($(self[$i].inlined_clone()),*)
|
||||
$Result::new($(self[$i].clone()),*)
|
||||
}
|
||||
)*
|
||||
)*
|
||||
|
@ -31,7 +31,7 @@ pub trait TCategory: Any + Debug + Copy + PartialEq + Send {
|
||||
/// category `Self`.
|
||||
fn check_homogeneous_invariants<T: RealField, D: DimName>(mat: &OMatrix<T, D, D>) -> bool
|
||||
where
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
DefaultAllocator: Allocator<T, D, D>;
|
||||
}
|
||||
|
||||
@ -74,7 +74,7 @@ impl TCategory for TGeneral {
|
||||
#[inline]
|
||||
fn check_homogeneous_invariants<T: RealField, D: DimName>(_: &OMatrix<T, D, D>) -> bool
|
||||
where
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
DefaultAllocator: Allocator<T, D, D>,
|
||||
{
|
||||
true
|
||||
@ -85,7 +85,7 @@ impl TCategory for TProjective {
|
||||
#[inline]
|
||||
fn check_homogeneous_invariants<T: RealField, D: DimName>(mat: &OMatrix<T, D, D>) -> bool
|
||||
where
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
DefaultAllocator: Allocator<T, D, D>,
|
||||
{
|
||||
mat.is_invertible()
|
||||
@ -101,7 +101,7 @@ impl TCategory for TAffine {
|
||||
#[inline]
|
||||
fn check_homogeneous_invariants<T: RealField, D: DimName>(mat: &OMatrix<T, D, D>) -> bool
|
||||
where
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
DefaultAllocator: Allocator<T, D, D>,
|
||||
{
|
||||
let last = D::dim() - 1;
|
||||
@ -178,7 +178,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: RealField, C: TCategory, const D: usize> Copy for Transform<T, C, D>
|
||||
impl<T: RealField + Copy, C: TCategory, const D: usize> Copy for Transform<T, C, D>
|
||||
where
|
||||
Const<D>: DimNameAdd<U1>,
|
||||
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
|
||||
@ -583,7 +583,7 @@ where
|
||||
impl<T: RealField, C: TCategory, const D: usize> AbsDiffEq for Transform<T, C, D>
|
||||
where
|
||||
Const<D>: DimNameAdd<U1>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
|
||||
{
|
||||
type Epsilon = T::Epsilon;
|
||||
@ -602,7 +602,7 @@ where
|
||||
impl<T: RealField, C: TCategory, const D: usize> RelativeEq for Transform<T, C, D>
|
||||
where
|
||||
Const<D>: DimNameAdd<U1>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
|
||||
{
|
||||
#[inline]
|
||||
@ -625,7 +625,7 @@ where
|
||||
impl<T: RealField, C: TCategory, const D: usize> UlpsEq for Transform<T, C, D>
|
||||
where
|
||||
Const<D>: DimNameAdd<U1>,
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
|
||||
{
|
||||
#[inline]
|
||||
|
@ -154,7 +154,7 @@ md_impl_all!(
|
||||
if C::has_normalizer() {
|
||||
let normalizer = self.matrix().fixed_slice::<1, D>(D, 0);
|
||||
#[allow(clippy::suspicious_arithmetic_impl)]
|
||||
let n = normalizer.tr_dot(&rhs.coords) + unsafe { *self.matrix().get_unchecked((D, D)) };
|
||||
let n = normalizer.tr_dot(&rhs.coords) + unsafe { self.matrix().get_unchecked((D, D)).clone() };
|
||||
|
||||
if !n.is_zero() {
|
||||
return (transform * rhs + translation) / n;
|
||||
@ -221,8 +221,8 @@ md_impl_all!(
|
||||
self: Transform<T, C, 3>, rhs: UnitQuaternion<T>, Output = Transform<T, C::Representative, 3>;
|
||||
[val val] => Self::Output::from_matrix_unchecked(self.into_inner() * rhs.to_homogeneous());
|
||||
[ref val] => Self::Output::from_matrix_unchecked(self.matrix() * rhs.to_homogeneous());
|
||||
[val ref] => Self::Output::from_matrix_unchecked(self.into_inner() * rhs.to_homogeneous());
|
||||
[ref ref] => Self::Output::from_matrix_unchecked(self.matrix() * rhs.to_homogeneous());
|
||||
[val ref] => Self::Output::from_matrix_unchecked(self.into_inner() * rhs.clone().to_homogeneous());
|
||||
[ref ref] => Self::Output::from_matrix_unchecked(self.matrix() * rhs.clone().to_homogeneous());
|
||||
);
|
||||
|
||||
// Transform × UnitComplex
|
||||
@ -235,8 +235,8 @@ md_impl_all!(
|
||||
self: Transform<T, C, 2>, rhs: UnitComplex<T>, Output = Transform<T, C::Representative, 2>;
|
||||
[val val] => Self::Output::from_matrix_unchecked(self.into_inner() * rhs.to_homogeneous());
|
||||
[ref val] => Self::Output::from_matrix_unchecked(self.matrix() * rhs.to_homogeneous());
|
||||
[val ref] => Self::Output::from_matrix_unchecked(self.into_inner() * rhs.to_homogeneous());
|
||||
[ref ref] => Self::Output::from_matrix_unchecked(self.matrix() * rhs.to_homogeneous());
|
||||
[val ref] => Self::Output::from_matrix_unchecked(self.into_inner() * rhs.clone().to_homogeneous());
|
||||
[ref ref] => Self::Output::from_matrix_unchecked(self.matrix() * rhs.clone().to_homogeneous());
|
||||
);
|
||||
|
||||
// UnitQuaternion × Transform
|
||||
@ -248,9 +248,9 @@ md_impl_all!(
|
||||
where C: TCategoryMul<TAffine>;
|
||||
self: UnitQuaternion<T>, rhs: Transform<T, C, 3>, Output = Transform<T, C::Representative, 3>;
|
||||
[val val] => Self::Output::from_matrix_unchecked(self.to_homogeneous() * rhs.into_inner());
|
||||
[ref val] => Self::Output::from_matrix_unchecked(self.to_homogeneous() * rhs.into_inner());
|
||||
[ref val] => Self::Output::from_matrix_unchecked(self.clone().to_homogeneous() * rhs.into_inner());
|
||||
[val ref] => Self::Output::from_matrix_unchecked(self.to_homogeneous() * rhs.matrix());
|
||||
[ref ref] => Self::Output::from_matrix_unchecked(self.to_homogeneous() * rhs.matrix());
|
||||
[ref ref] => Self::Output::from_matrix_unchecked(self.clone().to_homogeneous() * rhs.matrix());
|
||||
);
|
||||
|
||||
// UnitComplex × Transform
|
||||
@ -262,9 +262,9 @@ md_impl_all!(
|
||||
where C: TCategoryMul<TAffine>;
|
||||
self: UnitComplex<T>, rhs: Transform<T, C, 2>, Output = Transform<T, C::Representative, 2>;
|
||||
[val val] => Self::Output::from_matrix_unchecked(self.to_homogeneous() * rhs.into_inner());
|
||||
[ref val] => Self::Output::from_matrix_unchecked(self.to_homogeneous() * rhs.into_inner());
|
||||
[ref val] => Self::Output::from_matrix_unchecked(self.clone().to_homogeneous() * rhs.into_inner());
|
||||
[val ref] => Self::Output::from_matrix_unchecked(self.to_homogeneous() * rhs.matrix());
|
||||
[ref ref] => Self::Output::from_matrix_unchecked(self.to_homogeneous() * rhs.matrix());
|
||||
[ref ref] => Self::Output::from_matrix_unchecked(self.clone().to_homogeneous() * rhs.matrix());
|
||||
);
|
||||
|
||||
// Transform × Isometry
|
||||
@ -604,7 +604,7 @@ md_assign_impl_all!(
|
||||
where C: TCategory;
|
||||
self: Transform<T, C, 3>, rhs: UnitQuaternion<T>;
|
||||
[val] => *self.matrix_mut_unchecked() *= rhs.to_homogeneous();
|
||||
[ref] => *self.matrix_mut_unchecked() *= rhs.to_homogeneous();
|
||||
[ref] => *self.matrix_mut_unchecked() *= rhs.clone().to_homogeneous();
|
||||
);
|
||||
|
||||
// Transform ×= UnitComplex
|
||||
@ -616,7 +616,7 @@ md_assign_impl_all!(
|
||||
where C: TCategory;
|
||||
self: Transform<T, C, 2>, rhs: UnitComplex<T>;
|
||||
[val] => *self.matrix_mut_unchecked() *= rhs.to_homogeneous();
|
||||
[ref] => *self.matrix_mut_unchecked() *= rhs.to_homogeneous();
|
||||
[ref] => *self.matrix_mut_unchecked() *= rhs.clone().to_homogeneous();
|
||||
);
|
||||
|
||||
// Transform ÷= Transform
|
||||
|
@ -291,7 +291,7 @@ impl<T: Scalar + PartialEq, const D: usize> PartialEq for Translation<T, D> {
|
||||
|
||||
impl<T: Scalar + AbsDiffEq, const D: usize> AbsDiffEq for Translation<T, D>
|
||||
where
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
type Epsilon = T::Epsilon;
|
||||
|
||||
@ -308,7 +308,7 @@ where
|
||||
|
||||
impl<T: Scalar + RelativeEq, const D: usize> RelativeEq for Translation<T, D>
|
||||
where
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn default_max_relative() -> Self::Epsilon {
|
||||
@ -329,7 +329,7 @@ where
|
||||
|
||||
impl<T: Scalar + UlpsEq, const D: usize> UlpsEq for Translation<T, D>
|
||||
where
|
||||
T::Epsilon: Copy,
|
||||
T::Epsilon: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn default_max_ulps() -> u32 {
|
||||
|
@ -77,7 +77,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn to_superset(&self) -> UnitDualQuaternion<T2> {
|
||||
let dq = UnitDualQuaternion::<T1>::from_parts(*self, UnitQuaternion::identity());
|
||||
let dq = UnitDualQuaternion::<T1>::from_parts(self.clone(), UnitQuaternion::identity());
|
||||
dq.to_superset()
|
||||
}
|
||||
|
||||
|
@ -47,25 +47,25 @@ impl<T: SimdRealField> Normed for Complex<T> {
|
||||
fn norm(&self) -> T::SimdRealField {
|
||||
// We don't use `.norm_sqr()` because it requires
|
||||
// some very strong Num trait requirements.
|
||||
(self.re * self.re + self.im * self.im).simd_sqrt()
|
||||
(self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone()).simd_sqrt()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn norm_squared(&self) -> T::SimdRealField {
|
||||
// We don't use `.norm_sqr()` because it requires
|
||||
// some very strong Num trait requirements.
|
||||
self.re * self.re + self.im * self.im
|
||||
self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn scale_mut(&mut self, n: Self::Norm) {
|
||||
self.re *= n;
|
||||
self.re *= n.clone();
|
||||
self.im *= n;
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn unscale_mut(&mut self, n: Self::Norm) {
|
||||
self.re /= n;
|
||||
self.re /= n.clone();
|
||||
self.im /= n;
|
||||
}
|
||||
}
|
||||
@ -86,7 +86,7 @@ where
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn angle(&self) -> T {
|
||||
self.im.simd_atan2(self.re)
|
||||
self.im.clone().simd_atan2(self.re.clone())
|
||||
}
|
||||
|
||||
/// The sine of the rotation angle.
|
||||
@ -101,7 +101,7 @@ where
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn sin_angle(&self) -> T {
|
||||
self.im
|
||||
self.im.clone()
|
||||
}
|
||||
|
||||
/// The cosine of the rotation angle.
|
||||
@ -116,7 +116,7 @@ where
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn cos_angle(&self) -> T {
|
||||
self.re
|
||||
self.re.clone()
|
||||
}
|
||||
|
||||
/// The rotation angle returned as a 1-dimensional vector.
|
||||
@ -145,7 +145,7 @@ where
|
||||
if ang.is_zero() {
|
||||
None
|
||||
} else if ang.is_sign_negative() {
|
||||
Some((Unit::new_unchecked(Vector1::x()), -ang))
|
||||
Some((Unit::new_unchecked(Vector1::x()), -ang.clone()))
|
||||
} else {
|
||||
Some((Unit::new_unchecked(-Vector1::<T>::x()), ang))
|
||||
}
|
||||
@ -223,7 +223,7 @@ where
|
||||
#[inline]
|
||||
pub fn conjugate_mut(&mut self) {
|
||||
let me = self.as_mut_unchecked();
|
||||
me.im = -me.im;
|
||||
me.im = -me.im.clone();
|
||||
}
|
||||
|
||||
/// Inverts in-place this unit complex number.
|
||||
@ -262,10 +262,10 @@ where
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn to_rotation_matrix(self) -> Rotation2<T> {
|
||||
let r = self.re;
|
||||
let i = self.im;
|
||||
let r = self.re.clone();
|
||||
let i = self.im.clone();
|
||||
|
||||
Rotation2::from_matrix_unchecked(Matrix2::new(r, -i, i, r))
|
||||
Rotation2::from_matrix_unchecked(Matrix2::new(r.clone(), -i.clone(), i, r))
|
||||
}
|
||||
|
||||
/// Converts this unit complex number into its equivalent homogeneous transformation matrix.
|
||||
@ -407,7 +407,7 @@ where
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn slerp(&self, other: &Self, t: T) -> Self {
|
||||
Self::new(self.angle() * (T::one() - t) + other.angle() * t)
|
||||
Self::new(self.angle() * (T::one() - t.clone()) + other.angle() * t)
|
||||
}
|
||||
}
|
||||
|
||||
@ -427,7 +427,7 @@ impl<T: RealField> AbsDiffEq for UnitComplex<T> {
|
||||
|
||||
#[inline]
|
||||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||||
self.re.abs_diff_eq(&other.re, epsilon) && self.im.abs_diff_eq(&other.im, epsilon)
|
||||
self.re.abs_diff_eq(&other.re, epsilon.clone()) && self.im.abs_diff_eq(&other.im, epsilon)
|
||||
}
|
||||
}
|
||||
|
||||
@ -444,7 +444,8 @@ impl<T: RealField> RelativeEq for UnitComplex<T> {
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool {
|
||||
self.re.relative_eq(&other.re, epsilon, max_relative)
|
||||
self.re
|
||||
.relative_eq(&other.re, epsilon.clone(), max_relative.clone())
|
||||
&& self.im.relative_eq(&other.im, epsilon, max_relative)
|
||||
}
|
||||
}
|
||||
@ -457,7 +458,8 @@ impl<T: RealField> UlpsEq for UnitComplex<T> {
|
||||
|
||||
#[inline]
|
||||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||||
self.re.ulps_eq(&other.re, epsilon, max_ulps)
|
||||
self.re
|
||||
.ulps_eq(&other.re, epsilon.clone(), max_ulps.clone())
|
||||
&& self.im.ulps_eq(&other.im, epsilon, max_ulps)
|
||||
}
|
||||
}
|
||||
|
@ -109,7 +109,7 @@ where
|
||||
/// the `::new(angle)` method instead is more common.
|
||||
#[inline]
|
||||
pub fn from_scaled_axis<SB: Storage<T, U1>>(axisangle: Vector<T, U1, SB>) -> Self {
|
||||
Self::from_angle(axisangle[0])
|
||||
Self::from_angle(axisangle[0].clone())
|
||||
}
|
||||
}
|
||||
|
||||
@ -166,8 +166,8 @@ where
|
||||
/// The input complex number will be normalized. Returns the norm of the complex number as well.
|
||||
#[inline]
|
||||
pub fn from_complex_and_get(q: Complex<T>) -> (Self, T) {
|
||||
let norm = (q.im * q.im + q.re * q.re).simd_sqrt();
|
||||
(Self::new_unchecked(q / norm), norm)
|
||||
let norm = (q.im.clone() * q.im.clone() + q.re.clone() * q.re.clone()).simd_sqrt();
|
||||
(Self::new_unchecked(q / norm.clone()), norm)
|
||||
}
|
||||
|
||||
/// Builds the unit complex number from the corresponding 2D rotation matrix.
|
||||
@ -182,7 +182,7 @@ where
|
||||
// TODO: add UnitComplex::from(...) instead?
|
||||
#[inline]
|
||||
pub fn from_rotation_matrix(rotmat: &Rotation2<T>) -> Self {
|
||||
Self::new_unchecked(Complex::new(rotmat[(0, 0)], rotmat[(1, 0)]))
|
||||
Self::new_unchecked(Complex::new(rotmat[(0, 0)].clone(), rotmat[(1, 0)].clone()))
|
||||
}
|
||||
|
||||
/// Builds a rotation from a basis assumed to be orthonormal.
|
||||
@ -410,7 +410,7 @@ where
|
||||
#[inline]
|
||||
fn sample<'a, R: Rng + ?Sized>(&self, rng: &mut R) -> UnitComplex<T> {
|
||||
let x = rng.sample(rand_distr::UnitCircle);
|
||||
UnitComplex::new_unchecked(Complex::new(x[0], x[1]))
|
||||
UnitComplex::new_unchecked(Complex::new(x[0].clone(), x[1].clone()))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -121,7 +121,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn to_superset(&self) -> Transform<T2, C, 2> {
|
||||
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
|
||||
Transform::from_matrix_unchecked(self.clone().to_homogeneous().to_superset())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -138,7 +138,7 @@ where
|
||||
impl<T1: RealField, T2: RealField + SupersetOf<T1>> SubsetOf<Matrix3<T2>> for UnitComplex<T1> {
|
||||
#[inline]
|
||||
fn to_superset(&self) -> Matrix3<T2> {
|
||||
self.to_homogeneous().to_superset()
|
||||
self.clone().to_homogeneous().to_superset()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -255,9 +255,9 @@ complex_op_impl_all!(
|
||||
[ref val] => self * &rhs;
|
||||
[val ref] => &self * rhs;
|
||||
[ref ref] => {
|
||||
let i = self.as_ref().im;
|
||||
let r = self.as_ref().re;
|
||||
Vector2::new(r * rhs[0] - i * rhs[1], i * rhs[0] + r * rhs[1])
|
||||
let i = self.as_ref().im.clone();
|
||||
let r = self.as_ref().re.clone();
|
||||
Vector2::new(r.clone() * rhs[0].clone() - i.clone() * rhs[1].clone(), i * rhs[0].clone() + r * rhs[1].clone())
|
||||
};
|
||||
);
|
||||
|
||||
@ -306,9 +306,9 @@ complex_op_impl_all!(
|
||||
self: UnitComplex<T>, rhs: Translation<T, 2>,
|
||||
Output = Isometry<T, UnitComplex<T>, 2>;
|
||||
[val val] => Isometry::from_parts(Translation::from(&self * rhs.vector), self);
|
||||
[ref val] => Isometry::from_parts(Translation::from( self * rhs.vector), *self);
|
||||
[ref val] => Isometry::from_parts(Translation::from( self * rhs.vector), self.clone());
|
||||
[val ref] => Isometry::from_parts(Translation::from(&self * &rhs.vector), self);
|
||||
[ref ref] => Isometry::from_parts(Translation::from( self * &rhs.vector), *self);
|
||||
[ref ref] => Isometry::from_parts(Translation::from( self * &rhs.vector), self.clone());
|
||||
);
|
||||
|
||||
// Translation × UnitComplex
|
||||
@ -318,9 +318,9 @@ complex_op_impl_all!(
|
||||
self: Translation<T, 2>, right: UnitComplex<T>,
|
||||
Output = Isometry<T, UnitComplex<T>, 2>;
|
||||
[val val] => Isometry::from_parts(self, right);
|
||||
[ref val] => Isometry::from_parts(*self, right);
|
||||
[val ref] => Isometry::from_parts(self, *right);
|
||||
[ref ref] => Isometry::from_parts(*self, *right);
|
||||
[ref val] => Isometry::from_parts(self.clone(), right);
|
||||
[val ref] => Isometry::from_parts(self, right.clone());
|
||||
[ref ref] => Isometry::from_parts(self.clone(), right.clone());
|
||||
);
|
||||
|
||||
// UnitComplex ×= UnitComplex
|
||||
@ -330,7 +330,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, rhs: UnitComplex<T>) {
|
||||
*self = *self * rhs
|
||||
*self = self.clone() * rhs
|
||||
}
|
||||
}
|
||||
|
||||
@ -340,7 +340,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, rhs: &'b UnitComplex<T>) {
|
||||
*self = *self * rhs
|
||||
*self = self.clone() * rhs
|
||||
}
|
||||
}
|
||||
|
||||
@ -351,7 +351,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn div_assign(&mut self, rhs: UnitComplex<T>) {
|
||||
*self = *self / rhs
|
||||
*self = self.clone() / rhs
|
||||
}
|
||||
}
|
||||
|
||||
@ -361,7 +361,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn div_assign(&mut self, rhs: &'b UnitComplex<T>) {
|
||||
*self = *self / rhs
|
||||
*self = self.clone() / rhs
|
||||
}
|
||||
}
|
||||
|
||||
@ -372,7 +372,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, rhs: Rotation<T, 2>) {
|
||||
*self = *self * rhs
|
||||
*self = self.clone() * rhs
|
||||
}
|
||||
}
|
||||
|
||||
@ -382,7 +382,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, rhs: &'b Rotation<T, 2>) {
|
||||
*self = *self * rhs
|
||||
*self = self.clone() * rhs
|
||||
}
|
||||
}
|
||||
|
||||
@ -393,7 +393,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn div_assign(&mut self, rhs: Rotation<T, 2>) {
|
||||
*self = *self / rhs
|
||||
*self = self.clone() / rhs
|
||||
}
|
||||
}
|
||||
|
||||
@ -403,7 +403,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn div_assign(&mut self, rhs: &'b Rotation<T, 2>) {
|
||||
*self = *self / rhs
|
||||
*self = self.clone() / rhs
|
||||
}
|
||||
}
|
||||
|
||||
@ -424,7 +424,7 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, rhs: &'b UnitComplex<T>) {
|
||||
self.mul_assign(rhs.to_rotation_matrix())
|
||||
self.mul_assign(rhs.clone().to_rotation_matrix())
|
||||
}
|
||||
}
|
||||
|
||||
@ -445,6 +445,6 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn div_assign(&mut self, rhs: &'b UnitComplex<T>) {
|
||||
self.div_assign(rhs.to_rotation_matrix())
|
||||
self.div_assign(rhs.clone().to_rotation_matrix())
|
||||
}
|
||||
}
|
||||
|
@ -390,7 +390,7 @@ pub fn center<T: SimdComplexField, const D: usize>(
|
||||
p1: &Point<T, D>,
|
||||
p2: &Point<T, D>,
|
||||
) -> Point<T, D> {
|
||||
((p1.coords + p2.coords) * convert::<_, T>(0.5)).into()
|
||||
((&p1.coords + &p2.coords) * convert::<_, T>(0.5)).into()
|
||||
}
|
||||
|
||||
/// The distance between two points.
|
||||
@ -404,7 +404,7 @@ pub fn distance<T: SimdComplexField, const D: usize>(
|
||||
p1: &Point<T, D>,
|
||||
p2: &Point<T, D>,
|
||||
) -> T::SimdRealField {
|
||||
(p2.coords - p1.coords).norm()
|
||||
(&p2.coords - &p1.coords).norm()
|
||||
}
|
||||
|
||||
/// The squared distance between two points.
|
||||
@ -418,7 +418,7 @@ pub fn distance_squared<T: SimdComplexField, const D: usize>(
|
||||
p1: &Point<T, D>,
|
||||
p2: &Point<T, D>,
|
||||
) -> T::SimdRealField {
|
||||
(p2.coords - p1.coords).norm_squared()
|
||||
(&p2.coords - &p1.coords).norm_squared()
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -31,33 +31,33 @@ where
|
||||
let mut n_row = matrix.row(i).norm_squared();
|
||||
let mut f = T::one();
|
||||
|
||||
let s = n_col + n_row;
|
||||
let s = n_col.clone() + n_row.clone();
|
||||
n_col = n_col.sqrt();
|
||||
n_row = n_row.sqrt();
|
||||
|
||||
if n_col.is_zero() || n_row.is_zero() {
|
||||
if n_col.clone().is_zero() || n_row.clone().is_zero() {
|
||||
continue;
|
||||
}
|
||||
|
||||
while n_col < n_row / radix {
|
||||
n_col *= radix;
|
||||
n_row /= radix;
|
||||
f *= radix;
|
||||
while n_col.clone() < n_row.clone() / radix.clone() {
|
||||
n_col *= radix.clone();
|
||||
n_row /= radix.clone();
|
||||
f *= radix.clone();
|
||||
}
|
||||
|
||||
while n_col >= n_row * radix {
|
||||
n_col /= radix;
|
||||
n_row *= radix;
|
||||
f /= radix;
|
||||
while n_col.clone() >= n_row.clone() * radix.clone() {
|
||||
n_col /= radix.clone();
|
||||
n_row *= radix.clone();
|
||||
f /= radix.clone();
|
||||
}
|
||||
|
||||
let eps: T = crate::convert(0.95);
|
||||
#[allow(clippy::suspicious_operation_groupings)]
|
||||
if n_col * n_col + n_row * n_row < eps * s {
|
||||
if n_col.clone() * n_col + n_row.clone() * n_row < eps * s {
|
||||
converged = false;
|
||||
d[i] *= f;
|
||||
matrix.column_mut(i).mul_assign(f);
|
||||
matrix.row_mut(i).div_assign(f);
|
||||
d[i] *= f.clone();
|
||||
matrix.column_mut(i).mul_assign(f.clone());
|
||||
matrix.row_mut(i).div_assign(f.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -75,10 +75,10 @@ where
|
||||
|
||||
for j in 0..d.len() {
|
||||
let mut col = m.column_mut(j);
|
||||
let denom = T::one() / d[j];
|
||||
let denom = T::one() / d[j].clone();
|
||||
|
||||
for i in 0..d.len() {
|
||||
col[i] *= d[i] * denom;
|
||||
col[i] *= d[i].clone() * denom.clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -195,11 +195,19 @@ where
|
||||
|
||||
let d = nrows.min(ncols);
|
||||
let mut res = OMatrix::identity_generic(d, d);
|
||||
res.set_partial_diagonal(self.diagonal.iter().map(|e| T::from_real(e.modulus())));
|
||||
res.set_partial_diagonal(
|
||||
self.diagonal
|
||||
.iter()
|
||||
.map(|e| T::from_real(e.clone().modulus())),
|
||||
);
|
||||
|
||||
let start = self.axis_shift();
|
||||
res.slice_mut(start, (d.value() - 1, d.value() - 1))
|
||||
.set_partial_diagonal(self.off_diagonal.iter().map(|e| T::from_real(e.modulus())));
|
||||
.set_partial_diagonal(
|
||||
self.off_diagonal
|
||||
.iter()
|
||||
.map(|e| T::from_real(e.clone().modulus())),
|
||||
);
|
||||
res
|
||||
}
|
||||
|
||||
@ -225,9 +233,9 @@ where
|
||||
let mut res_rows = res.slice_range_mut(i + shift.., i..);
|
||||
|
||||
let sign = if self.upper_diagonal {
|
||||
self.diagonal[i].signum()
|
||||
self.diagonal[i].clone().signum()
|
||||
} else {
|
||||
self.off_diagonal[i].signum()
|
||||
self.off_diagonal[i].clone().signum()
|
||||
};
|
||||
|
||||
refl.reflect_with_sign(&mut res_rows, sign);
|
||||
@ -261,9 +269,9 @@ where
|
||||
let mut res_rows = res.slice_range_mut(i.., i + shift..);
|
||||
|
||||
let sign = if self.upper_diagonal {
|
||||
self.off_diagonal[i].signum()
|
||||
self.off_diagonal[i].clone().signum()
|
||||
} else {
|
||||
self.diagonal[i].signum()
|
||||
self.diagonal[i].clone().signum()
|
||||
};
|
||||
|
||||
refl.reflect_rows_with_sign(&mut res_rows, &mut work.rows_range_mut(i..), sign);
|
||||
|
@ -52,7 +52,7 @@ where
|
||||
|
||||
for j in 0..n {
|
||||
for k in 0..j {
|
||||
let factor = unsafe { -*matrix.get_unchecked((j, k)) };
|
||||
let factor = unsafe { -matrix.get_unchecked((j, k)).clone() };
|
||||
|
||||
let (mut col_j, col_k) = matrix.columns_range_pair_mut(j, k);
|
||||
let mut col_j = col_j.rows_range_mut(j..);
|
||||
@ -60,11 +60,11 @@ where
|
||||
col_j.axpy(factor.simd_conjugate(), &col_k, T::one());
|
||||
}
|
||||
|
||||
let diag = unsafe { *matrix.get_unchecked((j, j)) };
|
||||
let diag = unsafe { matrix.get_unchecked((j, j)).clone() };
|
||||
let denom = diag.simd_sqrt();
|
||||
|
||||
unsafe {
|
||||
*matrix.get_unchecked_mut((j, j)) = denom;
|
||||
*matrix.get_unchecked_mut((j, j)) = denom.clone();
|
||||
}
|
||||
|
||||
let mut col = matrix.slice_range_mut(j + 1.., j);
|
||||
@ -149,7 +149,7 @@ where
|
||||
let dim = self.chol.nrows();
|
||||
let mut prod_diag = T::one();
|
||||
for i in 0..dim {
|
||||
prod_diag *= unsafe { *self.chol.get_unchecked((i, i)) };
|
||||
prod_diag *= unsafe { self.chol.get_unchecked((i, i)).clone() };
|
||||
}
|
||||
prod_diag.simd_modulus_squared()
|
||||
}
|
||||
@ -170,7 +170,7 @@ where
|
||||
|
||||
for j in 0..n {
|
||||
for k in 0..j {
|
||||
let factor = unsafe { -*matrix.get_unchecked((j, k)) };
|
||||
let factor = unsafe { -matrix.get_unchecked((j, k)).clone() };
|
||||
|
||||
let (mut col_j, col_k) = matrix.columns_range_pair_mut(j, k);
|
||||
let mut col_j = col_j.rows_range_mut(j..);
|
||||
@ -179,11 +179,11 @@ where
|
||||
col_j.axpy(factor.conjugate(), &col_k, T::one());
|
||||
}
|
||||
|
||||
let diag = unsafe { *matrix.get_unchecked((j, j)) };
|
||||
let diag = unsafe { matrix.get_unchecked((j, j)).clone() };
|
||||
if !diag.is_zero() {
|
||||
if let Some(denom) = diag.try_sqrt() {
|
||||
unsafe {
|
||||
*matrix.get_unchecked_mut((j, j)) = denom;
|
||||
*matrix.get_unchecked_mut((j, j)) = denom.clone();
|
||||
}
|
||||
|
||||
let mut col = matrix.slice_range_mut(j + 1.., j);
|
||||
@ -254,7 +254,7 @@ where
|
||||
// update the jth row
|
||||
let top_left_corner = self.chol.slice_range(..j, ..j);
|
||||
|
||||
let col_j = col[j];
|
||||
let col_j = col[j].clone();
|
||||
let (mut new_rowj_adjoint, mut new_colj) = col.rows_range_pair_mut(..j, j + 1..);
|
||||
assert!(
|
||||
top_left_corner.solve_lower_triangular_mut(&mut new_rowj_adjoint),
|
||||
@ -265,13 +265,13 @@ where
|
||||
|
||||
// update the center element
|
||||
let center_element = T::sqrt(col_j - T::from_real(new_rowj_adjoint.norm_squared()));
|
||||
chol[(j, j)] = center_element;
|
||||
chol[(j, j)] = center_element.clone();
|
||||
|
||||
// update the jth column
|
||||
let bottom_left_corner = self.chol.slice_range(j.., ..j);
|
||||
// new_colj = (col_jplus - bottom_left_corner * new_rowj.adjoint()) / center_element;
|
||||
new_colj.gemm(
|
||||
-T::one() / center_element,
|
||||
-T::one() / center_element.clone(),
|
||||
&bottom_left_corner,
|
||||
&new_rowj_adjoint,
|
||||
T::one() / center_element,
|
||||
@ -353,23 +353,23 @@ where
|
||||
|
||||
for j in 0..n {
|
||||
// updates the diagonal
|
||||
let diag = T::real(unsafe { *chol.get_unchecked((j, j)) });
|
||||
let diag2 = diag * diag;
|
||||
let xj = unsafe { *x.get_unchecked(j) };
|
||||
let sigma_xj2 = sigma * T::modulus_squared(xj);
|
||||
let gamma = diag2 * beta + sigma_xj2;
|
||||
let new_diag = (diag2 + sigma_xj2 / beta).sqrt();
|
||||
unsafe { *chol.get_unchecked_mut((j, j)) = T::from_real(new_diag) };
|
||||
let diag = T::real(unsafe { chol.get_unchecked((j, j)).clone() });
|
||||
let diag2 = diag.clone() * diag.clone();
|
||||
let xj = unsafe { x.get_unchecked(j).clone() };
|
||||
let sigma_xj2 = sigma.clone() * T::modulus_squared(xj.clone());
|
||||
let gamma = diag2.clone() * beta.clone() + sigma_xj2.clone();
|
||||
let new_diag = (diag2.clone() + sigma_xj2.clone() / beta.clone()).sqrt();
|
||||
unsafe { *chol.get_unchecked_mut((j, j)) = T::from_real(new_diag.clone()) };
|
||||
beta += sigma_xj2 / diag2;
|
||||
// updates the terms of L
|
||||
let mut xjplus = x.rows_range_mut(j + 1..);
|
||||
let mut col_j = chol.slice_range_mut(j + 1.., j);
|
||||
// temp_jplus -= (wj / T::from_real(diag)) * col_j;
|
||||
xjplus.axpy(-xj / T::from_real(diag), &col_j, T::one());
|
||||
xjplus.axpy(-xj.clone() / T::from_real(diag.clone()), &col_j, T::one());
|
||||
if gamma != crate::zero::<T::RealField>() {
|
||||
// col_j = T::from_real(nljj / diag) * col_j + (T::from_real(nljj * sigma / gamma) * T::conjugate(wj)) * temp_jplus;
|
||||
col_j.axpy(
|
||||
T::from_real(new_diag * sigma / gamma) * T::conjugate(xj),
|
||||
T::from_real(new_diag.clone() * sigma.clone() / gamma) * T::conjugate(xj),
|
||||
&xjplus,
|
||||
T::from_real(new_diag / diag),
|
||||
);
|
||||
|
@ -109,7 +109,7 @@ where
|
||||
.col_piv_qr
|
||||
.rows_generic(0, nrows.min(ncols))
|
||||
.upper_triangle();
|
||||
res.set_partial_diagonal(self.diag.iter().map(|e| T::from_real(e.modulus())));
|
||||
res.set_partial_diagonal(self.diag.iter().map(|e| T::from_real(e.clone().modulus())));
|
||||
res
|
||||
}
|
||||
|
||||
@ -126,7 +126,7 @@ where
|
||||
.col_piv_qr
|
||||
.resize_generic(nrows.min(ncols), ncols, T::zero());
|
||||
res.fill_lower_triangle(T::zero(), 1);
|
||||
res.set_partial_diagonal(self.diag.iter().map(|e| T::from_real(e.modulus())));
|
||||
res.set_partial_diagonal(self.diag.iter().map(|e| T::from_real(e.clone().modulus())));
|
||||
res
|
||||
}
|
||||
|
||||
@ -149,7 +149,7 @@ where
|
||||
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
||||
|
||||
let mut res_rows = res.slice_range_mut(i.., i..);
|
||||
refl.reflect_with_sign(&mut res_rows, self.diag[i].signum());
|
||||
refl.reflect_with_sign(&mut res_rows, self.diag[i].clone().signum());
|
||||
}
|
||||
|
||||
res
|
||||
@ -195,7 +195,7 @@ where
|
||||
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
||||
|
||||
let mut rhs_rows = rhs.rows_range_mut(i..);
|
||||
refl.reflect_with_sign(&mut rhs_rows, self.diag[i].signum().conjugate());
|
||||
refl.reflect_with_sign(&mut rhs_rows, self.diag[i].clone().signum().conjugate());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -270,14 +270,14 @@ where
|
||||
let coeff;
|
||||
|
||||
unsafe {
|
||||
let diag = self.diag.vget_unchecked(i).modulus();
|
||||
let diag = self.diag.vget_unchecked(i).clone().modulus();
|
||||
|
||||
if diag.is_zero() {
|
||||
return false;
|
||||
}
|
||||
|
||||
coeff = b.vget_unchecked(i).unscale(diag);
|
||||
*b.vget_unchecked_mut(i) = coeff;
|
||||
coeff = b.vget_unchecked(i).clone().unscale(diag);
|
||||
*b.vget_unchecked_mut(i) = coeff.clone();
|
||||
}
|
||||
|
||||
b.rows_range_mut(..i)
|
||||
@ -337,7 +337,7 @@ where
|
||||
|
||||
let mut res = T::one();
|
||||
for i in 0..dim {
|
||||
res *= unsafe { *self.diag.vget_unchecked(i) };
|
||||
res *= unsafe { self.diag.vget_unchecked(i).clone() };
|
||||
}
|
||||
|
||||
res * self.p.determinant()
|
||||
|
@ -47,11 +47,11 @@ impl<T: RealField, D1: Dim, S1: Storage<T, D1>> Vector<T, D1, S1> {
|
||||
let u_f = cmp::min(i, vec - 1);
|
||||
|
||||
if u_i == u_f {
|
||||
conv[i] += self[u_i] * kernel[(i - u_i)];
|
||||
conv[i] += self[u_i].clone() * kernel[(i - u_i)].clone();
|
||||
} else {
|
||||
for u in u_i..(u_f + 1) {
|
||||
if i - u < ker {
|
||||
conv[i] += self[u] * kernel[(i - u)];
|
||||
conv[i] += self[u].clone() * kernel[(i - u)].clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -97,7 +97,7 @@ impl<T: RealField, D1: Dim, S1: Storage<T, D1>> Vector<T, D1, S1> {
|
||||
|
||||
for i in 0..(vec - ker + 1) {
|
||||
for j in 0..ker {
|
||||
conv[i] += self[i + j] * kernel[ker - j - 1];
|
||||
conv[i] += self[i + j].clone() * kernel[ker - j - 1].clone();
|
||||
}
|
||||
}
|
||||
conv
|
||||
@ -133,9 +133,9 @@ impl<T: RealField, D1: Dim, S1: Storage<T, D1>> Vector<T, D1, S1> {
|
||||
let val = if i + j < 1 || i + j >= vec + 1 {
|
||||
zero::<T>()
|
||||
} else {
|
||||
self[i + j - 1]
|
||||
self[i + j - 1].clone()
|
||||
};
|
||||
conv[i] += val * kernel[ker - j - 1];
|
||||
conv[i] += val * kernel[ker - j - 1].clone();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -26,30 +26,30 @@ impl<T: ComplexField, D: DimMin<D, Output = D>, S: Storage<T, D, D>> SquareMatri
|
||||
unsafe {
|
||||
match dim {
|
||||
0 => T::one(),
|
||||
1 => *self.get_unchecked((0, 0)),
|
||||
1 => self.get_unchecked((0, 0)).clone(),
|
||||
2 => {
|
||||
let m11 = *self.get_unchecked((0, 0));
|
||||
let m12 = *self.get_unchecked((0, 1));
|
||||
let m21 = *self.get_unchecked((1, 0));
|
||||
let m22 = *self.get_unchecked((1, 1));
|
||||
let m11 = self.get_unchecked((0, 0)).clone();
|
||||
let m12 = self.get_unchecked((0, 1)).clone();
|
||||
let m21 = self.get_unchecked((1, 0)).clone();
|
||||
let m22 = self.get_unchecked((1, 1)).clone();
|
||||
|
||||
m11 * m22 - m21 * m12
|
||||
}
|
||||
3 => {
|
||||
let m11 = *self.get_unchecked((0, 0));
|
||||
let m12 = *self.get_unchecked((0, 1));
|
||||
let m13 = *self.get_unchecked((0, 2));
|
||||
let m11 = self.get_unchecked((0, 0)).clone();
|
||||
let m12 = self.get_unchecked((0, 1)).clone();
|
||||
let m13 = self.get_unchecked((0, 2)).clone();
|
||||
|
||||
let m21 = *self.get_unchecked((1, 0));
|
||||
let m22 = *self.get_unchecked((1, 1));
|
||||
let m23 = *self.get_unchecked((1, 2));
|
||||
let m21 = self.get_unchecked((1, 0)).clone();
|
||||
let m22 = self.get_unchecked((1, 1)).clone();
|
||||
let m23 = self.get_unchecked((1, 2)).clone();
|
||||
|
||||
let m31 = *self.get_unchecked((2, 0));
|
||||
let m32 = *self.get_unchecked((2, 1));
|
||||
let m33 = *self.get_unchecked((2, 2));
|
||||
let m31 = self.get_unchecked((2, 0)).clone();
|
||||
let m32 = self.get_unchecked((2, 1)).clone();
|
||||
let m33 = self.get_unchecked((2, 2)).clone();
|
||||
|
||||
let minor_m12_m23 = m22 * m33 - m32 * m23;
|
||||
let minor_m11_m23 = m21 * m33 - m31 * m23;
|
||||
let minor_m12_m23 = m22.clone() * m33.clone() - m32.clone() * m23.clone();
|
||||
let minor_m11_m23 = m21.clone() * m33.clone() - m31.clone() * m23.clone();
|
||||
let minor_m11_m22 = m21 * m32 - m31 * m22;
|
||||
|
||||
m11 * minor_m12_m23 - m12 * minor_m11_m23 + m13 * minor_m11_m22
|
||||
|
@ -116,7 +116,7 @@ where
|
||||
self.calc_a4();
|
||||
self.d4_exact = Some(one_norm(self.a4.as_ref().unwrap()).powf(convert(0.25)));
|
||||
}
|
||||
self.d4_exact.unwrap()
|
||||
self.d4_exact.clone().unwrap()
|
||||
}
|
||||
|
||||
fn d6_tight(&mut self) -> T::RealField {
|
||||
@ -124,7 +124,7 @@ where
|
||||
self.calc_a6();
|
||||
self.d6_exact = Some(one_norm(self.a6.as_ref().unwrap()).powf(convert(1.0 / 6.0)));
|
||||
}
|
||||
self.d6_exact.unwrap()
|
||||
self.d6_exact.clone().unwrap()
|
||||
}
|
||||
|
||||
fn d8_tight(&mut self) -> T::RealField {
|
||||
@ -132,7 +132,7 @@ where
|
||||
self.calc_a8();
|
||||
self.d8_exact = Some(one_norm(self.a8.as_ref().unwrap()).powf(convert(1.0 / 8.0)));
|
||||
}
|
||||
self.d8_exact.unwrap()
|
||||
self.d8_exact.clone().unwrap()
|
||||
}
|
||||
|
||||
fn d10_tight(&mut self) -> T::RealField {
|
||||
@ -140,7 +140,7 @@ where
|
||||
self.calc_a10();
|
||||
self.d10_exact = Some(one_norm(self.a10.as_ref().unwrap()).powf(convert(1.0 / 10.0)));
|
||||
}
|
||||
self.d10_exact.unwrap()
|
||||
self.d10_exact.clone().unwrap()
|
||||
}
|
||||
|
||||
fn d4_loose(&mut self) -> T::RealField {
|
||||
@ -149,7 +149,7 @@ where
|
||||
}
|
||||
|
||||
if self.d4_exact.is_some() {
|
||||
return self.d4_exact.unwrap();
|
||||
return self.d4_exact.clone().unwrap();
|
||||
}
|
||||
|
||||
if self.d4_approx.is_none() {
|
||||
@ -157,7 +157,7 @@ where
|
||||
self.d4_approx = Some(one_norm(self.a4.as_ref().unwrap()).powf(convert(0.25)));
|
||||
}
|
||||
|
||||
self.d4_approx.unwrap()
|
||||
self.d4_approx.clone().unwrap()
|
||||
}
|
||||
|
||||
fn d6_loose(&mut self) -> T::RealField {
|
||||
@ -166,7 +166,7 @@ where
|
||||
}
|
||||
|
||||
if self.d6_exact.is_some() {
|
||||
return self.d6_exact.unwrap();
|
||||
return self.d6_exact.clone().unwrap();
|
||||
}
|
||||
|
||||
if self.d6_approx.is_none() {
|
||||
@ -174,7 +174,7 @@ where
|
||||
self.d6_approx = Some(one_norm(self.a6.as_ref().unwrap()).powf(convert(1.0 / 6.0)));
|
||||
}
|
||||
|
||||
self.d6_approx.unwrap()
|
||||
self.d6_approx.clone().unwrap()
|
||||
}
|
||||
|
||||
fn d8_loose(&mut self) -> T::RealField {
|
||||
@ -183,7 +183,7 @@ where
|
||||
}
|
||||
|
||||
if self.d8_exact.is_some() {
|
||||
return self.d8_exact.unwrap();
|
||||
return self.d8_exact.clone().unwrap();
|
||||
}
|
||||
|
||||
if self.d8_approx.is_none() {
|
||||
@ -191,7 +191,7 @@ where
|
||||
self.d8_approx = Some(one_norm(self.a8.as_ref().unwrap()).powf(convert(1.0 / 8.0)));
|
||||
}
|
||||
|
||||
self.d8_approx.unwrap()
|
||||
self.d8_approx.clone().unwrap()
|
||||
}
|
||||
|
||||
fn d10_loose(&mut self) -> T::RealField {
|
||||
@ -200,7 +200,7 @@ where
|
||||
}
|
||||
|
||||
if self.d10_exact.is_some() {
|
||||
return self.d10_exact.unwrap();
|
||||
return self.d10_exact.clone().unwrap();
|
||||
}
|
||||
|
||||
if self.d10_approx.is_none() {
|
||||
@ -208,15 +208,15 @@ where
|
||||
self.d10_approx = Some(one_norm(self.a10.as_ref().unwrap()).powf(convert(1.0 / 10.0)));
|
||||
}
|
||||
|
||||
self.d10_approx.unwrap()
|
||||
self.d10_approx.clone().unwrap()
|
||||
}
|
||||
|
||||
fn pade3(&mut self) -> (OMatrix<T, D, D>, OMatrix<T, D, D>) {
|
||||
let b: [T; 4] = [convert(120.0), convert(60.0), convert(12.0), convert(1.0)];
|
||||
self.calc_a2();
|
||||
let a2 = self.a2.as_ref().unwrap();
|
||||
let u = &self.a * (a2 * b[3] + &self.ident * b[1]);
|
||||
let v = a2 * b[2] + &self.ident * b[0];
|
||||
let u = &self.a * (a2 * b[3].clone() + &self.ident * b[1].clone());
|
||||
let v = a2 * b[2].clone() + &self.ident * b[0].clone();
|
||||
(u, v)
|
||||
}
|
||||
|
||||
@ -232,12 +232,12 @@ where
|
||||
self.calc_a2();
|
||||
self.calc_a6();
|
||||
let u = &self.a
|
||||
* (self.a4.as_ref().unwrap() * b[5]
|
||||
+ self.a2.as_ref().unwrap() * b[3]
|
||||
+ &self.ident * b[1]);
|
||||
let v = self.a4.as_ref().unwrap() * b[4]
|
||||
+ self.a2.as_ref().unwrap() * b[2]
|
||||
+ &self.ident * b[0];
|
||||
* (self.a4.as_ref().unwrap() * b[5].clone()
|
||||
+ self.a2.as_ref().unwrap() * b[3].clone()
|
||||
+ &self.ident * b[1].clone());
|
||||
let v = self.a4.as_ref().unwrap() * b[4].clone()
|
||||
+ self.a2.as_ref().unwrap() * b[2].clone()
|
||||
+ &self.ident * b[0].clone();
|
||||
(u, v)
|
||||
}
|
||||
|
||||
@ -256,14 +256,14 @@ where
|
||||
self.calc_a4();
|
||||
self.calc_a6();
|
||||
let u = &self.a
|
||||
* (self.a6.as_ref().unwrap() * b[7]
|
||||
+ self.a4.as_ref().unwrap() * b[5]
|
||||
+ self.a2.as_ref().unwrap() * b[3]
|
||||
+ &self.ident * b[1]);
|
||||
let v = self.a6.as_ref().unwrap() * b[6]
|
||||
+ self.a4.as_ref().unwrap() * b[4]
|
||||
+ self.a2.as_ref().unwrap() * b[2]
|
||||
+ &self.ident * b[0];
|
||||
* (self.a6.as_ref().unwrap() * b[7].clone()
|
||||
+ self.a4.as_ref().unwrap() * b[5].clone()
|
||||
+ self.a2.as_ref().unwrap() * b[3].clone()
|
||||
+ &self.ident * b[1].clone());
|
||||
let v = self.a6.as_ref().unwrap() * b[6].clone()
|
||||
+ self.a4.as_ref().unwrap() * b[4].clone()
|
||||
+ self.a2.as_ref().unwrap() * b[2].clone()
|
||||
+ &self.ident * b[0].clone();
|
||||
(u, v)
|
||||
}
|
||||
|
||||
@ -285,16 +285,16 @@ where
|
||||
self.calc_a6();
|
||||
self.calc_a8();
|
||||
let u = &self.a
|
||||
* (self.a8.as_ref().unwrap() * b[9]
|
||||
+ self.a6.as_ref().unwrap() * b[7]
|
||||
+ self.a4.as_ref().unwrap() * b[5]
|
||||
+ self.a2.as_ref().unwrap() * b[3]
|
||||
+ &self.ident * b[1]);
|
||||
let v = self.a8.as_ref().unwrap() * b[8]
|
||||
+ self.a6.as_ref().unwrap() * b[6]
|
||||
+ self.a4.as_ref().unwrap() * b[4]
|
||||
+ self.a2.as_ref().unwrap() * b[2]
|
||||
+ &self.ident * b[0];
|
||||
* (self.a8.as_ref().unwrap() * b[9].clone()
|
||||
+ self.a6.as_ref().unwrap() * b[7].clone()
|
||||
+ self.a4.as_ref().unwrap() * b[5].clone()
|
||||
+ self.a2.as_ref().unwrap() * b[3].clone()
|
||||
+ &self.ident * b[1].clone());
|
||||
let v = self.a8.as_ref().unwrap() * b[8].clone()
|
||||
+ self.a6.as_ref().unwrap() * b[6].clone()
|
||||
+ self.a4.as_ref().unwrap() * b[4].clone()
|
||||
+ self.a2.as_ref().unwrap() * b[2].clone()
|
||||
+ &self.ident * b[0].clone();
|
||||
(u, v)
|
||||
}
|
||||
|
||||
@ -321,14 +321,23 @@ where
|
||||
self.calc_a2();
|
||||
self.calc_a4();
|
||||
self.calc_a6();
|
||||
let mb2 = self.a2.as_ref().unwrap() * convert::<f64, T>(2.0_f64.powf(-2.0 * s));
|
||||
let mb4 = self.a4.as_ref().unwrap() * convert::<f64, T>(2.0.powf(-4.0 * s));
|
||||
let mb2 = self.a2.as_ref().unwrap() * convert::<f64, T>(2.0_f64.powf(-2.0 * s.clone()));
|
||||
let mb4 = self.a4.as_ref().unwrap() * convert::<f64, T>(2.0.powf(-4.0 * s.clone()));
|
||||
let mb6 = self.a6.as_ref().unwrap() * convert::<f64, T>(2.0.powf(-6.0 * s));
|
||||
|
||||
let u2 = &mb6 * (&mb6 * b[13] + &mb4 * b[11] + &mb2 * b[9]);
|
||||
let u = &mb * (&u2 + &mb6 * b[7] + &mb4 * b[5] + &mb2 * b[3] + &self.ident * b[1]);
|
||||
let v2 = &mb6 * (&mb6 * b[12] + &mb4 * b[10] + &mb2 * b[8]);
|
||||
let v = v2 + &mb6 * b[6] + &mb4 * b[4] + &mb2 * b[2] + &self.ident * b[0];
|
||||
let u2 = &mb6 * (&mb6 * b[13].clone() + &mb4 * b[11].clone() + &mb2 * b[9].clone());
|
||||
let u = &mb
|
||||
* (&u2
|
||||
+ &mb6 * b[7].clone()
|
||||
+ &mb4 * b[5].clone()
|
||||
+ &mb2 * b[3].clone()
|
||||
+ &self.ident * b[1].clone());
|
||||
let v2 = &mb6 * (&mb6 * b[12].clone() + &mb4 * b[10].clone() + &mb2 * b[8].clone());
|
||||
let v = v2
|
||||
+ &mb6 * b[6].clone()
|
||||
+ &mb4 * b[4].clone()
|
||||
+ &mb2 * b[2].clone()
|
||||
+ &self.ident * b[0].clone();
|
||||
(u, v)
|
||||
}
|
||||
}
|
||||
@ -417,7 +426,9 @@ where
|
||||
let col = m.column(i);
|
||||
max = max.max(
|
||||
col.iter()
|
||||
.fold(<T as ComplexField>::RealField::zero(), |a, b| a + b.abs()),
|
||||
.fold(<T as ComplexField>::RealField::zero(), |a, b| {
|
||||
a + b.clone().abs()
|
||||
}),
|
||||
);
|
||||
}
|
||||
|
||||
|
@ -67,7 +67,7 @@ where
|
||||
let piv = matrix.slice_range(i.., i..).icamax_full();
|
||||
let row_piv = piv.0 + i;
|
||||
let col_piv = piv.1 + i;
|
||||
let diag = matrix[(row_piv, col_piv)];
|
||||
let diag = matrix[(row_piv, col_piv)].clone();
|
||||
|
||||
if diag.is_zero() {
|
||||
// The remaining of the matrix is zero.
|
||||
@ -253,10 +253,10 @@ where
|
||||
);
|
||||
|
||||
let dim = self.lu.nrows();
|
||||
let mut res = self.lu[(dim - 1, dim - 1)];
|
||||
let mut res = self.lu[(dim - 1, dim - 1)].clone();
|
||||
if !res.is_zero() {
|
||||
for i in 0..dim - 1 {
|
||||
res *= unsafe { *self.lu.get_unchecked((i, i)) };
|
||||
res *= unsafe { self.lu.get_unchecked((i, i)).clone() };
|
||||
}
|
||||
|
||||
res * self.p.determinant() * self.q.determinant()
|
||||
|
@ -42,12 +42,12 @@ impl<T: ComplexField> GivensRotation<T> {
|
||||
/// Initializes a Givens rotation form its non-normalized cosine an sine components.
|
||||
pub fn try_new(c: T, s: T, eps: T::RealField) -> Option<(Self, T)> {
|
||||
let (mod0, sign0) = c.to_exp();
|
||||
let denom = (mod0 * mod0 + s.modulus_squared()).sqrt();
|
||||
let denom = (mod0.clone() * mod0.clone() + s.clone().modulus_squared()).sqrt();
|
||||
|
||||
if denom > eps {
|
||||
let norm = sign0.scale(denom);
|
||||
let norm = sign0.scale(denom.clone());
|
||||
let c = mod0 / denom;
|
||||
let s = s / norm;
|
||||
let s = s.clone() / norm.clone();
|
||||
Some((Self { c, s }, norm))
|
||||
} else {
|
||||
None
|
||||
@ -60,10 +60,10 @@ impl<T: ComplexField> GivensRotation<T> {
|
||||
/// of `v` and the rotation `r` such that `R * v = [ |v|, 0.0 ]^t` where `|v|` is the norm of `v`.
|
||||
pub fn cancel_y<S: Storage<T, U2>>(v: &Vector<T, U2, S>) -> Option<(Self, T)> {
|
||||
if !v[1].is_zero() {
|
||||
let (mod0, sign0) = v[0].to_exp();
|
||||
let denom = (mod0 * mod0 + v[1].modulus_squared()).sqrt();
|
||||
let c = mod0 / denom;
|
||||
let s = -v[1] / sign0.scale(denom);
|
||||
let (mod0, sign0) = v[0].clone().to_exp();
|
||||
let denom = (mod0.clone() * mod0.clone() + v[1].clone().modulus_squared()).sqrt();
|
||||
let c = mod0 / denom.clone();
|
||||
let s = -v[1].clone() / sign0.clone().scale(denom.clone());
|
||||
let r = sign0.scale(denom);
|
||||
Some((Self { c, s }, r))
|
||||
} else {
|
||||
@ -77,10 +77,10 @@ impl<T: ComplexField> GivensRotation<T> {
|
||||
/// of `v` and the rotation `r` such that `R * v = [ 0.0, |v| ]^t` where `|v|` is the norm of `v`.
|
||||
pub fn cancel_x<S: Storage<T, U2>>(v: &Vector<T, U2, S>) -> Option<(Self, T)> {
|
||||
if !v[0].is_zero() {
|
||||
let (mod1, sign1) = v[1].to_exp();
|
||||
let denom = (mod1 * mod1 + v[0].modulus_squared()).sqrt();
|
||||
let c = mod1 / denom;
|
||||
let s = (v[0].conjugate() * sign1).unscale(denom);
|
||||
let (mod1, sign1) = v[1].clone().to_exp();
|
||||
let denom = (mod1.clone() * mod1.clone() + v[0].clone().modulus_squared()).sqrt();
|
||||
let c = mod1 / denom.clone();
|
||||
let s = (v[0].clone().conjugate() * sign1.clone()).unscale(denom.clone());
|
||||
let r = sign1.scale(denom);
|
||||
Some((Self { c, s }, r))
|
||||
} else {
|
||||
@ -91,21 +91,21 @@ impl<T: ComplexField> GivensRotation<T> {
|
||||
/// The cos part of this roration.
|
||||
#[must_use]
|
||||
pub fn c(&self) -> T::RealField {
|
||||
self.c
|
||||
self.c.clone()
|
||||
}
|
||||
|
||||
/// The sin part of this roration.
|
||||
#[must_use]
|
||||
pub fn s(&self) -> T {
|
||||
self.s
|
||||
self.s.clone()
|
||||
}
|
||||
|
||||
/// The inverse of this givens rotation.
|
||||
#[must_use = "This function does not mutate self."]
|
||||
pub fn inverse(&self) -> Self {
|
||||
Self {
|
||||
c: self.c,
|
||||
s: -self.s,
|
||||
c: self.c.clone(),
|
||||
s: -self.s.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
@ -121,16 +121,17 @@ impl<T: ComplexField> GivensRotation<T> {
|
||||
2,
|
||||
"Unit complex rotation: the input matrix must have exactly two rows."
|
||||
);
|
||||
let s = self.s;
|
||||
let c = self.c;
|
||||
let s = self.s.clone();
|
||||
let c = self.c.clone();
|
||||
|
||||
for j in 0..rhs.ncols() {
|
||||
unsafe {
|
||||
let a = *rhs.get_unchecked((0, j));
|
||||
let b = *rhs.get_unchecked((1, j));
|
||||
let a = rhs.get_unchecked((0, j)).clone();
|
||||
let b = rhs.get_unchecked((1, j)).clone();
|
||||
|
||||
*rhs.get_unchecked_mut((0, j)) = a.scale(c) - s.conjugate() * b;
|
||||
*rhs.get_unchecked_mut((1, j)) = s * a + b.scale(c);
|
||||
*rhs.get_unchecked_mut((0, j)) =
|
||||
a.clone().scale(c.clone()) - s.clone().conjugate() * b.clone();
|
||||
*rhs.get_unchecked_mut((1, j)) = s.clone() * a + b.scale(c.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -147,17 +148,17 @@ impl<T: ComplexField> GivensRotation<T> {
|
||||
2,
|
||||
"Unit complex rotation: the input matrix must have exactly two columns."
|
||||
);
|
||||
let s = self.s;
|
||||
let c = self.c;
|
||||
let s = self.s.clone();
|
||||
let c = self.c.clone();
|
||||
|
||||
// TODO: can we optimize that to iterate on one column at a time ?
|
||||
for j in 0..lhs.nrows() {
|
||||
unsafe {
|
||||
let a = *lhs.get_unchecked((j, 0));
|
||||
let b = *lhs.get_unchecked((j, 1));
|
||||
let a = lhs.get_unchecked((j, 0)).clone();
|
||||
let b = lhs.get_unchecked((j, 1)).clone();
|
||||
|
||||
*lhs.get_unchecked_mut((j, 0)) = a.scale(c) + s * b;
|
||||
*lhs.get_unchecked_mut((j, 1)) = -s.conjugate() * a + b.scale(c);
|
||||
*lhs.get_unchecked_mut((j, 0)) = a.clone().scale(c.clone()) + s.clone() * b.clone();
|
||||
*lhs.get_unchecked_mut((j, 1)) = -s.clone().conjugate() * a + b.scale(c.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -114,7 +114,11 @@ where
|
||||
self.hess.fill_lower_triangle(T::zero(), 2);
|
||||
self.hess
|
||||
.slice_mut((1, 0), (dim - 1, dim - 1))
|
||||
.set_partial_diagonal(self.subdiag.iter().map(|e| T::from_real(e.modulus())));
|
||||
.set_partial_diagonal(
|
||||
self.subdiag
|
||||
.iter()
|
||||
.map(|e| T::from_real(e.clone().modulus())),
|
||||
);
|
||||
self.hess
|
||||
}
|
||||
|
||||
@ -129,7 +133,11 @@ where
|
||||
let mut res = self.hess.clone();
|
||||
res.fill_lower_triangle(T::zero(), 2);
|
||||
res.slice_mut((1, 0), (dim - 1, dim - 1))
|
||||
.set_partial_diagonal(self.subdiag.iter().map(|e| T::from_real(e.modulus())));
|
||||
.set_partial_diagonal(
|
||||
self.subdiag
|
||||
.iter()
|
||||
.map(|e| T::from_real(e.clone().modulus())),
|
||||
);
|
||||
res
|
||||
}
|
||||
|
||||
|
@ -20,16 +20,16 @@ pub fn reflection_axis_mut<T: ComplexField, D: Dim, S: StorageMut<T, D>>(
|
||||
column: &mut Vector<T, D, S>,
|
||||
) -> (T, bool) {
|
||||
let reflection_sq_norm = column.norm_squared();
|
||||
let reflection_norm = reflection_sq_norm.sqrt();
|
||||
let reflection_norm = reflection_sq_norm.clone().sqrt();
|
||||
|
||||
let factor;
|
||||
let signed_norm;
|
||||
|
||||
unsafe {
|
||||
let (modulus, sign) = column.vget_unchecked(0).to_exp();
|
||||
signed_norm = sign.scale(reflection_norm);
|
||||
let (modulus, sign) = column.vget_unchecked(0).clone().to_exp();
|
||||
signed_norm = sign.scale(reflection_norm.clone());
|
||||
factor = (reflection_sq_norm + modulus * reflection_norm) * crate::convert(2.0);
|
||||
*column.vget_unchecked_mut(0) += signed_norm;
|
||||
*column.vget_unchecked_mut(0) += signed_norm.clone();
|
||||
};
|
||||
|
||||
if !factor.is_zero() {
|
||||
@ -63,9 +63,9 @@ where
|
||||
|
||||
if not_zero {
|
||||
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
||||
let sign = reflection_norm.signum();
|
||||
let sign = reflection_norm.clone().signum();
|
||||
if let Some(mut work) = bilateral {
|
||||
refl.reflect_rows_with_sign(&mut right, &mut work, sign);
|
||||
refl.reflect_rows_with_sign(&mut right, &mut work, sign.clone());
|
||||
}
|
||||
refl.reflect_with_sign(&mut right.rows_range_mut(icol + shift..), sign.conjugate());
|
||||
}
|
||||
@ -101,7 +101,7 @@ where
|
||||
refl.reflect_rows_with_sign(
|
||||
&mut bottom.columns_range_mut(irow + shift..),
|
||||
&mut work.rows_range_mut(irow + 1..),
|
||||
reflection_norm.signum().conjugate(),
|
||||
reflection_norm.clone().signum().conjugate(),
|
||||
);
|
||||
top.columns_range_mut(irow + shift..)
|
||||
.tr_copy_from(refl.axis());
|
||||
@ -132,7 +132,7 @@ where
|
||||
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
||||
|
||||
let mut res_rows = res.slice_range_mut(i + 1.., i..);
|
||||
refl.reflect_with_sign(&mut res_rows, signs[i].signum());
|
||||
refl.reflect_with_sign(&mut res_rows, signs[i].clone().signum());
|
||||
}
|
||||
|
||||
res
|
||||
|
@ -40,7 +40,7 @@ impl<T: ComplexField, D: Dim, S: StorageMut<T, D, D>> SquareMatrix<T, D, S> {
|
||||
match dim {
|
||||
0 => true,
|
||||
1 => {
|
||||
let determinant = *self.get_unchecked((0, 0));
|
||||
let determinant = self.get_unchecked((0, 0)).clone();
|
||||
if determinant.is_zero() {
|
||||
false
|
||||
} else {
|
||||
@ -49,58 +49,66 @@ impl<T: ComplexField, D: Dim, S: StorageMut<T, D, D>> SquareMatrix<T, D, S> {
|
||||
}
|
||||
}
|
||||
2 => {
|
||||
let m11 = *self.get_unchecked((0, 0));
|
||||
let m12 = *self.get_unchecked((0, 1));
|
||||
let m21 = *self.get_unchecked((1, 0));
|
||||
let m22 = *self.get_unchecked((1, 1));
|
||||
let m11 = self.get_unchecked((0, 0)).clone();
|
||||
let m12 = self.get_unchecked((0, 1)).clone();
|
||||
let m21 = self.get_unchecked((1, 0)).clone();
|
||||
let m22 = self.get_unchecked((1, 1)).clone();
|
||||
|
||||
let determinant = m11 * m22 - m21 * m12;
|
||||
let determinant = m11.clone() * m22.clone() - m21.clone() * m12.clone();
|
||||
|
||||
if determinant.is_zero() {
|
||||
false
|
||||
} else {
|
||||
*self.get_unchecked_mut((0, 0)) = m22 / determinant;
|
||||
*self.get_unchecked_mut((0, 1)) = -m12 / determinant;
|
||||
*self.get_unchecked_mut((0, 0)) = m22 / determinant.clone();
|
||||
*self.get_unchecked_mut((0, 1)) = -m12 / determinant.clone();
|
||||
|
||||
*self.get_unchecked_mut((1, 0)) = -m21 / determinant;
|
||||
*self.get_unchecked_mut((1, 0)) = -m21 / determinant.clone();
|
||||
*self.get_unchecked_mut((1, 1)) = m11 / determinant;
|
||||
|
||||
true
|
||||
}
|
||||
}
|
||||
3 => {
|
||||
let m11 = *self.get_unchecked((0, 0));
|
||||
let m12 = *self.get_unchecked((0, 1));
|
||||
let m13 = *self.get_unchecked((0, 2));
|
||||
let m11 = self.get_unchecked((0, 0)).clone();
|
||||
let m12 = self.get_unchecked((0, 1)).clone();
|
||||
let m13 = self.get_unchecked((0, 2)).clone();
|
||||
|
||||
let m21 = *self.get_unchecked((1, 0));
|
||||
let m22 = *self.get_unchecked((1, 1));
|
||||
let m23 = *self.get_unchecked((1, 2));
|
||||
let m21 = self.get_unchecked((1, 0)).clone();
|
||||
let m22 = self.get_unchecked((1, 1)).clone();
|
||||
let m23 = self.get_unchecked((1, 2)).clone();
|
||||
|
||||
let m31 = *self.get_unchecked((2, 0));
|
||||
let m32 = *self.get_unchecked((2, 1));
|
||||
let m33 = *self.get_unchecked((2, 2));
|
||||
let m31 = self.get_unchecked((2, 0)).clone();
|
||||
let m32 = self.get_unchecked((2, 1)).clone();
|
||||
let m33 = self.get_unchecked((2, 2)).clone();
|
||||
|
||||
let minor_m12_m23 = m22 * m33 - m32 * m23;
|
||||
let minor_m11_m23 = m21 * m33 - m31 * m23;
|
||||
let minor_m11_m22 = m21 * m32 - m31 * m22;
|
||||
let minor_m12_m23 = m22.clone() * m33.clone() - m32.clone() * m23.clone();
|
||||
let minor_m11_m23 = m21.clone() * m33.clone() - m31.clone() * m23.clone();
|
||||
let minor_m11_m22 = m21.clone() * m32.clone() - m31.clone() * m22.clone();
|
||||
|
||||
let determinant =
|
||||
m11 * minor_m12_m23 - m12 * minor_m11_m23 + m13 * minor_m11_m22;
|
||||
let determinant = m11.clone() * minor_m12_m23.clone()
|
||||
- m12.clone() * minor_m11_m23.clone()
|
||||
+ m13.clone() * minor_m11_m22.clone();
|
||||
|
||||
if determinant.is_zero() {
|
||||
false
|
||||
} else {
|
||||
*self.get_unchecked_mut((0, 0)) = minor_m12_m23 / determinant;
|
||||
*self.get_unchecked_mut((0, 1)) = (m13 * m32 - m33 * m12) / determinant;
|
||||
*self.get_unchecked_mut((0, 2)) = (m12 * m23 - m22 * m13) / determinant;
|
||||
*self.get_unchecked_mut((0, 0)) = minor_m12_m23 / determinant.clone();
|
||||
*self.get_unchecked_mut((0, 1)) = (m13.clone() * m32.clone()
|
||||
- m33.clone() * m12.clone())
|
||||
/ determinant.clone();
|
||||
*self.get_unchecked_mut((0, 2)) = (m12.clone() * m23.clone()
|
||||
- m22.clone() * m13.clone())
|
||||
/ determinant.clone();
|
||||
|
||||
*self.get_unchecked_mut((1, 0)) = -minor_m11_m23 / determinant;
|
||||
*self.get_unchecked_mut((1, 1)) = (m11 * m33 - m31 * m13) / determinant;
|
||||
*self.get_unchecked_mut((1, 2)) = (m13 * m21 - m23 * m11) / determinant;
|
||||
*self.get_unchecked_mut((1, 0)) = -minor_m11_m23 / determinant.clone();
|
||||
*self.get_unchecked_mut((1, 1)) =
|
||||
(m11.clone() * m33 - m31.clone() * m13.clone()) / determinant.clone();
|
||||
*self.get_unchecked_mut((1, 2)) =
|
||||
(m13 * m21.clone() - m23 * m11.clone()) / determinant.clone();
|
||||
|
||||
*self.get_unchecked_mut((2, 0)) = minor_m11_m22 / determinant;
|
||||
*self.get_unchecked_mut((2, 1)) = (m12 * m31 - m32 * m11) / determinant;
|
||||
*self.get_unchecked_mut((2, 0)) = minor_m11_m22 / determinant.clone();
|
||||
*self.get_unchecked_mut((2, 1)) =
|
||||
(m12.clone() * m31 - m32 * m11.clone()) / determinant.clone();
|
||||
*self.get_unchecked_mut((2, 2)) = (m11 * m22 - m21 * m12) / determinant;
|
||||
|
||||
true
|
||||
@ -129,94 +137,129 @@ where
|
||||
{
|
||||
let m = m.as_slice();
|
||||
|
||||
out[(0, 0)] = m[5] * m[10] * m[15] - m[5] * m[11] * m[14] - m[9] * m[6] * m[15]
|
||||
+ m[9] * m[7] * m[14]
|
||||
+ m[13] * m[6] * m[11]
|
||||
- m[13] * m[7] * m[10];
|
||||
out[(0, 0)] = m[5].clone() * m[10].clone() * m[15].clone()
|
||||
- m[5].clone() * m[11].clone() * m[14].clone()
|
||||
- m[9].clone() * m[6].clone() * m[15].clone()
|
||||
+ m[9].clone() * m[7].clone() * m[14].clone()
|
||||
+ m[13].clone() * m[6].clone() * m[11].clone()
|
||||
- m[13].clone() * m[7].clone() * m[10].clone();
|
||||
|
||||
out[(1, 0)] = -m[1] * m[10] * m[15] + m[1] * m[11] * m[14] + m[9] * m[2] * m[15]
|
||||
- m[9] * m[3] * m[14]
|
||||
- m[13] * m[2] * m[11]
|
||||
+ m[13] * m[3] * m[10];
|
||||
out[(1, 0)] = -m[1].clone() * m[10].clone() * m[15].clone()
|
||||
+ m[1].clone() * m[11].clone() * m[14].clone()
|
||||
+ m[9].clone() * m[2].clone() * m[15].clone()
|
||||
- m[9].clone() * m[3].clone() * m[14].clone()
|
||||
- m[13].clone() * m[2].clone() * m[11].clone()
|
||||
+ m[13].clone() * m[3].clone() * m[10].clone();
|
||||
|
||||
out[(2, 0)] = m[1] * m[6] * m[15] - m[1] * m[7] * m[14] - m[5] * m[2] * m[15]
|
||||
+ m[5] * m[3] * m[14]
|
||||
+ m[13] * m[2] * m[7]
|
||||
- m[13] * m[3] * m[6];
|
||||
out[(2, 0)] = m[1].clone() * m[6].clone() * m[15].clone()
|
||||
- m[1].clone() * m[7].clone() * m[14].clone()
|
||||
- m[5].clone() * m[2].clone() * m[15].clone()
|
||||
+ m[5].clone() * m[3].clone() * m[14].clone()
|
||||
+ m[13].clone() * m[2].clone() * m[7].clone()
|
||||
- m[13].clone() * m[3].clone() * m[6].clone();
|
||||
|
||||
out[(3, 0)] = -m[1] * m[6] * m[11] + m[1] * m[7] * m[10] + m[5] * m[2] * m[11]
|
||||
- m[5] * m[3] * m[10]
|
||||
- m[9] * m[2] * m[7]
|
||||
+ m[9] * m[3] * m[6];
|
||||
out[(3, 0)] = -m[1].clone() * m[6].clone() * m[11].clone()
|
||||
+ m[1].clone() * m[7].clone() * m[10].clone()
|
||||
+ m[5].clone() * m[2].clone() * m[11].clone()
|
||||
- m[5].clone() * m[3].clone() * m[10].clone()
|
||||
- m[9].clone() * m[2].clone() * m[7].clone()
|
||||
+ m[9].clone() * m[3].clone() * m[6].clone();
|
||||
|
||||
out[(0, 1)] = -m[4] * m[10] * m[15] + m[4] * m[11] * m[14] + m[8] * m[6] * m[15]
|
||||
- m[8] * m[7] * m[14]
|
||||
- m[12] * m[6] * m[11]
|
||||
+ m[12] * m[7] * m[10];
|
||||
out[(0, 1)] = -m[4].clone() * m[10].clone() * m[15].clone()
|
||||
+ m[4].clone() * m[11].clone() * m[14].clone()
|
||||
+ m[8].clone() * m[6].clone() * m[15].clone()
|
||||
- m[8].clone() * m[7].clone() * m[14].clone()
|
||||
- m[12].clone() * m[6].clone() * m[11].clone()
|
||||
+ m[12].clone() * m[7].clone() * m[10].clone();
|
||||
|
||||
out[(1, 1)] = m[0] * m[10] * m[15] - m[0] * m[11] * m[14] - m[8] * m[2] * m[15]
|
||||
+ m[8] * m[3] * m[14]
|
||||
+ m[12] * m[2] * m[11]
|
||||
- m[12] * m[3] * m[10];
|
||||
out[(1, 1)] = m[0].clone() * m[10].clone() * m[15].clone()
|
||||
- m[0].clone() * m[11].clone() * m[14].clone()
|
||||
- m[8].clone() * m[2].clone() * m[15].clone()
|
||||
+ m[8].clone() * m[3].clone() * m[14].clone()
|
||||
+ m[12].clone() * m[2].clone() * m[11].clone()
|
||||
- m[12].clone() * m[3].clone() * m[10].clone();
|
||||
|
||||
out[(2, 1)] = -m[0] * m[6] * m[15] + m[0] * m[7] * m[14] + m[4] * m[2] * m[15]
|
||||
- m[4] * m[3] * m[14]
|
||||
- m[12] * m[2] * m[7]
|
||||
+ m[12] * m[3] * m[6];
|
||||
out[(2, 1)] = -m[0].clone() * m[6].clone() * m[15].clone()
|
||||
+ m[0].clone() * m[7].clone() * m[14].clone()
|
||||
+ m[4].clone() * m[2].clone() * m[15].clone()
|
||||
- m[4].clone() * m[3].clone() * m[14].clone()
|
||||
- m[12].clone() * m[2].clone() * m[7].clone()
|
||||
+ m[12].clone() * m[3].clone() * m[6].clone();
|
||||
|
||||
out[(3, 1)] = m[0] * m[6] * m[11] - m[0] * m[7] * m[10] - m[4] * m[2] * m[11]
|
||||
+ m[4] * m[3] * m[10]
|
||||
+ m[8] * m[2] * m[7]
|
||||
- m[8] * m[3] * m[6];
|
||||
out[(3, 1)] = m[0].clone() * m[6].clone() * m[11].clone()
|
||||
- m[0].clone() * m[7].clone() * m[10].clone()
|
||||
- m[4].clone() * m[2].clone() * m[11].clone()
|
||||
+ m[4].clone() * m[3].clone() * m[10].clone()
|
||||
+ m[8].clone() * m[2].clone() * m[7].clone()
|
||||
- m[8].clone() * m[3].clone() * m[6].clone();
|
||||
|
||||
out[(0, 2)] = m[4] * m[9] * m[15] - m[4] * m[11] * m[13] - m[8] * m[5] * m[15]
|
||||
+ m[8] * m[7] * m[13]
|
||||
+ m[12] * m[5] * m[11]
|
||||
- m[12] * m[7] * m[9];
|
||||
out[(0, 2)] = m[4].clone() * m[9].clone() * m[15].clone()
|
||||
- m[4].clone() * m[11].clone() * m[13].clone()
|
||||
- m[8].clone() * m[5].clone() * m[15].clone()
|
||||
+ m[8].clone() * m[7].clone() * m[13].clone()
|
||||
+ m[12].clone() * m[5].clone() * m[11].clone()
|
||||
- m[12].clone() * m[7].clone() * m[9].clone();
|
||||
|
||||
out[(1, 2)] = -m[0] * m[9] * m[15] + m[0] * m[11] * m[13] + m[8] * m[1] * m[15]
|
||||
- m[8] * m[3] * m[13]
|
||||
- m[12] * m[1] * m[11]
|
||||
+ m[12] * m[3] * m[9];
|
||||
out[(1, 2)] = -m[0].clone() * m[9].clone() * m[15].clone()
|
||||
+ m[0].clone() * m[11].clone() * m[13].clone()
|
||||
+ m[8].clone() * m[1].clone() * m[15].clone()
|
||||
- m[8].clone() * m[3].clone() * m[13].clone()
|
||||
- m[12].clone() * m[1].clone() * m[11].clone()
|
||||
+ m[12].clone() * m[3].clone() * m[9].clone();
|
||||
|
||||
out[(2, 2)] = m[0] * m[5] * m[15] - m[0] * m[7] * m[13] - m[4] * m[1] * m[15]
|
||||
+ m[4] * m[3] * m[13]
|
||||
+ m[12] * m[1] * m[7]
|
||||
- m[12] * m[3] * m[5];
|
||||
out[(2, 2)] = m[0].clone() * m[5].clone() * m[15].clone()
|
||||
- m[0].clone() * m[7].clone() * m[13].clone()
|
||||
- m[4].clone() * m[1].clone() * m[15].clone()
|
||||
+ m[4].clone() * m[3].clone() * m[13].clone()
|
||||
+ m[12].clone() * m[1].clone() * m[7].clone()
|
||||
- m[12].clone() * m[3].clone() * m[5].clone();
|
||||
|
||||
out[(0, 3)] = -m[4] * m[9] * m[14] + m[4] * m[10] * m[13] + m[8] * m[5] * m[14]
|
||||
- m[8] * m[6] * m[13]
|
||||
- m[12] * m[5] * m[10]
|
||||
+ m[12] * m[6] * m[9];
|
||||
out[(0, 3)] = -m[4].clone() * m[9].clone() * m[14].clone()
|
||||
+ m[4].clone() * m[10].clone() * m[13].clone()
|
||||
+ m[8].clone() * m[5].clone() * m[14].clone()
|
||||
- m[8].clone() * m[6].clone() * m[13].clone()
|
||||
- m[12].clone() * m[5].clone() * m[10].clone()
|
||||
+ m[12].clone() * m[6].clone() * m[9].clone();
|
||||
|
||||
out[(3, 2)] = -m[0] * m[5] * m[11] + m[0] * m[7] * m[9] + m[4] * m[1] * m[11]
|
||||
- m[4] * m[3] * m[9]
|
||||
- m[8] * m[1] * m[7]
|
||||
+ m[8] * m[3] * m[5];
|
||||
out[(3, 2)] = -m[0].clone() * m[5].clone() * m[11].clone()
|
||||
+ m[0].clone() * m[7].clone() * m[9].clone()
|
||||
+ m[4].clone() * m[1].clone() * m[11].clone()
|
||||
- m[4].clone() * m[3].clone() * m[9].clone()
|
||||
- m[8].clone() * m[1].clone() * m[7].clone()
|
||||
+ m[8].clone() * m[3].clone() * m[5].clone();
|
||||
|
||||
out[(1, 3)] = m[0] * m[9] * m[14] - m[0] * m[10] * m[13] - m[8] * m[1] * m[14]
|
||||
+ m[8] * m[2] * m[13]
|
||||
+ m[12] * m[1] * m[10]
|
||||
- m[12] * m[2] * m[9];
|
||||
out[(1, 3)] = m[0].clone() * m[9].clone() * m[14].clone()
|
||||
- m[0].clone() * m[10].clone() * m[13].clone()
|
||||
- m[8].clone() * m[1].clone() * m[14].clone()
|
||||
+ m[8].clone() * m[2].clone() * m[13].clone()
|
||||
+ m[12].clone() * m[1].clone() * m[10].clone()
|
||||
- m[12].clone() * m[2].clone() * m[9].clone();
|
||||
|
||||
out[(2, 3)] = -m[0] * m[5] * m[14] + m[0] * m[6] * m[13] + m[4] * m[1] * m[14]
|
||||
- m[4] * m[2] * m[13]
|
||||
- m[12] * m[1] * m[6]
|
||||
+ m[12] * m[2] * m[5];
|
||||
out[(2, 3)] = -m[0].clone() * m[5].clone() * m[14].clone()
|
||||
+ m[0].clone() * m[6].clone() * m[13].clone()
|
||||
+ m[4].clone() * m[1].clone() * m[14].clone()
|
||||
- m[4].clone() * m[2].clone() * m[13].clone()
|
||||
- m[12].clone() * m[1].clone() * m[6].clone()
|
||||
+ m[12].clone() * m[2].clone() * m[5].clone();
|
||||
|
||||
out[(3, 3)] = m[0] * m[5] * m[10] - m[0] * m[6] * m[9] - m[4] * m[1] * m[10]
|
||||
+ m[4] * m[2] * m[9]
|
||||
+ m[8] * m[1] * m[6]
|
||||
- m[8] * m[2] * m[5];
|
||||
out[(3, 3)] = m[0].clone() * m[5].clone() * m[10].clone()
|
||||
- m[0].clone() * m[6].clone() * m[9].clone()
|
||||
- m[4].clone() * m[1].clone() * m[10].clone()
|
||||
+ m[4].clone() * m[2].clone() * m[9].clone()
|
||||
+ m[8].clone() * m[1].clone() * m[6].clone()
|
||||
- m[8].clone() * m[2].clone() * m[5].clone();
|
||||
|
||||
let det = m[0] * out[(0, 0)] + m[1] * out[(0, 1)] + m[2] * out[(0, 2)] + m[3] * out[(0, 3)];
|
||||
let det = m[0].clone() * out[(0, 0)].clone()
|
||||
+ m[1].clone() * out[(0, 1)].clone()
|
||||
+ m[2].clone() * out[(0, 2)].clone()
|
||||
+ m[3].clone() * out[(0, 3)].clone();
|
||||
|
||||
if !det.is_zero() {
|
||||
let inv_det = T::one() / det;
|
||||
|
||||
for j in 0..4 {
|
||||
for i in 0..4 {
|
||||
out[(i, j)] *= inv_det;
|
||||
out[(i, j)] *= inv_det.clone();
|
||||
}
|
||||
}
|
||||
true
|
||||
|
@ -65,7 +65,7 @@ where
|
||||
|
||||
for i in 0..dim {
|
||||
let piv = matrix.slice_range(i.., i).icamax() + i;
|
||||
let diag = matrix[(piv, i)];
|
||||
let diag = matrix[(piv, i)].clone();
|
||||
|
||||
if diag.is_zero() {
|
||||
return false;
|
||||
@ -101,7 +101,7 @@ where
|
||||
|
||||
for i in 0..min_nrows_ncols.value() {
|
||||
let piv = matrix.slice_range(i.., i).icamax() + i;
|
||||
let diag = matrix[(piv, i)];
|
||||
let diag = matrix[(piv, i)].clone();
|
||||
|
||||
if diag.is_zero() {
|
||||
// No non-zero entries on this column.
|
||||
@ -306,7 +306,7 @@ where
|
||||
|
||||
let mut res = T::one();
|
||||
for i in 0..dim {
|
||||
res *= unsafe { *self.lu.get_unchecked((i, i)) };
|
||||
res *= unsafe { self.lu.get_unchecked((i, i)).clone() };
|
||||
}
|
||||
|
||||
res * self.p.determinant()
|
||||
@ -351,7 +351,7 @@ where
|
||||
|
||||
for k in 0..pivot_row.ncols() {
|
||||
down.column_mut(k)
|
||||
.axpy(-pivot_row[k].inlined_clone(), &coeffs, T::one());
|
||||
.axpy(-pivot_row[k].clone(), &coeffs, T::one());
|
||||
}
|
||||
}
|
||||
|
||||
@ -383,6 +383,6 @@ pub fn gauss_step_swap<T, R: Dim, C: Dim, S>(
|
||||
for k in 0..pivot_row.ncols() {
|
||||
mem::swap(&mut pivot_row[k], &mut down[(piv - 1, k)]);
|
||||
down.column_mut(k)
|
||||
.axpy(-pivot_row[k].inlined_clone(), &coeffs, T::one());
|
||||
.axpy(-pivot_row[k].clone(), &coeffs, T::one());
|
||||
}
|
||||
}
|
||||
|
@ -83,7 +83,7 @@ where
|
||||
{
|
||||
let (nrows, ncols) = self.qr.shape_generic();
|
||||
let mut res = self.qr.rows_generic(0, nrows.min(ncols)).upper_triangle();
|
||||
res.set_partial_diagonal(self.diag.iter().map(|e| T::from_real(e.modulus())));
|
||||
res.set_partial_diagonal(self.diag.iter().map(|e| T::from_real(e.clone().modulus())));
|
||||
res
|
||||
}
|
||||
|
||||
@ -98,7 +98,7 @@ where
|
||||
let (nrows, ncols) = self.qr.shape_generic();
|
||||
let mut res = self.qr.resize_generic(nrows.min(ncols), ncols, T::zero());
|
||||
res.fill_lower_triangle(T::zero(), 1);
|
||||
res.set_partial_diagonal(self.diag.iter().map(|e| T::from_real(e.modulus())));
|
||||
res.set_partial_diagonal(self.diag.iter().map(|e| T::from_real(e.clone().modulus())));
|
||||
res
|
||||
}
|
||||
|
||||
@ -121,7 +121,7 @@ where
|
||||
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
||||
|
||||
let mut res_rows = res.slice_range_mut(i.., i..);
|
||||
refl.reflect_with_sign(&mut res_rows, self.diag[i].signum());
|
||||
refl.reflect_with_sign(&mut res_rows, self.diag[i].clone().signum());
|
||||
}
|
||||
|
||||
res
|
||||
@ -160,7 +160,7 @@ where
|
||||
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
||||
|
||||
let mut rhs_rows = rhs.rows_range_mut(i..);
|
||||
refl.reflect_with_sign(&mut rhs_rows, self.diag[i].signum().conjugate());
|
||||
refl.reflect_with_sign(&mut rhs_rows, self.diag[i].clone().signum().conjugate());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -231,14 +231,14 @@ where
|
||||
let coeff;
|
||||
|
||||
unsafe {
|
||||
let diag = self.diag.vget_unchecked(i).modulus();
|
||||
let diag = self.diag.vget_unchecked(i).clone().modulus();
|
||||
|
||||
if diag.is_zero() {
|
||||
return false;
|
||||
}
|
||||
|
||||
coeff = b.vget_unchecked(i).unscale(diag);
|
||||
*b.vget_unchecked_mut(i) = coeff;
|
||||
coeff = b.vget_unchecked(i).clone().unscale(diag);
|
||||
*b.vget_unchecked_mut(i) = coeff.clone();
|
||||
}
|
||||
|
||||
b.rows_range_mut(..i)
|
||||
|
@ -111,7 +111,7 @@ where
|
||||
}
|
||||
|
||||
let amax_m = m.camax();
|
||||
m.unscale_mut(amax_m);
|
||||
m.unscale_mut(amax_m.clone());
|
||||
|
||||
let hess = Hessenberg::new_with_workspace(m, work);
|
||||
let mut q;
|
||||
@ -130,7 +130,7 @@ where
|
||||
|
||||
// Implicit double-shift QR method.
|
||||
let mut niter = 0;
|
||||
let (mut start, mut end) = Self::delimit_subproblem(&mut t, eps, dim.value() - 1);
|
||||
let (mut start, mut end) = Self::delimit_subproblem(&mut t, eps.clone(), dim.value() - 1);
|
||||
|
||||
while end != start {
|
||||
let subdim = end - start + 1;
|
||||
@ -139,23 +139,23 @@ where
|
||||
let m = end - 1;
|
||||
let n = end;
|
||||
|
||||
let h11 = t[(start, start)];
|
||||
let h12 = t[(start, start + 1)];
|
||||
let h21 = t[(start + 1, start)];
|
||||
let h22 = t[(start + 1, start + 1)];
|
||||
let h32 = t[(start + 2, start + 1)];
|
||||
let h11 = t[(start, start)].clone();
|
||||
let h12 = t[(start, start + 1)].clone();
|
||||
let h21 = t[(start + 1, start)].clone();
|
||||
let h22 = t[(start + 1, start + 1)].clone();
|
||||
let h32 = t[(start + 2, start + 1)].clone();
|
||||
|
||||
let hnn = t[(n, n)];
|
||||
let hmm = t[(m, m)];
|
||||
let hnm = t[(n, m)];
|
||||
let hmn = t[(m, n)];
|
||||
let hnn = t[(n, n)].clone();
|
||||
let hmm = t[(m, m)].clone();
|
||||
let hnm = t[(n, m)].clone();
|
||||
let hmn = t[(m, n)].clone();
|
||||
|
||||
let tra = hnn + hmm;
|
||||
let tra = hnn.clone() + hmm.clone();
|
||||
let det = hnn * hmm - hnm * hmn;
|
||||
|
||||
let mut axis = Vector3::new(
|
||||
h11 * h11 + h12 * h21 - tra * h11 + det,
|
||||
h21 * (h11 + h22 - tra),
|
||||
h11.clone() * h11.clone() + h12 * h21.clone() - tra.clone() * h11.clone() + det,
|
||||
h21.clone() * (h11 + h22 - tra),
|
||||
h21 * h32,
|
||||
);
|
||||
|
||||
@ -169,7 +169,7 @@ where
|
||||
t[(k + 2, k - 1)] = T::zero();
|
||||
}
|
||||
|
||||
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
||||
let refl = Reflection::new(Unit::new_unchecked(axis.clone()), T::zero());
|
||||
|
||||
{
|
||||
let krows = cmp::min(k + 4, end + 1);
|
||||
@ -192,15 +192,15 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
axis.x = t[(k + 1, k)];
|
||||
axis.y = t[(k + 2, k)];
|
||||
axis.x = t[(k + 1, k)].clone();
|
||||
axis.y = t[(k + 2, k)].clone();
|
||||
|
||||
if k < n - 2 {
|
||||
axis.z = t[(k + 3, k)];
|
||||
axis.z = t[(k + 3, k)].clone();
|
||||
}
|
||||
}
|
||||
|
||||
let mut axis = Vector2::new(axis.x, axis.y);
|
||||
let mut axis = Vector2::new(axis.x.clone(), axis.y.clone());
|
||||
let (norm, not_zero) = householder::reflection_axis_mut(&mut axis);
|
||||
|
||||
if not_zero {
|
||||
@ -254,7 +254,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
let sub = Self::delimit_subproblem(&mut t, eps, end);
|
||||
let sub = Self::delimit_subproblem(&mut t, eps.clone(), end);
|
||||
|
||||
start = sub.0;
|
||||
end = sub.1;
|
||||
@ -279,7 +279,7 @@ where
|
||||
let n = m + 1;
|
||||
|
||||
if t[(n, m)].is_zero() {
|
||||
out[m] = t[(m, m)];
|
||||
out[m] = t[(m, m)].clone();
|
||||
m += 1;
|
||||
} else {
|
||||
// Complex eigenvalue.
|
||||
@ -288,7 +288,7 @@ where
|
||||
}
|
||||
|
||||
if m == dim - 1 {
|
||||
out[m] = t[(m, m)];
|
||||
out[m] = t[(m, m)].clone();
|
||||
}
|
||||
|
||||
true
|
||||
@ -307,33 +307,36 @@ where
|
||||
let n = m + 1;
|
||||
|
||||
if t[(n, m)].is_zero() {
|
||||
out[m] = MaybeUninit::new(NumComplex::new(t[(m, m)], T::zero()));
|
||||
out[m] = MaybeUninit::new(NumComplex::new(t[(m, m)].clone(), T::zero()));
|
||||
m += 1;
|
||||
} else {
|
||||
// Solve the 2x2 eigenvalue subproblem.
|
||||
let hmm = t[(m, m)];
|
||||
let hnm = t[(n, m)];
|
||||
let hmn = t[(m, n)];
|
||||
let hnn = t[(n, n)];
|
||||
let hmm = t[(m, m)].clone();
|
||||
let hnm = t[(n, m)].clone();
|
||||
let hmn = t[(m, n)].clone();
|
||||
let hnn = t[(n, n)].clone();
|
||||
|
||||
// NOTE: use the same algorithm as in compute_2x2_eigvals.
|
||||
let val = (hmm - hnn) * crate::convert(0.5);
|
||||
let discr = hnm * hmn + val * val;
|
||||
let val = (hmm.clone() - hnn.clone()) * crate::convert(0.5);
|
||||
let discr = hnm * hmn + val.clone() * val;
|
||||
|
||||
// All 2x2 blocks have negative discriminant because we already decoupled those
|
||||
// with positive eigenvalues.
|
||||
let sqrt_discr = NumComplex::new(T::zero(), (-discr).sqrt());
|
||||
|
||||
let half_tra = (hnn + hmm) * crate::convert(0.5);
|
||||
out[m] = MaybeUninit::new(NumComplex::new(half_tra, T::zero()) + sqrt_discr);
|
||||
out[m + 1] = MaybeUninit::new(NumComplex::new(half_tra, T::zero()) - sqrt_discr);
|
||||
out[m] = MaybeUninit::new(
|
||||
NumComplex::new(half_tra.clone(), T::zero()) + sqrt_discr.clone(),
|
||||
);
|
||||
out[m + 1] =
|
||||
MaybeUninit::new(NumComplex::new(half_tra, T::zero()) - sqrt_discr.clone());
|
||||
|
||||
m += 2;
|
||||
}
|
||||
}
|
||||
|
||||
if m == dim - 1 {
|
||||
out[m] = MaybeUninit::new(NumComplex::new(t[(m, m)], T::zero()));
|
||||
out[m] = MaybeUninit::new(NumComplex::new(t[(m, m)].clone(), T::zero()));
|
||||
}
|
||||
}
|
||||
|
||||
@ -347,7 +350,9 @@ where
|
||||
while n > 0 {
|
||||
let m = n - 1;
|
||||
|
||||
if t[(n, m)].norm1() <= eps * (t[(n, n)].norm1() + t[(m, m)].norm1()) {
|
||||
if t[(n, m)].clone().norm1()
|
||||
<= eps.clone() * (t[(n, n)].clone().norm1() + t[(m, m)].clone().norm1())
|
||||
{
|
||||
t[(n, m)] = T::zero();
|
||||
} else {
|
||||
break;
|
||||
@ -364,9 +369,11 @@ where
|
||||
while new_start > 0 {
|
||||
let m = new_start - 1;
|
||||
|
||||
let off_diag = t[(new_start, m)];
|
||||
let off_diag = t[(new_start, m)].clone();
|
||||
if off_diag.is_zero()
|
||||
|| off_diag.norm1() <= eps * (t[(new_start, new_start)].norm1() + t[(m, m)].norm1())
|
||||
|| off_diag.norm1()
|
||||
<= eps.clone()
|
||||
* (t[(new_start, new_start)].clone().norm1() + t[(m, m)].clone().norm1())
|
||||
{
|
||||
t[(new_start, m)] = T::zero();
|
||||
break;
|
||||
@ -435,7 +442,7 @@ where
|
||||
q = Some(OMatrix::from_column_slice_generic(
|
||||
dim,
|
||||
dim,
|
||||
&[c, rot.s(), -rot.s().conjugate(), c],
|
||||
&[c.clone(), rot.s(), -rot.s().conjugate(), c],
|
||||
));
|
||||
}
|
||||
}
|
||||
@ -453,20 +460,20 @@ fn compute_2x2_eigvals<T: ComplexField, S: Storage<T, U2, U2>>(
|
||||
m: &SquareMatrix<T, U2, S>,
|
||||
) -> Option<(T, T)> {
|
||||
// Solve the 2x2 eigenvalue subproblem.
|
||||
let h00 = m[(0, 0)];
|
||||
let h10 = m[(1, 0)];
|
||||
let h01 = m[(0, 1)];
|
||||
let h11 = m[(1, 1)];
|
||||
let h00 = m[(0, 0)].clone();
|
||||
let h10 = m[(1, 0)].clone();
|
||||
let h01 = m[(0, 1)].clone();
|
||||
let h11 = m[(1, 1)].clone();
|
||||
|
||||
// NOTE: this discriminant computation is more stable than the
|
||||
// one based on the trace and determinant: 0.25 * tra * tra - det
|
||||
// because it ensures positiveness for symmetric matrices.
|
||||
let val = (h00 - h11) * crate::convert(0.5);
|
||||
let discr = h10 * h01 + val * val;
|
||||
let val = (h00.clone() - h11.clone()) * crate::convert(0.5);
|
||||
let discr = h10 * h01 + val.clone() * val;
|
||||
|
||||
discr.try_sqrt().map(|sqrt_discr| {
|
||||
let half_tra = (h00 + h11) * crate::convert(0.5);
|
||||
(half_tra + sqrt_discr, half_tra - sqrt_discr)
|
||||
(half_tra.clone() + sqrt_discr.clone(), half_tra - sqrt_discr)
|
||||
})
|
||||
}
|
||||
|
||||
@ -478,20 +485,20 @@ fn compute_2x2_eigvals<T: ComplexField, S: Storage<T, U2, U2>>(
|
||||
fn compute_2x2_basis<T: ComplexField, S: Storage<T, U2, U2>>(
|
||||
m: &SquareMatrix<T, U2, S>,
|
||||
) -> Option<GivensRotation<T>> {
|
||||
let h10 = m[(1, 0)];
|
||||
let h10 = m[(1, 0)].clone();
|
||||
|
||||
if h10.is_zero() {
|
||||
return None;
|
||||
}
|
||||
|
||||
if let Some((eigval1, eigval2)) = compute_2x2_eigvals(m) {
|
||||
let x1 = eigval1 - m[(1, 1)];
|
||||
let x2 = eigval2 - m[(1, 1)];
|
||||
let x1 = eigval1 - m[(1, 1)].clone();
|
||||
let x2 = eigval2 - m[(1, 1)].clone();
|
||||
|
||||
// NOTE: Choose the one that yields a larger x component.
|
||||
// This is necessary for numerical stability of the normalization of the complex
|
||||
// number.
|
||||
if x1.norm1() > x2.norm1() {
|
||||
if x1.clone().norm1() > x2.clone().norm1() {
|
||||
Some(GivensRotation::new(x1, h10).0)
|
||||
} else {
|
||||
Some(GivensRotation::new(x2, h10).0)
|
||||
|
@ -82,14 +82,14 @@ impl<T: ComplexField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S> {
|
||||
let coeff;
|
||||
|
||||
unsafe {
|
||||
let diag = *self.get_unchecked((i, i));
|
||||
let diag = self.get_unchecked((i, i)).clone();
|
||||
|
||||
if diag.is_zero() {
|
||||
return false;
|
||||
}
|
||||
|
||||
coeff = *b.vget_unchecked(i) / diag;
|
||||
*b.vget_unchecked_mut(i) = coeff;
|
||||
coeff = b.vget_unchecked(i).clone() / diag;
|
||||
*b.vget_unchecked_mut(i) = coeff.clone();
|
||||
}
|
||||
|
||||
b.rows_range_mut(i + 1..)
|
||||
@ -123,7 +123,7 @@ impl<T: ComplexField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S> {
|
||||
let mut bcol = b.column_mut(k);
|
||||
|
||||
for i in 0..dim - 1 {
|
||||
let coeff = unsafe { *bcol.vget_unchecked(i) } / diag;
|
||||
let coeff = unsafe { bcol.vget_unchecked(i).clone() } / diag.clone();
|
||||
bcol.rows_range_mut(i + 1..)
|
||||
.axpy(-coeff, &self.slice_range(i + 1.., i), T::one());
|
||||
}
|
||||
@ -164,14 +164,14 @@ impl<T: ComplexField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S> {
|
||||
let coeff;
|
||||
|
||||
unsafe {
|
||||
let diag = *self.get_unchecked((i, i));
|
||||
let diag = self.get_unchecked((i, i)).clone();
|
||||
|
||||
if diag.is_zero() {
|
||||
return false;
|
||||
}
|
||||
|
||||
coeff = *b.vget_unchecked(i) / diag;
|
||||
*b.vget_unchecked_mut(i) = coeff;
|
||||
coeff = b.vget_unchecked(i).clone() / diag;
|
||||
*b.vget_unchecked_mut(i) = coeff.clone();
|
||||
}
|
||||
|
||||
b.rows_range_mut(..i)
|
||||
@ -392,13 +392,13 @@ impl<T: ComplexField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S> {
|
||||
unsafe {
|
||||
let b_i = b.vget_unchecked_mut(i);
|
||||
|
||||
let diag = conjugate(*self.get_unchecked((i, i)));
|
||||
let diag = conjugate(self.get_unchecked((i, i)).clone());
|
||||
|
||||
if diag.is_zero() {
|
||||
return false;
|
||||
}
|
||||
|
||||
*b_i = (*b_i - dot) / diag;
|
||||
*b_i = (b_i.clone() - dot) / diag;
|
||||
}
|
||||
}
|
||||
|
||||
@ -426,13 +426,13 @@ impl<T: ComplexField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S> {
|
||||
|
||||
unsafe {
|
||||
let b_i = b.vget_unchecked_mut(i);
|
||||
let diag = conjugate(*self.get_unchecked((i, i)));
|
||||
let diag = conjugate(self.get_unchecked((i, i)).clone());
|
||||
|
||||
if diag.is_zero() {
|
||||
return false;
|
||||
}
|
||||
|
||||
*b_i = (*b_i - dot) / diag;
|
||||
*b_i = (b_i.clone() - dot) / diag;
|
||||
}
|
||||
}
|
||||
|
||||
@ -508,13 +508,13 @@ impl<T: SimdComplexField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S> {
|
||||
let coeff;
|
||||
|
||||
unsafe {
|
||||
let diag = *self.get_unchecked((i, i));
|
||||
coeff = *b.vget_unchecked(i) / diag;
|
||||
*b.vget_unchecked_mut(i) = coeff;
|
||||
let diag = self.get_unchecked((i, i)).clone();
|
||||
coeff = b.vget_unchecked(i).clone() / diag;
|
||||
*b.vget_unchecked_mut(i) = coeff.clone();
|
||||
}
|
||||
|
||||
b.rows_range_mut(i + 1..)
|
||||
.axpy(-coeff, &self.slice_range(i + 1.., i), T::one());
|
||||
.axpy(-coeff.clone(), &self.slice_range(i + 1.., i), T::one());
|
||||
}
|
||||
}
|
||||
|
||||
@ -537,7 +537,7 @@ impl<T: SimdComplexField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S> {
|
||||
let mut bcol = b.column_mut(k);
|
||||
|
||||
for i in 0..dim - 1 {
|
||||
let coeff = unsafe { *bcol.vget_unchecked(i) } / diag;
|
||||
let coeff = unsafe { bcol.vget_unchecked(i).clone() } / diag.clone();
|
||||
bcol.rows_range_mut(i + 1..)
|
||||
.axpy(-coeff, &self.slice_range(i + 1.., i), T::one());
|
||||
}
|
||||
@ -569,9 +569,9 @@ impl<T: SimdComplexField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S> {
|
||||
let coeff;
|
||||
|
||||
unsafe {
|
||||
let diag = *self.get_unchecked((i, i));
|
||||
coeff = *b.vget_unchecked(i) / diag;
|
||||
*b.vget_unchecked_mut(i) = coeff;
|
||||
let diag = self.get_unchecked((i, i)).clone();
|
||||
coeff = b.vget_unchecked(i).clone() / diag;
|
||||
*b.vget_unchecked_mut(i) = coeff.clone();
|
||||
}
|
||||
|
||||
b.rows_range_mut(..i)
|
||||
@ -748,8 +748,8 @@ impl<T: SimdComplexField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S> {
|
||||
|
||||
unsafe {
|
||||
let b_i = b.vget_unchecked_mut(i);
|
||||
let diag = conjugate(*self.get_unchecked((i, i)));
|
||||
*b_i = (*b_i - dot) / diag;
|
||||
let diag = conjugate(self.get_unchecked((i, i)).clone());
|
||||
*b_i = (b_i.clone() - dot) / diag;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -772,8 +772,8 @@ impl<T: SimdComplexField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S> {
|
||||
|
||||
unsafe {
|
||||
let b_i = b.vget_unchecked_mut(i);
|
||||
let diag = conjugate(*self.get_unchecked((i, i)));
|
||||
*b_i = (*b_i - dot) / diag;
|
||||
let diag = conjugate(self.get_unchecked((i, i)).clone());
|
||||
*b_i = (b_i.clone() - dot) / diag;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -118,7 +118,7 @@ where
|
||||
let m_amax = matrix.camax();
|
||||
|
||||
if !m_amax.is_zero() {
|
||||
matrix.unscale_mut(m_amax);
|
||||
matrix.unscale_mut(m_amax.clone());
|
||||
}
|
||||
|
||||
let bi_matrix = Bidiagonal::new(matrix);
|
||||
@ -139,7 +139,7 @@ where
|
||||
&mut v_t,
|
||||
bi_matrix.is_upper_diagonal(),
|
||||
dim - 1,
|
||||
eps,
|
||||
eps.clone(),
|
||||
);
|
||||
|
||||
while end != start {
|
||||
@ -153,19 +153,20 @@ where
|
||||
|
||||
let mut vec;
|
||||
{
|
||||
let dm = diagonal[m];
|
||||
let dn = diagonal[n];
|
||||
let fm = off_diagonal[m];
|
||||
let dm = diagonal[m].clone();
|
||||
let dn = diagonal[n].clone();
|
||||
let fm = off_diagonal[m].clone();
|
||||
|
||||
let tmm = dm * dm + off_diagonal[m - 1] * off_diagonal[m - 1];
|
||||
let tmn = dm * fm;
|
||||
let tnn = dn * dn + fm * fm;
|
||||
let tmm = dm.clone() * dm.clone()
|
||||
+ off_diagonal[m - 1].clone() * off_diagonal[m - 1].clone();
|
||||
let tmn = dm * fm.clone();
|
||||
let tnn = dn.clone() * dn + fm.clone() * fm;
|
||||
|
||||
let shift = symmetric_eigen::wilkinson_shift(tmm, tnn, tmn);
|
||||
|
||||
vec = Vector2::new(
|
||||
diagonal[start] * diagonal[start] - shift,
|
||||
diagonal[start] * off_diagonal[start],
|
||||
diagonal[start].clone() * diagonal[start].clone() - shift,
|
||||
diagonal[start].clone() * off_diagonal[start].clone(),
|
||||
);
|
||||
}
|
||||
|
||||
@ -173,15 +174,15 @@ where
|
||||
let m12 = if k == n - 1 {
|
||||
T::RealField::zero()
|
||||
} else {
|
||||
off_diagonal[k + 1]
|
||||
off_diagonal[k + 1].clone()
|
||||
};
|
||||
|
||||
let mut subm = Matrix2x3::new(
|
||||
diagonal[k],
|
||||
off_diagonal[k],
|
||||
diagonal[k].clone(),
|
||||
off_diagonal[k].clone(),
|
||||
T::RealField::zero(),
|
||||
T::RealField::zero(),
|
||||
diagonal[k + 1],
|
||||
diagonal[k + 1].clone(),
|
||||
m12,
|
||||
);
|
||||
|
||||
@ -195,10 +196,10 @@ where
|
||||
off_diagonal[k - 1] = norm1;
|
||||
}
|
||||
|
||||
let v = Vector2::new(subm[(0, 0)], subm[(1, 0)]);
|
||||
let v = Vector2::new(subm[(0, 0)].clone(), subm[(1, 0)].clone());
|
||||
// TODO: does the case `v.y == 0` ever happen?
|
||||
let (rot2, norm2) = GivensRotation::cancel_y(&v)
|
||||
.unwrap_or((GivensRotation::identity(), subm[(0, 0)]));
|
||||
.unwrap_or((GivensRotation::identity(), subm[(0, 0)].clone()));
|
||||
|
||||
rot2.rotate(&mut subm.fixed_columns_mut::<2>(1));
|
||||
let rot2 = GivensRotation::new_unchecked(rot2.c(), T::from_real(rot2.s()));
|
||||
@ -221,16 +222,16 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
diagonal[k] = subm[(0, 0)];
|
||||
diagonal[k + 1] = subm[(1, 1)];
|
||||
off_diagonal[k] = subm[(0, 1)];
|
||||
diagonal[k] = subm[(0, 0)].clone();
|
||||
diagonal[k + 1] = subm[(1, 1)].clone();
|
||||
off_diagonal[k] = subm[(0, 1)].clone();
|
||||
|
||||
if k != n - 1 {
|
||||
off_diagonal[k + 1] = subm[(1, 2)];
|
||||
off_diagonal[k + 1] = subm[(1, 2)].clone();
|
||||
}
|
||||
|
||||
vec.x = subm[(0, 1)];
|
||||
vec.y = subm[(0, 2)];
|
||||
vec.x = subm[(0, 1)].clone();
|
||||
vec.y = subm[(0, 2)].clone();
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
@ -238,9 +239,9 @@ where
|
||||
} else if subdim == 2 {
|
||||
// Solve the remaining 2x2 subproblem.
|
||||
let (u2, s, v2) = compute_2x2_uptrig_svd(
|
||||
diagonal[start],
|
||||
off_diagonal[start],
|
||||
diagonal[start + 1],
|
||||
diagonal[start].clone(),
|
||||
off_diagonal[start].clone(),
|
||||
diagonal[start + 1].clone(),
|
||||
compute_u && bi_matrix.is_upper_diagonal()
|
||||
|| compute_v && !bi_matrix.is_upper_diagonal(),
|
||||
compute_v && bi_matrix.is_upper_diagonal()
|
||||
@ -249,15 +250,15 @@ where
|
||||
let u2 = u2.map(|u2| GivensRotation::new_unchecked(u2.c(), T::from_real(u2.s())));
|
||||
let v2 = v2.map(|v2| GivensRotation::new_unchecked(v2.c(), T::from_real(v2.s())));
|
||||
|
||||
diagonal[start] = s[0];
|
||||
diagonal[start + 1] = s[1];
|
||||
diagonal[start] = s[0].clone();
|
||||
diagonal[start + 1] = s[1].clone();
|
||||
off_diagonal[start] = T::RealField::zero();
|
||||
|
||||
if let Some(ref mut u) = u {
|
||||
let rot = if bi_matrix.is_upper_diagonal() {
|
||||
u2.unwrap()
|
||||
u2.clone().unwrap()
|
||||
} else {
|
||||
v2.unwrap()
|
||||
v2.clone().unwrap()
|
||||
};
|
||||
rot.rotate_rows(&mut u.fixed_columns_mut::<2>(start));
|
||||
}
|
||||
@ -282,7 +283,7 @@ where
|
||||
&mut v_t,
|
||||
bi_matrix.is_upper_diagonal(),
|
||||
end,
|
||||
eps,
|
||||
eps.clone(),
|
||||
);
|
||||
start = sub.0;
|
||||
end = sub.1;
|
||||
@ -297,7 +298,7 @@ where
|
||||
|
||||
// Ensure all singular value are non-negative.
|
||||
for i in 0..dim {
|
||||
let sval = diagonal[i];
|
||||
let sval = diagonal[i].clone();
|
||||
|
||||
if sval < T::RealField::zero() {
|
||||
diagonal[i] = -sval;
|
||||
@ -345,10 +346,11 @@ where
|
||||
let m = n - 1;
|
||||
|
||||
if off_diagonal[m].is_zero()
|
||||
|| off_diagonal[m].norm1() <= eps * (diagonal[n].norm1() + diagonal[m].norm1())
|
||||
|| off_diagonal[m].clone().norm1()
|
||||
<= eps.clone() * (diagonal[n].clone().norm1() + diagonal[m].clone().norm1())
|
||||
{
|
||||
off_diagonal[m] = T::RealField::zero();
|
||||
} else if diagonal[m].norm1() <= eps {
|
||||
} else if diagonal[m].clone().norm1() <= eps {
|
||||
diagonal[m] = T::RealField::zero();
|
||||
Self::cancel_horizontal_off_diagonal_elt(
|
||||
diagonal,
|
||||
@ -370,7 +372,7 @@ where
|
||||
m - 1,
|
||||
);
|
||||
}
|
||||
} else if diagonal[n].norm1() <= eps {
|
||||
} else if diagonal[n].clone().norm1() <= eps {
|
||||
diagonal[n] = T::RealField::zero();
|
||||
Self::cancel_vertical_off_diagonal_elt(
|
||||
diagonal,
|
||||
@ -395,13 +397,14 @@ where
|
||||
while new_start > 0 {
|
||||
let m = new_start - 1;
|
||||
|
||||
if off_diagonal[m].norm1() <= eps * (diagonal[new_start].norm1() + diagonal[m].norm1())
|
||||
if off_diagonal[m].clone().norm1()
|
||||
<= eps.clone() * (diagonal[new_start].clone().norm1() + diagonal[m].clone().norm1())
|
||||
{
|
||||
off_diagonal[m] = T::RealField::zero();
|
||||
break;
|
||||
}
|
||||
// TODO: write a test that enters this case.
|
||||
else if diagonal[m].norm1() <= eps {
|
||||
else if diagonal[m].clone().norm1() <= eps {
|
||||
diagonal[m] = T::RealField::zero();
|
||||
Self::cancel_horizontal_off_diagonal_elt(
|
||||
diagonal,
|
||||
@ -442,7 +445,7 @@ where
|
||||
i: usize,
|
||||
end: usize,
|
||||
) {
|
||||
let mut v = Vector2::new(off_diagonal[i], diagonal[i + 1]);
|
||||
let mut v = Vector2::new(off_diagonal[i].clone(), diagonal[i + 1].clone());
|
||||
off_diagonal[i] = T::RealField::zero();
|
||||
|
||||
for k in i..end {
|
||||
@ -460,8 +463,8 @@ where
|
||||
}
|
||||
|
||||
if k + 1 != end {
|
||||
v.x = -rot.s().real() * off_diagonal[k + 1];
|
||||
v.y = diagonal[k + 2];
|
||||
v.x = -rot.s().real() * off_diagonal[k + 1].clone();
|
||||
v.y = diagonal[k + 2].clone();
|
||||
off_diagonal[k + 1] *= rot.c();
|
||||
}
|
||||
} else {
|
||||
@ -479,7 +482,7 @@ where
|
||||
is_upper_diagonal: bool,
|
||||
i: usize,
|
||||
) {
|
||||
let mut v = Vector2::new(diagonal[i], off_diagonal[i]);
|
||||
let mut v = Vector2::new(diagonal[i].clone(), off_diagonal[i].clone());
|
||||
off_diagonal[i] = T::RealField::zero();
|
||||
|
||||
for k in (0..i + 1).rev() {
|
||||
@ -497,8 +500,8 @@ where
|
||||
}
|
||||
|
||||
if k > 0 {
|
||||
v.x = diagonal[k - 1];
|
||||
v.y = rot.s().real() * off_diagonal[k - 1];
|
||||
v.x = diagonal[k - 1].clone();
|
||||
v.y = rot.s().real() * off_diagonal[k - 1].clone();
|
||||
off_diagonal[k - 1] *= rot.c();
|
||||
}
|
||||
} else {
|
||||
@ -527,7 +530,7 @@ where
|
||||
match (self.u, self.v_t) {
|
||||
(Some(mut u), Some(v_t)) => {
|
||||
for i in 0..self.singular_values.len() {
|
||||
let val = self.singular_values[i];
|
||||
let val = self.singular_values[i].clone();
|
||||
u.column_mut(i).scale_mut(val);
|
||||
}
|
||||
Ok(u * v_t)
|
||||
@ -551,7 +554,7 @@ where
|
||||
Err("SVD pseudo inverse: the epsilon must be non-negative.")
|
||||
} else {
|
||||
for i in 0..self.singular_values.len() {
|
||||
let val = self.singular_values[i];
|
||||
let val = self.singular_values[i].clone();
|
||||
|
||||
if val > eps {
|
||||
self.singular_values[i] = T::RealField::one() / val;
|
||||
@ -590,9 +593,9 @@ where
|
||||
let mut col = ut_b.column_mut(j);
|
||||
|
||||
for i in 0..self.singular_values.len() {
|
||||
let val = self.singular_values[i];
|
||||
let val = self.singular_values[i].clone();
|
||||
if val > eps {
|
||||
col[i] = col[i].unscale(val);
|
||||
col[i] = col[i].clone().unscale(val);
|
||||
} else {
|
||||
col[i] = T::zero();
|
||||
}
|
||||
@ -665,33 +668,37 @@ fn compute_2x2_uptrig_svd<T: RealField>(
|
||||
let two: T::RealField = crate::convert(2.0f64);
|
||||
let half: T::RealField = crate::convert(0.5f64);
|
||||
|
||||
let denom = (m11 + m22).hypot(m12) + (m11 - m22).hypot(m12);
|
||||
let denom = (m11.clone() + m22.clone()).hypot(m12.clone())
|
||||
+ (m11.clone() - m22.clone()).hypot(m12.clone());
|
||||
|
||||
// NOTE: v1 is the singular value that is the closest to m22.
|
||||
// This prevents cancellation issues when constructing the vector `csv` below. If we chose
|
||||
// otherwise, we would have v1 ~= m11 when m12 is small. This would cause catastrophic
|
||||
// cancellation on `v1 * v1 - m11 * m11` below.
|
||||
let mut v1 = m11 * m22 * two / denom;
|
||||
let mut v1 = m11.clone() * m22.clone() * two / denom.clone();
|
||||
let mut v2 = half * denom;
|
||||
|
||||
let mut u = None;
|
||||
let mut v_t = None;
|
||||
|
||||
if compute_u || compute_v {
|
||||
let (csv, sgn_v) = GivensRotation::new(m11 * m12, v1 * v1 - m11 * m11);
|
||||
v1 *= sgn_v;
|
||||
let (csv, sgn_v) = GivensRotation::new(
|
||||
m11.clone() * m12.clone(),
|
||||
v1.clone() * v1.clone() - m11.clone() * m11.clone(),
|
||||
);
|
||||
v1 *= sgn_v.clone();
|
||||
v2 *= sgn_v;
|
||||
|
||||
if compute_v {
|
||||
v_t = Some(csv);
|
||||
v_t = Some(csv.clone());
|
||||
}
|
||||
|
||||
if compute_u {
|
||||
let cu = (m11.scale(csv.c()) + m12 * csv.s()) / v1;
|
||||
let su = (m22 * csv.s()) / v1;
|
||||
let cu = (m11.scale(csv.c()) + m12 * csv.s()) / v1.clone();
|
||||
let su = (m22 * csv.s()) / v1.clone();
|
||||
let (csu, sgn_u) = GivensRotation::new(cu, su);
|
||||
|
||||
v1 *= sgn_u;
|
||||
v1 *= sgn_u.clone();
|
||||
v2 *= sgn_u;
|
||||
u = Some(csu);
|
||||
}
|
||||
|
@ -104,7 +104,7 @@ where
|
||||
let m_amax = matrix.camax();
|
||||
|
||||
if !m_amax.is_zero() {
|
||||
matrix.unscale_mut(m_amax);
|
||||
matrix.unscale_mut(m_amax.clone());
|
||||
}
|
||||
|
||||
let (mut q_mat, mut diag, mut off_diag);
|
||||
@ -127,7 +127,8 @@ where
|
||||
}
|
||||
|
||||
let mut niter = 0;
|
||||
let (mut start, mut end) = Self::delimit_subproblem(&diag, &mut off_diag, dim - 1, eps);
|
||||
let (mut start, mut end) =
|
||||
Self::delimit_subproblem(&diag, &mut off_diag, dim - 1, eps.clone());
|
||||
|
||||
while end != start {
|
||||
let subdim = end - start + 1;
|
||||
@ -138,8 +139,13 @@ where
|
||||
let n = end;
|
||||
|
||||
let mut vec = Vector2::new(
|
||||
diag[start] - wilkinson_shift(diag[m], diag[n], off_diag[m]),
|
||||
off_diag[start],
|
||||
diag[start].clone()
|
||||
- wilkinson_shift(
|
||||
diag[m].clone().clone(),
|
||||
diag[n].clone(),
|
||||
off_diag[m].clone().clone(),
|
||||
),
|
||||
off_diag[start].clone(),
|
||||
);
|
||||
|
||||
for i in start..n {
|
||||
@ -151,23 +157,23 @@ where
|
||||
off_diag[i - 1] = norm;
|
||||
}
|
||||
|
||||
let mii = diag[i];
|
||||
let mjj = diag[j];
|
||||
let mij = off_diag[i];
|
||||
let mii = diag[i].clone();
|
||||
let mjj = diag[j].clone();
|
||||
let mij = off_diag[i].clone();
|
||||
|
||||
let cc = rot.c() * rot.c();
|
||||
let ss = rot.s() * rot.s();
|
||||
let cs = rot.c() * rot.s();
|
||||
|
||||
let b = cs * crate::convert(2.0) * mij;
|
||||
let b = cs.clone() * crate::convert(2.0) * mij.clone();
|
||||
|
||||
diag[i] = (cc * mii + ss * mjj) - b;
|
||||
diag[j] = (ss * mii + cc * mjj) + b;
|
||||
diag[i] = (cc.clone() * mii.clone() + ss.clone() * mjj.clone()) - b.clone();
|
||||
diag[j] = (ss.clone() * mii.clone() + cc.clone() * mjj.clone()) + b;
|
||||
off_diag[i] = cs * (mii - mjj) + mij * (cc - ss);
|
||||
|
||||
if i != n - 1 {
|
||||
vec.x = off_diag[i];
|
||||
vec.y = -rot.s() * off_diag[i + 1];
|
||||
vec.x = off_diag[i].clone();
|
||||
vec.y = -rot.s() * off_diag[i + 1].clone();
|
||||
off_diag[i + 1] *= rot.c();
|
||||
}
|
||||
|
||||
@ -180,24 +186,31 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
if off_diag[m].norm1() <= eps * (diag[m].norm1() + diag[n].norm1()) {
|
||||
if off_diag[m].clone().norm1()
|
||||
<= eps.clone() * (diag[m].clone().norm1() + diag[n].clone().norm1())
|
||||
{
|
||||
end -= 1;
|
||||
}
|
||||
} else if subdim == 2 {
|
||||
let m = Matrix2::new(
|
||||
diag[start],
|
||||
off_diag[start].conjugate(),
|
||||
off_diag[start],
|
||||
diag[start + 1],
|
||||
diag[start].clone(),
|
||||
off_diag[start].clone().conjugate(),
|
||||
off_diag[start].clone(),
|
||||
diag[start + 1].clone(),
|
||||
);
|
||||
let eigvals = m.eigenvalues().unwrap();
|
||||
let basis = Vector2::new(eigvals.x - diag[start + 1], off_diag[start]);
|
||||
let basis = Vector2::new(
|
||||
eigvals.x.clone() - diag[start + 1].clone(),
|
||||
off_diag[start].clone(),
|
||||
);
|
||||
|
||||
diag[start] = eigvals[0];
|
||||
diag[start + 1] = eigvals[1];
|
||||
diag[start] = eigvals[0].clone();
|
||||
diag[start + 1] = eigvals[1].clone();
|
||||
|
||||
if let Some(ref mut q) = q_mat {
|
||||
if let Some((rot, _)) = GivensRotation::try_new(basis.x, basis.y, eps) {
|
||||
if let Some((rot, _)) =
|
||||
GivensRotation::try_new(basis.x.clone(), basis.y.clone(), eps.clone())
|
||||
{
|
||||
let rot = GivensRotation::new_unchecked(rot.c(), T::from_real(rot.s()));
|
||||
rot.rotate_rows(&mut q.fixed_columns_mut::<2>(start));
|
||||
}
|
||||
@ -207,7 +220,7 @@ where
|
||||
}
|
||||
|
||||
// Re-delimit the subproblem in case some decoupling occurred.
|
||||
let sub = Self::delimit_subproblem(&diag, &mut off_diag, end, eps);
|
||||
let sub = Self::delimit_subproblem(&diag, &mut off_diag, end, eps.clone());
|
||||
|
||||
start = sub.0;
|
||||
end = sub.1;
|
||||
@ -238,7 +251,9 @@ where
|
||||
while n > 0 {
|
||||
let m = n - 1;
|
||||
|
||||
if off_diag[m].norm1() > eps * (diag[n].norm1() + diag[m].norm1()) {
|
||||
if off_diag[m].clone().norm1()
|
||||
> eps.clone() * (diag[n].clone().norm1() + diag[m].clone().norm1())
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
@ -253,8 +268,9 @@ where
|
||||
while new_start > 0 {
|
||||
let m = new_start - 1;
|
||||
|
||||
if off_diag[m].is_zero()
|
||||
|| off_diag[m].norm1() <= eps * (diag[new_start].norm1() + diag[m].norm1())
|
||||
if off_diag[m].clone().is_zero()
|
||||
|| off_diag[m].clone().norm1()
|
||||
<= eps.clone() * (diag[new_start].clone().norm1() + diag[m].clone().norm1())
|
||||
{
|
||||
off_diag[m] = T::RealField::zero();
|
||||
break;
|
||||
@ -273,7 +289,7 @@ where
|
||||
pub fn recompose(&self) -> OMatrix<T, D, D> {
|
||||
let mut u_t = self.eigenvectors.clone();
|
||||
for i in 0..self.eigenvalues.len() {
|
||||
let val = self.eigenvalues[i];
|
||||
let val = self.eigenvalues[i].clone();
|
||||
u_t.column_mut(i).scale_mut(val);
|
||||
}
|
||||
u_t.adjoint_mut();
|
||||
@ -288,11 +304,11 @@ where
|
||||
/// tmm tmn
|
||||
/// tmn tnn
|
||||
pub fn wilkinson_shift<T: ComplexField>(tmm: T, tnn: T, tmn: T) -> T {
|
||||
let sq_tmn = tmn * tmn;
|
||||
let sq_tmn = tmn.clone() * tmn;
|
||||
if !sq_tmn.is_zero() {
|
||||
// We have the guarantee that the denominator won't be zero.
|
||||
let d = (tmm - tnn) * crate::convert(0.5);
|
||||
tnn - sq_tmn / (d + d.signum() * (d * d + sq_tmn).sqrt())
|
||||
let d = (tmm - tnn.clone()) * crate::convert(0.5);
|
||||
tnn - sq_tmn.clone() / (d.clone() + d.clone().signum() * (d.clone() * d + sq_tmn).sqrt())
|
||||
} else {
|
||||
tnn
|
||||
}
|
||||
|
@ -160,8 +160,8 @@ where
|
||||
self.tri.fill_upper_triangle(T::zero(), 2);
|
||||
|
||||
for i in 0..self.off_diagonal.len() {
|
||||
let val = T::from_real(self.off_diagonal[i].modulus());
|
||||
self.tri[(i + 1, i)] = val;
|
||||
let val = T::from_real(self.off_diagonal[i].clone().modulus());
|
||||
self.tri[(i + 1, i)] = val.clone();
|
||||
self.tri[(i, i + 1)] = val;
|
||||
}
|
||||
|
||||
|
@ -54,34 +54,34 @@ where
|
||||
let mut d = OVector::zeros_generic(n_dim, Const::<1>);
|
||||
let mut u = OMatrix::zeros_generic(n_dim, n_dim);
|
||||
|
||||
d[n - 1] = p[(n - 1, n - 1)];
|
||||
d[n - 1] = p[(n - 1, n - 1)].clone();
|
||||
|
||||
if d[n - 1].is_zero() {
|
||||
return None;
|
||||
}
|
||||
|
||||
u.column_mut(n - 1)
|
||||
.axpy(T::one() / d[n - 1], &p.column(n - 1), T::zero());
|
||||
.axpy(T::one() / d[n - 1].clone(), &p.column(n - 1), T::zero());
|
||||
|
||||
for j in (0..n - 1).rev() {
|
||||
let mut d_j = d[j];
|
||||
let mut d_j = d[j].clone();
|
||||
for k in j + 1..n {
|
||||
d_j += d[k] * u[(j, k)].powi(2);
|
||||
d_j += d[k].clone() * u[(j, k)].clone().powi(2);
|
||||
}
|
||||
|
||||
d[j] = p[(j, j)] - d_j;
|
||||
d[j] = p[(j, j)].clone() - d_j;
|
||||
|
||||
if d[j].is_zero() {
|
||||
return None;
|
||||
}
|
||||
|
||||
for i in (0..=j).rev() {
|
||||
let mut u_ij = u[(i, j)];
|
||||
let mut u_ij = u[(i, j)].clone();
|
||||
for k in j + 1..n {
|
||||
u_ij += d[k] * u[(j, k)] * u[(i, k)];
|
||||
u_ij += d[k].clone() * u[(j, k)].clone() * u[(i, k)].clone();
|
||||
}
|
||||
|
||||
u[(i, j)] = (p[(i, j)] - u_ij) / d[j];
|
||||
u[(i, j)] = (p[(i, j)].clone() - u_ij) / d[j].clone();
|
||||
}
|
||||
|
||||
u[(j, j)] = T::one();
|
||||
|
@ -493,7 +493,7 @@ where
|
||||
|
||||
// Permute the values too.
|
||||
for (i, irow) in range.clone().zip(self.data.i[range].iter().cloned()) {
|
||||
self.data.vals[i] = workspace[irow].inlined_clone();
|
||||
self.data.vals[i] = workspace[irow].clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -517,11 +517,11 @@ where
|
||||
let curr_irow = self.data.i[idx];
|
||||
|
||||
if curr_irow == irow {
|
||||
value += self.data.vals[idx].inlined_clone();
|
||||
value += self.data.vals[idx].clone();
|
||||
} else {
|
||||
self.data.i[curr_i] = irow;
|
||||
self.data.vals[curr_i] = value;
|
||||
value = self.data.vals[idx].inlined_clone();
|
||||
value = self.data.vals[idx].clone();
|
||||
irow = curr_irow;
|
||||
curr_i += 1;
|
||||
}
|
||||
|
@ -107,28 +107,29 @@ where
|
||||
let irow = *self.original_i.get_unchecked(p);
|
||||
|
||||
if irow >= k {
|
||||
*self.work_x.vget_unchecked_mut(irow) = *values.get_unchecked(p);
|
||||
*self.work_x.vget_unchecked_mut(irow) = values.get_unchecked(p).clone();
|
||||
}
|
||||
}
|
||||
|
||||
for j in self.u.data.column_row_indices(k) {
|
||||
let factor = -*self
|
||||
let factor = -self
|
||||
.l
|
||||
.data
|
||||
.vals
|
||||
.get_unchecked(*self.work_c.vget_unchecked(j));
|
||||
.get_unchecked(*self.work_c.vget_unchecked(j))
|
||||
.clone();
|
||||
*self.work_c.vget_unchecked_mut(j) += 1;
|
||||
|
||||
if j < k {
|
||||
for (z, val) in self.l.data.column_entries(j) {
|
||||
if z >= k {
|
||||
*self.work_x.vget_unchecked_mut(z) += val * factor;
|
||||
*self.work_x.vget_unchecked_mut(z) += val * factor.clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let diag = *self.work_x.vget_unchecked(k);
|
||||
let diag = self.work_x.vget_unchecked(k).clone();
|
||||
|
||||
if diag > T::zero() {
|
||||
let denom = diag.sqrt();
|
||||
@ -136,10 +137,10 @@ where
|
||||
.l
|
||||
.data
|
||||
.vals
|
||||
.get_unchecked_mut(*self.l.data.p.vget_unchecked(k)) = denom;
|
||||
.get_unchecked_mut(*self.l.data.p.vget_unchecked(k)) = denom.clone();
|
||||
|
||||
for (p, val) in self.l.data.column_entries_mut(k) {
|
||||
*val = *self.work_x.vget_unchecked(p) / denom;
|
||||
*val = self.work_x.vget_unchecked(p).clone() / denom.clone();
|
||||
*self.work_x.vget_unchecked_mut(p) = T::zero();
|
||||
}
|
||||
} else {
|
||||
@ -176,11 +177,11 @@ where
|
||||
let irow = *self.original_i.get_unchecked(p);
|
||||
|
||||
if irow <= k {
|
||||
*self.work_x.vget_unchecked_mut(irow) = *values.get_unchecked(p);
|
||||
*self.work_x.vget_unchecked_mut(irow) = values.get_unchecked(p).clone();
|
||||
}
|
||||
}
|
||||
|
||||
let mut diag = *self.work_x.vget_unchecked(k);
|
||||
let mut diag = self.work_x.vget_unchecked(k).clone();
|
||||
*self.work_x.vget_unchecked_mut(k) = T::zero();
|
||||
|
||||
// Triangular solve.
|
||||
@ -189,12 +190,13 @@ where
|
||||
continue;
|
||||
}
|
||||
|
||||
let lki = *self.work_x.vget_unchecked(irow)
|
||||
/ *self
|
||||
let lki = self.work_x.vget_unchecked(irow).clone()
|
||||
/ self
|
||||
.l
|
||||
.data
|
||||
.vals
|
||||
.get_unchecked(*self.l.data.p.vget_unchecked(irow));
|
||||
.get_unchecked(*self.l.data.p.vget_unchecked(irow))
|
||||
.clone();
|
||||
*self.work_x.vget_unchecked_mut(irow) = T::zero();
|
||||
|
||||
for p in
|
||||
@ -203,10 +205,10 @@ where
|
||||
*self
|
||||
.work_x
|
||||
.vget_unchecked_mut(*self.l.data.i.get_unchecked(p)) -=
|
||||
*self.l.data.vals.get_unchecked(p) * lki;
|
||||
self.l.data.vals.get_unchecked(p).clone() * lki.clone();
|
||||
}
|
||||
|
||||
diag -= lki * lki;
|
||||
diag -= lki.clone() * lki.clone();
|
||||
let p = *self.work_c.vget_unchecked(irow);
|
||||
*self.work_c.vget_unchecked_mut(irow) += 1;
|
||||
*self.l.data.i.get_unchecked_mut(p) = k;
|
||||
|
@ -102,7 +102,7 @@ where
|
||||
for i in 0..nrows.value() {
|
||||
if !column[i].is_zero() {
|
||||
res.data.i[nz] = i;
|
||||
res.data.vals[nz] = column[i].inlined_clone();
|
||||
res.data.vals[nz] = column[i].clone();
|
||||
nz += 1;
|
||||
}
|
||||
}
|
||||
|
@ -28,9 +28,9 @@ impl<T: Scalar, R: Dim, C: Dim, S: CsStorage<T, R, C>> CsMatrix<T, R, C, S> {
|
||||
timestamps[i] = timestamp;
|
||||
res.data.i[nz] = i;
|
||||
nz += 1;
|
||||
workspace[i] = val * beta.inlined_clone();
|
||||
workspace[i] = val * beta.clone();
|
||||
} else {
|
||||
workspace[i] += val * beta.inlined_clone();
|
||||
workspace[i] += val * beta.clone();
|
||||
}
|
||||
}
|
||||
|
||||
@ -88,18 +88,18 @@ impl<T: Scalar + Zero + ClosedAdd + ClosedMul, D: Dim, S: StorageMut<T, D>> Vect
|
||||
unsafe {
|
||||
let k = x.data.row_index_unchecked(i);
|
||||
let y = self.vget_unchecked_mut(k);
|
||||
*y = alpha.inlined_clone() * x.data.get_value_unchecked(i).inlined_clone();
|
||||
*y = alpha.clone() * x.data.get_value_unchecked(i).clone();
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Needed to be sure even components not present on `x` are multiplied.
|
||||
*self *= beta.inlined_clone();
|
||||
*self *= beta.clone();
|
||||
|
||||
for i in 0..x.len() {
|
||||
unsafe {
|
||||
let k = x.data.row_index_unchecked(i);
|
||||
let y = self.vget_unchecked_mut(k);
|
||||
*y += alpha.inlined_clone() * x.data.get_value_unchecked(i).inlined_clone();
|
||||
*y += alpha.clone() * x.data.get_value_unchecked(i).clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -159,14 +159,14 @@ where
|
||||
|
||||
for (i, beta) in rhs.data.column_entries(j) {
|
||||
for (k, val) in self.data.column_entries(i) {
|
||||
workspace[k] += val.inlined_clone() * beta.inlined_clone();
|
||||
workspace[k] += val.clone() * beta.clone();
|
||||
}
|
||||
}
|
||||
|
||||
for (i, val) in workspace.as_mut_slice().iter_mut().enumerate() {
|
||||
if !val.is_zero() {
|
||||
res.data.i[nz] = i;
|
||||
res.data.vals[nz] = val.inlined_clone();
|
||||
res.data.vals[nz] = val.clone();
|
||||
*val = T::zero();
|
||||
nz += 1;
|
||||
}
|
||||
@ -273,7 +273,7 @@ where
|
||||
res.data.i[range.clone()].sort_unstable();
|
||||
|
||||
for p in range {
|
||||
res.data.vals[p] = workspace[res.data.i[p]].inlined_clone()
|
||||
res.data.vals[p] = workspace[res.data.i[p]].clone()
|
||||
}
|
||||
}
|
||||
|
||||
@ -296,7 +296,7 @@ where
|
||||
|
||||
fn mul(mut self, rhs: T) -> Self::Output {
|
||||
for e in self.values_mut() {
|
||||
*e *= rhs.inlined_clone()
|
||||
*e *= rhs.clone()
|
||||
}
|
||||
|
||||
self
|
||||
|
@ -80,7 +80,7 @@ impl<T: RealField, D: Dim, S: CsStorage<T, D, D>> CsMatrix<T, D, D, S> {
|
||||
}
|
||||
|
||||
for (i, val) in column {
|
||||
let bj = b[j];
|
||||
let bj = b[j].clone();
|
||||
b[i] -= bj * val;
|
||||
}
|
||||
}
|
||||
@ -122,7 +122,7 @@ impl<T: RealField, D: Dim, S: CsStorage<T, D, D>> CsMatrix<T, D, D, S> {
|
||||
|
||||
if let Some(diag) = diag {
|
||||
for (i, val) in column {
|
||||
let bi = b[i];
|
||||
let bi = b[i].clone();
|
||||
b[j] -= val * bi;
|
||||
}
|
||||
|
||||
@ -183,7 +183,7 @@ impl<T: RealField, D: Dim, S: CsStorage<T, D, D>> CsMatrix<T, D, D, S> {
|
||||
}
|
||||
|
||||
for (i, val) in column {
|
||||
let wj = workspace[j];
|
||||
let wj = workspace[j].clone();
|
||||
workspace[i] -= wj * val;
|
||||
}
|
||||
}
|
||||
@ -193,7 +193,7 @@ impl<T: RealField, D: Dim, S: CsStorage<T, D, D>> CsMatrix<T, D, D, S> {
|
||||
CsVector::new_uninitialized_generic(b.data.shape().0, Const::<1>, reach.len());
|
||||
|
||||
for (i, val) in reach.iter().zip(result.data.vals.iter_mut()) {
|
||||
*val = workspace[*i];
|
||||
*val = workspace[*i].clone();
|
||||
}
|
||||
|
||||
result.data.i = reach;
|
||||
|
16
src/third_party/mint/mint_quaternion.rs
vendored
16
src/third_party/mint/mint_quaternion.rs
vendored
@ -10,11 +10,11 @@ impl<T: Scalar> Into<mint::Quaternion<T>> for Quaternion<T> {
|
||||
fn into(self) -> mint::Quaternion<T> {
|
||||
mint::Quaternion {
|
||||
v: mint::Vector3 {
|
||||
x: self[0].inlined_clone(),
|
||||
y: self[1].inlined_clone(),
|
||||
z: self[2].inlined_clone(),
|
||||
x: self[0].clone(),
|
||||
y: self[1].clone(),
|
||||
z: self[2].clone(),
|
||||
},
|
||||
s: self[3].inlined_clone(),
|
||||
s: self[3].clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -23,11 +23,11 @@ impl<T: Scalar + SimdValue> Into<mint::Quaternion<T>> for UnitQuaternion<T> {
|
||||
fn into(self) -> mint::Quaternion<T> {
|
||||
mint::Quaternion {
|
||||
v: mint::Vector3 {
|
||||
x: self[0].inlined_clone(),
|
||||
y: self[1].inlined_clone(),
|
||||
z: self[2].inlined_clone(),
|
||||
x: self[0].clone(),
|
||||
y: self[1].clone(),
|
||||
z: self[2].clone(),
|
||||
},
|
||||
s: self[3].inlined_clone(),
|
||||
s: self[3].clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user