forked from M-Labs/nalgebra
Fix Matrix::pow and make it work only with positive exponents
This commit is contained in:
parent
fdaf8c0fbe
commit
d806669cc7
@ -1,83 +1,71 @@
|
||||
//! This module provides the matrix exponential (pow) function to square matrices.
|
||||
|
||||
use std::ops::DivAssign;
|
||||
|
||||
use crate::{
|
||||
allocator::Allocator,
|
||||
storage::{Storage, StorageMut},
|
||||
DefaultAllocator, DimMin, Matrix, OMatrix,
|
||||
DefaultAllocator, DimMin, Matrix, OMatrix, Scalar,
|
||||
};
|
||||
use num::PrimInt;
|
||||
use simba::scalar::ComplexField;
|
||||
use num::{One, Zero};
|
||||
use simba::scalar::{ClosedAdd, ClosedMul};
|
||||
|
||||
impl<T: ComplexField, D, S> Matrix<T, D, D, S>
|
||||
impl<T, D, S> Matrix<T, D, D, S>
|
||||
where
|
||||
T: Scalar + Zero + One + ClosedAdd + ClosedMul,
|
||||
D: DimMin<D, Output = D>,
|
||||
S: StorageMut<T, D, D>,
|
||||
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
||||
{
|
||||
/// Attempts to raise this matrix to an integral power `e` in-place. If this
|
||||
/// matrix is non-invertible and `e` is negative, it leaves this matrix
|
||||
/// untouched and returns `false`. Otherwise, it returns `true` and
|
||||
/// overwrites this matrix with the result.
|
||||
pub fn pow_mut<I: PrimInt + DivAssign>(&mut self, mut e: I) -> bool {
|
||||
let zero = I::zero();
|
||||
|
||||
/// Raises this matrix to an integral power `exp` in-place.
|
||||
pub fn pow_mut(&mut self, mut exp: u32) {
|
||||
// A matrix raised to the zeroth power is just the identity.
|
||||
if e == zero {
|
||||
if exp == 0 {
|
||||
self.fill_with_identity();
|
||||
return true;
|
||||
}
|
||||
|
||||
// If e is negative, we compute the inverse matrix, then raise it to the
|
||||
// power of -e.
|
||||
if e < zero && !self.try_inverse_mut() {
|
||||
return false;
|
||||
}
|
||||
|
||||
let one = I::one();
|
||||
let two = I::from(2u8).unwrap();
|
||||
|
||||
} else if exp > 1 {
|
||||
// We use the buffer to hold the result of multiplier^2, thus avoiding
|
||||
// extra allocations.
|
||||
let mut multiplier = self.clone_owned();
|
||||
let mut buf = self.clone_owned();
|
||||
let mut x = self.clone_owned();
|
||||
let mut workspace = self.clone_owned();
|
||||
|
||||
if exp % 2 == 0 {
|
||||
self.fill_with_identity();
|
||||
} else {
|
||||
// Avoid an useless multiplication by the identity
|
||||
// if the exponent is odd.
|
||||
exp -= 1;
|
||||
}
|
||||
|
||||
// Exponentiation by squares.
|
||||
loop {
|
||||
if e % two == one {
|
||||
self.mul_to(&multiplier, &mut buf);
|
||||
self.copy_from(&buf);
|
||||
if exp % 2 == 1 {
|
||||
self.mul_to(&x, &mut workspace);
|
||||
self.copy_from(&workspace);
|
||||
}
|
||||
|
||||
e /= two;
|
||||
multiplier.mul_to(&multiplier, &mut buf);
|
||||
multiplier.copy_from(&buf);
|
||||
exp /= 2;
|
||||
|
||||
if e == zero {
|
||||
return true;
|
||||
if exp == 0 {
|
||||
break;
|
||||
}
|
||||
|
||||
x.mul_to(&x, &mut workspace);
|
||||
x.copy_from(&workspace);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ComplexField, D, S: Storage<T, D, D>> Matrix<T, D, D, S>
|
||||
impl<T, D, S: Storage<T, D, D>> Matrix<T, D, D, S>
|
||||
where
|
||||
T: Scalar + Zero + One + ClosedAdd + ClosedMul,
|
||||
D: DimMin<D, Output = D>,
|
||||
S: StorageMut<T, D, D>,
|
||||
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
||||
{
|
||||
/// Attempts to raise this matrix to an integral power `e`. If this matrix
|
||||
/// is non-invertible and `e` is negative, it returns `None`. Otherwise, it
|
||||
/// returns the result as a new matrix. Uses exponentiation by squares.
|
||||
/// Raise this matrix to an integral power `exp`.
|
||||
#[must_use]
|
||||
pub fn pow<I: PrimInt + DivAssign>(&self, e: I) -> Option<OMatrix<T, D, D>> {
|
||||
let mut clone = self.clone_owned();
|
||||
|
||||
if clone.pow_mut(e) {
|
||||
Some(clone)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
pub fn pow(&self, exp: u32) -> OMatrix<T, D, D> {
|
||||
let mut result = self.clone_owned();
|
||||
result.pow_mut(exp);
|
||||
result
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user