forked from M-Labs/nalgebra
remove column is now working
This commit is contained in:
parent
498c6ef60b
commit
cfa7bbdc7c
@ -211,7 +211,7 @@ where
|
|||||||
);
|
);
|
||||||
assert!(j < n, "j needs to be within the bound of the new matrix.");
|
assert!(j < n, "j needs to be within the bound of the new matrix.");
|
||||||
// TODO what is the fastest way to produce the new matrix ?
|
// TODO what is the fastest way to produce the new matrix ?
|
||||||
let chol= self.chol.insert_column(j, N::zero()).insert_row(j, N::zero());
|
let chol= self.chol.clone().insert_column(j, N::zero()).insert_row(j, N::zero());
|
||||||
|
|
||||||
// TODO see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
|
// TODO see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
|
||||||
unimplemented!();
|
unimplemented!();
|
||||||
@ -229,12 +229,16 @@ where
|
|||||||
DefaultAllocator: Reallocator<N, D, D, D, DimDiff<D, U1>> + Reallocator<N, D, DimDiff<D, U1>, DimDiff<D, U1>, DimDiff<D, U1>>,
|
DefaultAllocator: Reallocator<N, D, D, D, DimDiff<D, U1>> + Reallocator<N, D, DimDiff<D, U1>, DimDiff<D, U1>, DimDiff<D, U1>>,
|
||||||
{
|
{
|
||||||
let n = self.chol.nrows();
|
let n = self.chol.nrows();
|
||||||
|
assert!(n > 0, "The matrix needs at least one column.");
|
||||||
assert!(j < n, "j needs to be within the bound of the matrix.");
|
assert!(j < n, "j needs to be within the bound of the matrix.");
|
||||||
// TODO what is the fastest way to produce the new matrix ?
|
// TODO what is the fastest way to produce the new matrix ?
|
||||||
let chol= self.chol.remove_column(j).remove_row(j);
|
let mut chol= self.chol.clone().remove_column(j).remove_row(j);
|
||||||
|
|
||||||
|
// updates the corner
|
||||||
|
let mut corner = chol.slice_range_mut(j.., j..);
|
||||||
|
let colj = self.chol.slice_range(j+1.., j);
|
||||||
|
rank_one_update_helper(&mut corner, &colj, N::real(N::one()));
|
||||||
|
|
||||||
// TODO see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
|
|
||||||
unimplemented!();
|
|
||||||
Cholesky { chol }
|
Cholesky { chol }
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -251,3 +255,48 @@ where
|
|||||||
Cholesky::new(self.into_owned())
|
Cholesky::new(self.into_owned())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
|
||||||
|
/// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v.adjoint()`.
|
||||||
|
fn rank_one_update_helper<N, D, S, R2, S2>(chol : &mut Matrix<N, D, D, S>, x: &Matrix<N, R2, U1, S2>, sigma: N::RealField)
|
||||||
|
where
|
||||||
|
N: ComplexField, D: DimSub<Dynamic>, R2: Dim,
|
||||||
|
S: StorageMut<N, D, D>,
|
||||||
|
S2: Storage<N, R2, U1>,
|
||||||
|
DefaultAllocator: Allocator<N, D, D> + Allocator<N, R2, U1>,
|
||||||
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||||
|
{
|
||||||
|
// heavily inspired by Eigen's `llt_rank_update_lower` implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html
|
||||||
|
let n = x.nrows();
|
||||||
|
assert_eq!(
|
||||||
|
n,
|
||||||
|
chol.nrows(),
|
||||||
|
"The input vector must be of the same size as the factorized matrix."
|
||||||
|
);
|
||||||
|
let mut x = x.clone_owned();
|
||||||
|
let mut beta = crate::one::<N::RealField>();
|
||||||
|
for j in 0..n {
|
||||||
|
// updates the diagonal
|
||||||
|
let diag = N::real(unsafe { *chol.get_unchecked((j, j)) });
|
||||||
|
let diag2 = diag * diag;
|
||||||
|
let xj = unsafe { *x.get_unchecked(j) };
|
||||||
|
let sigma_xj2 = sigma * N::modulus_squared(xj);
|
||||||
|
let gamma = diag2 * beta + sigma_xj2;
|
||||||
|
let new_diag = (diag2 + sigma_xj2 / beta).sqrt();
|
||||||
|
unsafe { *chol.get_unchecked_mut((j, j)) = N::from_real(new_diag) };
|
||||||
|
beta += sigma_xj2 / diag2;
|
||||||
|
// updates the terms of L
|
||||||
|
let mut xjplus = x.rows_range_mut(j + 1..);
|
||||||
|
let mut col_j = chol.slice_range_mut(j + 1.., j);
|
||||||
|
// temp_jplus -= (wj / N::from_real(diag)) * col_j;
|
||||||
|
xjplus.axpy(-xj / N::from_real(diag), &col_j, N::one());
|
||||||
|
if gamma != crate::zero::<N::RealField>() {
|
||||||
|
// col_j = N::from_real(nljj / diag) * col_j + (N::from_real(nljj * sigma / gamma) * N::conjugate(wj)) * temp_jplus;
|
||||||
|
col_j.axpy(
|
||||||
|
N::from_real(new_diag * sigma / gamma) * N::conjugate(xj),
|
||||||
|
&xjplus,
|
||||||
|
N::from_real(new_diag / diag),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -98,6 +98,25 @@ macro_rules! gen_tests(
|
|||||||
|
|
||||||
relative_eq!(m, m_chol_updated, epsilon = 1.0e-7)
|
relative_eq!(m, m_chol_updated, epsilon = 1.0e-7)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn cholesky_remove_column(n: usize) -> bool {
|
||||||
|
let n = n.max(1).min(5);
|
||||||
|
let j = random::<usize>() % n;
|
||||||
|
let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
|
||||||
|
|
||||||
|
// remove column from cholesky decomposition and rebuild m
|
||||||
|
let chol = m.clone().cholesky().unwrap().remove_column(j);
|
||||||
|
let m_chol_updated = chol.l() * chol.l().adjoint();
|
||||||
|
|
||||||
|
// remove column from m
|
||||||
|
let m_updated = m.remove_column(j).remove_row(j);
|
||||||
|
|
||||||
|
println!("n={} j={}", n, j);
|
||||||
|
println!("chol:{}", m_chol_updated);
|
||||||
|
println!("m up:{}", m_updated);
|
||||||
|
|
||||||
|
relative_eq!(m_updated, m_chol_updated, epsilon = 1.0e-7)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user