Add some infinite and reversed perspectives.

This adds:

infinite_perspective_rh_no
infinite_perspective_rh_zo
reversed_perspective_rh_no
reversed_perspective_rh_zo
reversed_infinite_perspective_rh_zo
reversed_infinite_perspective_rh_zo

Fix #573
This commit is contained in:
sebcrozet 2019-04-02 19:51:43 +02:00 committed by Sébastien Crozet
parent e86ab5db3d
commit c65f0e9e4e

View File

@ -43,11 +43,7 @@ use na::{RealField};
//
//pub fn infinite_perspective_lh<N: RealField>(fovy: N, aspect: N, near: N) -> TMat4<N> {
// unimplemented!()
//}
//
//pub fn infinite_perspective_rh<N: RealField>(fovy: N, aspect: N, near: N) -> TMat4<N> {
// unimplemented!()
//}
//}ç
//
//pub fn infinite_ortho<N: RealField>(left: N, right: N, bottom: N, top: N) -> TMat4<N> {
// unimplemented!()
@ -691,6 +687,168 @@ pub fn perspective_zo<N: RealField>(aspect: N, fovy: N, near: N, far: N) -> TMat
perspective_rh_zo(aspect, fovy, near, far)
}
/// Build infinite right-handed perspective projection matrix with [-1,1] depth range.
///
/// # Parameters
///
/// * `fovy` - Field of view, in radians
/// * `aspect` - Ratio of viewport width to height (width/height)
/// * `near` - Distance from the viewer to the near clipping plane.
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn infinite_perspective_rh_no<N: RealField>(aspect: N, fovy: N, near: N) -> TMat4<N> {
let f = N::one() / (fovy * na::convert(0.5)).tan();
let mut mat = TMat4::zeros();
mat[(0, 0)] = f / aspect;
mat[(1, 1)] = f;
mat[(2, 2)] = -N::one();
mat[(2, 3)] = -near * na::convert(2.0);
mat[(3, 2)] = -N::one();
mat
}
/// Build infinite right-handed perspective projection matrix with [0,1] depth range.
///
/// # Parameters
///
/// * `fovy` - Field of view, in radians
/// * `aspect` - Ratio of viewport width to height (width/height)
/// * `near` - Distance from the viewer to the near clipping plane.
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn infinite_perspective_rh_zo<N: RealField>(aspect: N, fovy: N, near: N) -> TMat4<N> {
let f = N::one() / (fovy * na::convert(0.5)).tan();
let mut mat = TMat4::zeros();
mat[(0, 0)] = f / aspect;
mat[(1, 1)] = f;
mat[(2, 2)] = -N::one();
mat[(2, 3)] = -near;
mat[(3, 2)] = -N::one();
mat
}
/// Creates a matrix for a right hand perspective-view frustum with a depth range of -1 to 1
///
/// # Parameters
///
/// * `fovy` - Field of view, in radians
/// * `aspect` - Ratio of viewport width to height (width/height)
/// * `near` - Distance from the viewer to the near clipping plane
/// * `far` - Distance from the viewer to the far clipping plane
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn reversed_perspective_rh_no<N: RealField>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N> {
assert!(
!relative_eq!(far - near, N::zero()),
"The near-plane and far-plane must not be superimposed."
);
assert!(
!relative_eq!(aspect, N::zero()),
"The apsect ratio must not be zero."
);
let one = N::one();
let two: N = crate::convert(2.0);
let mut mat = TMat4::zeros();
let tan_half_fovy = (fovy / two).tan();
mat[(0, 0)] = one / (aspect * tan_half_fovy);
mat[(1, 1)] = one / tan_half_fovy;
mat[(2, 2)] = (far + near) / (far - near) - one;
mat[(2, 3)] = (two * far * near) / (far - near);
mat[(3, 2)] = -one;
mat
}
/// Creates a matrix for a right hand perspective-view frustum with a reversed depth range of 0 to 1
///
/// # Parameters
///
/// * `fovy` - Field of view, in radians
/// * `aspect` - Ratio of viewport width to height (width/height)
/// * `near` - Distance from the viewer to the near clipping plane
/// * `far` - Distance from the viewer to the far clipping plane
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn reversed_perspective_rh_zo<N: RealField>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N> {
assert!(
!relative_eq!(far - near, N::zero()),
"The near-plane and far-plane must not be superimposed."
);
assert!(
!relative_eq!(aspect, N::zero()),
"The apsect ratio must not be zero."
);
let one = N::one();
let two = crate::convert(2.0);
let mut mat = TMat4::zeros();
let tan_half_fovy = (fovy / two).tan();
mat[(0, 0)] = one / (aspect * tan_half_fovy);
mat[(1, 1)] = one / tan_half_fovy;
mat[(2, 2)] = -far / (near - far) - one;
mat[(2, 3)] = (far * near) / (far - near);
mat[(3, 2)] = -one;
mat
}
/// Build reverted infinite perspective projection matrix with [-1, 1] depth range.
///
/// # Parameters
///
/// * `fovy` - Field of view, in radians
/// * `aspect` - Ratio of viewport width to height (width/height)
/// * `near` - Distance from the viewer to the near clipping plane
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn reversed_infinite_perspective_rh_no<N: RealField>(aspect: N, fovy: N, near: N) -> TMat4<N> {
let f = N::one() / (fovy * na::convert(0.5)).tan();
let mut mat = TMat4::zeros();
mat[(0, 0)] = f / aspect;
mat[(1, 1)] = f;
mat[(2, 3)] = two * near;
mat[(3, 2)] = -N::one();
mat
}
/// Build reverted infinite perspective projection matrix with [0, 1] depth range.
///
/// # Parameters
///
/// * `fovy` - Field of view, in radians
/// * `aspect` - Ratio of viewport width to height (width/height)
/// * `near` - Distance from the viewer to the near clipping plane.
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn reversed_infinite_perspective_rh_zo<N: RealField>(aspect: N, fovy: N, near: N) -> TMat4<N> {
let f = N::one() / (fovy * na::convert(0.5)).tan();
let mut mat = TMat4::zeros();
mat[(0, 0)] = f / aspect;
mat[(1, 1)] = f;
mat[(2, 3)] = near;
mat[(3, 2)] = -N::one();
mat
}
//pub fn tweaked_infinite_perspective<N: RealField>(fovy: N, aspect: N, near: N) -> TMat4<N> {
// unimplemented!()
//}