From c58e1ed40d40c406a2ceb69704323c91f579ebbc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?S=C3=A9bastien=20Crozet?= Date: Sat, 29 Jun 2013 00:34:45 +0000 Subject: [PATCH] Reorganized files. --- src/{ndim => }/dmat.rs | 6 +- src/{ndim => }/dvec.rs | 0 src/mat.rs | 415 +-------------------------------- src/mat_impl.rs | 325 ++++++++++++++++++++++++++ src/mat_spec.rs | 94 ++++++++ src/nalgebra.rc | 13 +- src/ndim/nmat.rs | 184 --------------- src/ndim/nvec.rs | 276 ---------------------- src/tests/vec.rs | 60 +++-- src/vec.rs | 514 +---------------------------------------- src/vec_impl.rs | 431 ++++++++++++++++++++++++++++++++++ src/vec_spec.rs | 77 ++++++ 12 files changed, 984 insertions(+), 1411 deletions(-) rename src/{ndim => }/dmat.rs (97%) rename src/{ndim => }/dvec.rs (100%) create mode 100644 src/mat_impl.rs create mode 100644 src/mat_spec.rs delete mode 100644 src/ndim/nmat.rs delete mode 100644 src/ndim/nvec.rs create mode 100644 src/vec_impl.rs create mode 100644 src/vec_spec.rs diff --git a/src/ndim/dmat.rs b/src/dmat.rs similarity index 97% rename from src/ndim/dmat.rs rename to src/dmat.rs index fdeba343..87f7cb7e 100644 --- a/src/ndim/dmat.rs +++ b/src/dmat.rs @@ -7,7 +7,7 @@ use traits::inv::Inv; use traits::division_ring::DivisionRing; use traits::transpose::Transpose; use traits::rlmul::{RMul, LMul}; -use ndim::dvec::{DVec, zero_vec_with_dim}; +use dvec::{DVec, zero_vec_with_dim}; #[deriving(Eq, ToStr, Clone)] pub struct DMat @@ -133,13 +133,13 @@ LMul> for DMat } } -impl +impl Inv for DMat { #[inline] fn inverse(&self) -> DMat { - let mut res : DMat = self.clone(); + let mut res : DMat = copy *self; res.invert(); diff --git a/src/ndim/dvec.rs b/src/dvec.rs similarity index 100% rename from src/ndim/dvec.rs rename to src/dvec.rs diff --git a/src/mat.rs b/src/mat.rs index d1e0995d..8286f9e3 100644 --- a/src/mat.rs +++ b/src/mat.rs @@ -13,330 +13,7 @@ use traits::transpose::Transpose; use traits::rlmul::{RMul, LMul}; use traits::transformation::Transform; -macro_rules! mat_impl( - ($t: ident, $dim: expr) => ( - impl $t - { - #[inline] - pub fn new(mij: [N, ..$dim * $dim]) -> $t - { $t { mij: mij } } - } - ) -) - -macro_rules! one_impl( - ($t: ident, [ $($value: ident)|+ ] ) => ( - impl One for $t - { - #[inline] - fn one() -> $t - { - let (_0, _1) = (Zero::zero::(), One::one::()); - return $t::new( [ $( copy $value, )+ ] ) - } - } - ) -) - - -macro_rules! zero_impl( - ($t: ident, [ $($value: ident)|+ ] ) => ( - impl Zero for $t - { - #[inline] - fn zero() -> $t - { - let _0 = Zero::zero(); - return $t::new( [ $( copy $value, )+ ] ) - } - - #[inline] - fn is_zero(&self) -> bool - { self.mij.iter().all(|e| e.is_zero()) } - } - ) -) - -macro_rules! dim_impl( - ($t: ident, $dim: expr) => ( - impl Dim for $t - { - #[inline] - fn dim() -> uint - { $dim } - } - ) -) - -macro_rules! mat_indexing_impl( - ($t: ident, $dim: expr) => ( - impl $t - { - #[inline] - pub fn offset(&self, i: uint, j: uint) -> uint - { i * $dim + j } - - #[inline] - pub fn set(&mut self, i: uint, j: uint, t: &N) - { - self.mij[self.offset(i, j)] = copy *t - } - - #[inline] - pub fn at(&self, i: uint, j: uint) -> N - { - copy self.mij[self.offset(i, j)] - } - } - ) -) - -macro_rules! mul_impl( - ($t: ident, $dim: expr) => ( - impl - Mul<$t, $t> for $t - { - fn mul(&self, other: &$t) -> $t - { - let mut res: $t = Zero::zero(); - - for iterate(0u, $dim) |i| - { - for iterate(0u, $dim) |j| - { - let mut acc = Zero::zero::(); - - for iterate(0u, $dim) |k| - { acc = acc + self.at(i, k) * other.at(k, j); } - - res.set(i, j, &acc); - } - } - - res - } - } - ) -) - -macro_rules! rmul_impl( - ($t: ident, $v: ident, $dim: expr) => ( - impl - RMul<$v> for $t - { - fn rmul(&self, other: &$v) -> $v - { - let mut res : $v = Zero::zero(); - - for iterate(0u, $dim) |i| - { - for iterate(0u, $dim) |j| - { res.at[i] = res.at[i] + other.at[j] * self.at(i, j); } - } - - res - } - } - ) -) - -macro_rules! lmul_impl( - ($t: ident, $v: ident, $dim: expr) => ( - impl - LMul<$v> for $t - { - fn lmul(&self, other: &$v) -> $v - { - - let mut res : $v = Zero::zero(); - - for iterate(0u, $dim) |i| - { - for iterate(0u, $dim) |j| - { res.at[i] = res.at[i] + other.at[j] * self.at(j, i); } - } - - res - } - } - ) -) - -macro_rules! transform_impl( - ($t: ident, $v: ident) => ( - impl - Transform<$v> for $t - { - #[inline] - fn transform_vec(&self, v: &$v) -> $v - { self.rmul(v) } - - #[inline] - fn inv_transform(&self, v: &$v) -> $v - { self.inverse().transform_vec(v) } - } - ) -) - -macro_rules! inv_impl( - ($t: ident, $dim: expr) => ( - impl - Inv for $t - { - #[inline] - fn inverse(&self) -> $t - { - let mut res : $t = copy *self; - - res.invert(); - - res - } - - fn invert(&mut self) - { - let mut res: $t = One::one(); - let _0N: N = Zero::zero(); - - // inversion using Gauss-Jordan elimination - for iterate(0u, $dim) |k| - { - // search a non-zero value on the k-th column - // FIXME: would it be worth it to spend some more time searching for the - // max instead? - - let mut n0 = k; // index of a non-zero entry - - while (n0 != $dim) - { - if self.at(n0, k) != _0N - { break; } - - n0 = n0 + 1; - } - - // swap pivot line - if n0 != k - { - for iterate(0u, $dim) |j| - { - let off_n0_j = self.offset(n0, j); - let off_k_j = self.offset(k, j); - - swap(self.mij, off_n0_j, off_k_j); - swap(res.mij, off_n0_j, off_k_j); - } - } - - let pivot = self.at(k, k); - - for iterate(k, $dim) |j| - { - let selfval = &(self.at(k, j) / pivot); - self.set(k, j, selfval); - } - - for iterate(0u, $dim) |j| - { - let resval = &(res.at(k, j) / pivot); - res.set(k, j, resval); - } - - for iterate(0u, $dim) |l| - { - if l != k - { - let normalizer = self.at(l, k); - - for iterate(k, $dim) |j| - { - let selfval = &(self.at(l, j) - self.at(k, j) * normalizer); - self.set(l, j, selfval); - } - - for iterate(0u, $dim) |j| - { - let resval = &(res.at(l, j) - res.at(k, j) * normalizer); - res.set(l, j, resval); - } - } - } - } - - *self = res; - } - } - ) -) - -macro_rules! transpose_impl( - ($t: ident, $dim: expr) => ( - impl Transpose for $t - { - #[inline] - fn transposed(&self) -> $t - { - let mut res = copy *self; - - res.transpose(); - - res - } - - fn transpose(&mut self) - { - for iterate(1u, $dim) |i| - { - for iterate(0u, $dim - 1) |j| - { - let off_i_j = self.offset(i, j); - let off_j_i = self.offset(j, i); - - swap(self.mij, off_i_j, off_j_i); - } - } - } - } - ) -) - -macro_rules! approx_eq_impl( - ($t: ident) => ( - impl> ApproxEq for $t - { - #[inline] - fn approx_epsilon() -> N - { ApproxEq::approx_epsilon::() } - - #[inline] - fn approx_eq(&self, other: &$t) -> bool - { - let mut zip = self.mij.iter().zip(other.mij.iter()); - - do zip.all |(a, b)| { a.approx_eq(b) } - } - - #[inline] - fn approx_eq_eps(&self, other: &$t, epsilon: &N) -> bool - { - let mut zip = self.mij.iter().zip(other.mij.iter()); - - do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) } - } - } - ) -) - -macro_rules! rand_impl( - ($t: ident, $param: ident, [ $($elem: ident)|+ ]) => ( - impl Rand for $t - { - #[inline] - fn rand($param: &mut R) -> $t - { $t::new([ $( $elem.gen(), )+ ]) } - } - ) -) +mod mat_impl; #[deriving(ToStr)] pub struct Mat1 @@ -508,93 +185,3 @@ rand_impl!(Mat6, rng, [ rng | rng | rng | rng | rng | rng | rng | rng | rng | rng | rng | rng ]) - -// some specializations: -impl -Inv for Mat1 -{ - #[inline] - fn inverse(&self) -> Mat1 - { - let mut res : Mat1 = copy *self; - - res.invert(); - - res - } - - #[inline] - fn invert(&mut self) - { - assert!(!self.mij[0].is_zero()); - - self.mij[0] = One::one::() / self.mij[0] - } -} - -impl -Inv for Mat2 -{ - #[inline] - fn inverse(&self) -> Mat2 - { - let mut res : Mat2 = copy *self; - - res.invert(); - - res - } - - #[inline] - fn invert(&mut self) - { - let det = self.mij[0 * 2 + 0] * self.mij[1 * 2 + 1] - self.mij[1 * 2 + 0] * self.mij[0 * 2 + 1]; - - assert!(!det.is_zero()); - - *self = Mat2::new([self.mij[1 * 2 + 1] / det , -self.mij[0 * 2 + 1] / det, - -self.mij[1 * 2 + 0] / det, self.mij[0 * 2 + 0] / det]) - } -} - -impl -Inv for Mat3 -{ - #[inline] - fn inverse(&self) -> Mat3 - { - let mut res = copy *self; - - res.invert(); - - res - } - - #[inline] - fn invert(&mut self) - { - let minor_m12_m23 = self.mij[1 * 3 + 1] * self.mij[2 * 3 + 2] - self.mij[2 * 3 + 1] * self.mij[1 * 3 + 2]; - let minor_m11_m23 = self.mij[1 * 3 + 0] * self.mij[2 * 3 + 2] - self.mij[2 * 3 + 0] * self.mij[1 * 3 + 2]; - let minor_m11_m22 = self.mij[1 * 3 + 0] * self.mij[2 * 3 + 1] - self.mij[2 * 3 + 0] * self.mij[1 * 3 + 1]; - - let det = self.mij[0 * 3 + 0] * minor_m12_m23 - - self.mij[0 * 3 + 1] * minor_m11_m23 - + self.mij[0 * 3 + 2] * minor_m11_m22; - - assert!(!det.is_zero()); - - *self = Mat3::new( [ - (minor_m12_m23 / det), - ((self.mij[0 * 3 + 2] * self.mij[2 * 3 + 1] - self.mij[2 * 3 + 2] * self.mij[0 * 3 + 1]) / det), - ((self.mij[0 * 3 + 1] * self.mij[1 * 3 + 2] - self.mij[1 * 3 + 1] * self.mij[0 * 3 + 2]) / det), - - (-minor_m11_m23 / det), - ((self.mij[0 * 3 + 0] * self.mij[2 * 3 + 2] - self.mij[2 * 3 + 0] * self.mij[0 * 3 + 2]) / det), - ((self.mij[0 * 3 + 2] * self.mij[1 * 3 + 0] - self.mij[1 * 3 + 2] * self.mij[0 * 3 + 0]) / det), - - (minor_m11_m22 / det), - ((self.mij[0 * 3 + 1] * self.mij[2 * 3 + 0] - self.mij[2 * 3 + 1] * self.mij[0 * 3 + 0]) / det), - ((self.mij[0 * 3 + 0] * self.mij[1 * 3 + 1] - self.mij[1 * 3 + 0] * self.mij[0 * 3 + 1]) / det) - ] ) - } -} diff --git a/src/mat_impl.rs b/src/mat_impl.rs new file mode 100644 index 00000000..f0bfdde6 --- /dev/null +++ b/src/mat_impl.rs @@ -0,0 +1,325 @@ +#[macro_escape]; + +macro_rules! mat_impl( + ($t: ident, $dim: expr) => ( + impl $t + { + #[inline] + pub fn new(mij: [N, ..$dim * $dim]) -> $t + { $t { mij: mij } } + } + ) +) + +macro_rules! one_impl( + ($t: ident, [ $($value: ident)|+ ] ) => ( + impl One for $t + { + #[inline] + fn one() -> $t + { + let (_0, _1) = (Zero::zero::(), One::one::()); + return $t::new( [ $( copy $value, )+ ] ) + } + } + ) +) + +macro_rules! zero_impl( + ($t: ident, [ $($value: ident)|+ ] ) => ( + impl Zero for $t + { + #[inline] + fn zero() -> $t + { + let _0 = Zero::zero(); + return $t::new( [ $( copy $value, )+ ] ) + } + + #[inline] + fn is_zero(&self) -> bool + { self.mij.iter().all(|e| e.is_zero()) } + } + ) +) + +macro_rules! dim_impl( + ($t: ident, $dim: expr) => ( + impl Dim for $t + { + #[inline] + fn dim() -> uint + { $dim } + } + ) +) + +macro_rules! mat_indexing_impl( + ($t: ident, $dim: expr) => ( + impl $t + { + #[inline] + pub fn offset(&self, i: uint, j: uint) -> uint + { i * $dim + j } + + #[inline] + pub fn set(&mut self, i: uint, j: uint, t: &N) + { + self.mij[self.offset(i, j)] = copy *t + } + + #[inline] + pub fn at(&self, i: uint, j: uint) -> N + { + copy self.mij[self.offset(i, j)] + } + } + ) +) + +macro_rules! mul_impl( + ($t: ident, $dim: expr) => ( + impl + Mul<$t, $t> for $t + { + fn mul(&self, other: &$t) -> $t + { + let mut res: $t = Zero::zero(); + + for iterate(0u, $dim) |i| + { + for iterate(0u, $dim) |j| + { + let mut acc = Zero::zero::(); + + for iterate(0u, $dim) |k| + { acc = acc + self.at(i, k) * other.at(k, j); } + + res.set(i, j, &acc); + } + } + + res + } + } + ) +) + +macro_rules! rmul_impl( + ($t: ident, $v: ident, $dim: expr) => ( + impl + RMul<$v> for $t + { + fn rmul(&self, other: &$v) -> $v + { + let mut res : $v = Zero::zero(); + + for iterate(0u, $dim) |i| + { + for iterate(0u, $dim) |j| + { res.at[i] = res.at[i] + other.at[j] * self.at(i, j); } + } + + res + } + } + ) +) + +macro_rules! lmul_impl( + ($t: ident, $v: ident, $dim: expr) => ( + impl + LMul<$v> for $t + { + fn lmul(&self, other: &$v) -> $v + { + + let mut res : $v = Zero::zero(); + + for iterate(0u, $dim) |i| + { + for iterate(0u, $dim) |j| + { res.at[i] = res.at[i] + other.at[j] * self.at(j, i); } + } + + res + } + } + ) +) + +macro_rules! transform_impl( + ($t: ident, $v: ident) => ( + impl + Transform<$v> for $t + { + #[inline] + fn transform_vec(&self, v: &$v) -> $v + { self.rmul(v) } + + #[inline] + fn inv_transform(&self, v: &$v) -> $v + { self.inverse().transform_vec(v) } + } + ) +) + +macro_rules! inv_impl( + ($t: ident, $dim: expr) => ( + impl + Inv for $t + { + #[inline] + fn inverse(&self) -> $t + { + let mut res : $t = copy *self; + + res.invert(); + + res + } + + fn invert(&mut self) + { + let mut res: $t = One::one(); + let _0N: N = Zero::zero(); + + // inversion using Gauss-Jordan elimination + for iterate(0u, $dim) |k| + { + // search a non-zero value on the k-th column + // FIXME: would it be worth it to spend some more time searching for the + // max instead? + + let mut n0 = k; // index of a non-zero entry + + while (n0 != $dim) + { + if self.at(n0, k) != _0N + { break; } + + n0 = n0 + 1; + } + + // swap pivot line + if n0 != k + { + for iterate(0u, $dim) |j| + { + let off_n0_j = self.offset(n0, j); + let off_k_j = self.offset(k, j); + + swap(self.mij, off_n0_j, off_k_j); + swap(res.mij, off_n0_j, off_k_j); + } + } + + let pivot = self.at(k, k); + + for iterate(k, $dim) |j| + { + let selfval = &(self.at(k, j) / pivot); + self.set(k, j, selfval); + } + + for iterate(0u, $dim) |j| + { + let resval = &(res.at(k, j) / pivot); + res.set(k, j, resval); + } + + for iterate(0u, $dim) |l| + { + if l != k + { + let normalizer = self.at(l, k); + + for iterate(k, $dim) |j| + { + let selfval = &(self.at(l, j) - self.at(k, j) * normalizer); + self.set(l, j, selfval); + } + + for iterate(0u, $dim) |j| + { + let resval = &(res.at(l, j) - res.at(k, j) * normalizer); + res.set(l, j, resval); + } + } + } + } + + *self = res; + } + } + ) +) + +macro_rules! transpose_impl( + ($t: ident, $dim: expr) => ( + impl Transpose for $t + { + #[inline] + fn transposed(&self) -> $t + { + let mut res = copy *self; + + res.transpose(); + + res + } + + fn transpose(&mut self) + { + for iterate(1u, $dim) |i| + { + for iterate(0u, $dim - 1) |j| + { + let off_i_j = self.offset(i, j); + let off_j_i = self.offset(j, i); + + swap(self.mij, off_i_j, off_j_i); + } + } + } + } + ) +) + +macro_rules! approx_eq_impl( + ($t: ident) => ( + impl> ApproxEq for $t + { + #[inline] + fn approx_epsilon() -> N + { ApproxEq::approx_epsilon::() } + + #[inline] + fn approx_eq(&self, other: &$t) -> bool + { + let mut zip = self.mij.iter().zip(other.mij.iter()); + + do zip.all |(a, b)| { a.approx_eq(b) } + } + + #[inline] + fn approx_eq_eps(&self, other: &$t, epsilon: &N) -> bool + { + let mut zip = self.mij.iter().zip(other.mij.iter()); + + do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) } + } + } + ) +) + +macro_rules! rand_impl( + ($t: ident, $param: ident, [ $($elem: ident)|+ ]) => ( + impl Rand for $t + { + #[inline] + fn rand($param: &mut R) -> $t + { $t::new([ $( $elem.gen(), )+ ]) } + } + ) +) diff --git a/src/mat_spec.rs b/src/mat_spec.rs new file mode 100644 index 00000000..3f2613c0 --- /dev/null +++ b/src/mat_spec.rs @@ -0,0 +1,94 @@ +use std::num::{Zero, One}; +use mat::{Mat1, Mat2, Mat3}; +use traits::division_ring::DivisionRing; +use traits::inv::Inv; + +// some specializations: +impl +Inv for Mat1 +{ + #[inline] + fn inverse(&self) -> Mat1 + { + let mut res : Mat1 = copy *self; + + res.invert(); + + res + } + + #[inline] + fn invert(&mut self) + { + assert!(!self.mij[0].is_zero()); + + self.mij[0] = One::one::() / self.mij[0] + } +} + +impl +Inv for Mat2 +{ + #[inline] + fn inverse(&self) -> Mat2 + { + let mut res : Mat2 = copy *self; + + res.invert(); + + res + } + + #[inline] + fn invert(&mut self) + { + let det = self.mij[0 * 2 + 0] * self.mij[1 * 2 + 1] - self.mij[1 * 2 + 0] * self.mij[0 * 2 + 1]; + + assert!(!det.is_zero()); + + *self = Mat2::new([self.mij[1 * 2 + 1] / det , -self.mij[0 * 2 + 1] / det, + -self.mij[1 * 2 + 0] / det, self.mij[0 * 2 + 0] / det]) + } +} + +impl +Inv for Mat3 +{ + #[inline] + fn inverse(&self) -> Mat3 + { + let mut res = copy *self; + + res.invert(); + + res + } + + #[inline] + fn invert(&mut self) + { + let minor_m12_m23 = self.mij[1 * 3 + 1] * self.mij[2 * 3 + 2] - self.mij[2 * 3 + 1] * self.mij[1 * 3 + 2]; + let minor_m11_m23 = self.mij[1 * 3 + 0] * self.mij[2 * 3 + 2] - self.mij[2 * 3 + 0] * self.mij[1 * 3 + 2]; + let minor_m11_m22 = self.mij[1 * 3 + 0] * self.mij[2 * 3 + 1] - self.mij[2 * 3 + 0] * self.mij[1 * 3 + 1]; + + let det = self.mij[0 * 3 + 0] * minor_m12_m23 + - self.mij[0 * 3 + 1] * minor_m11_m23 + + self.mij[0 * 3 + 2] * minor_m11_m22; + + assert!(!det.is_zero()); + + *self = Mat3::new( [ + (minor_m12_m23 / det), + ((self.mij[0 * 3 + 2] * self.mij[2 * 3 + 1] - self.mij[2 * 3 + 2] * self.mij[0 * 3 + 1]) / det), + ((self.mij[0 * 3 + 1] * self.mij[1 * 3 + 2] - self.mij[1 * 3 + 1] * self.mij[0 * 3 + 2]) / det), + + (-minor_m11_m23 / det), + ((self.mij[0 * 3 + 0] * self.mij[2 * 3 + 2] - self.mij[2 * 3 + 0] * self.mij[0 * 3 + 2]) / det), + ((self.mij[0 * 3 + 2] * self.mij[1 * 3 + 0] - self.mij[1 * 3 + 2] * self.mij[0 * 3 + 0]) / det), + + (minor_m11_m22 / det), + ((self.mij[0 * 3 + 1] * self.mij[2 * 3 + 0] - self.mij[2 * 3 + 1] * self.mij[0 * 3 + 0]) / det), + ((self.mij[0 * 3 + 0] * self.mij[1 * 3 + 1] - self.mij[1 * 3 + 0] * self.mij[0 * 3 + 1]) / det) + ] ) + } +} diff --git a/src/nalgebra.rc b/src/nalgebra.rc index ffd783b6..afbcc79a 100644 --- a/src/nalgebra.rc +++ b/src/nalgebra.rc @@ -17,15 +17,12 @@ extern mod std; pub mod vec; pub mod mat; +pub mod dmat; +pub mod dvec; -/// n-dimensional linear algebra (slower). -pub mod ndim -{ - pub mod dmat; - pub mod dvec; - pub mod nvec; - pub mod nmat; -} +// specialization for some 1d, 2d and 3d operations +pub mod mat_spec; +pub mod vec_spec; /// Wrappers around raw matrices to restrict their behaviour. pub mod adaptors diff --git a/src/ndim/nmat.rs b/src/ndim/nmat.rs deleted file mode 100644 index 998fe510..00000000 --- a/src/ndim/nmat.rs +++ /dev/null @@ -1,184 +0,0 @@ -use std::uint::iterate; -use std::num::{One, Zero}; -use std::rand::{Rand, Rng, RngUtil}; -use std::cmp::ApproxEq; -use traits::dim::Dim; -use traits::inv::Inv; -use traits::division_ring::DivisionRing; -use traits::transpose::Transpose; -use traits::rlmul::{RMul, LMul}; -use ndim::dmat::{DMat, one_mat_with_dim, zero_mat_with_dim, is_zero_mat}; -use ndim::nvec::NVec; - -// D is a phantom type parameter, used only as a dimensional token. -// Its allows use to encode the vector dimension at the type-level. -// It can be anything implementing the Dim trait. However, to avoid confusion, -// using d0, d1, d2, d3 and d4 tokens are prefered. -#[deriving(Eq, ToStr)] -pub struct NMat -{ mij: DMat } - -impl NMat -{ - #[inline] - fn offset(i: uint, j: uint) -> uint - { i * Dim::dim::() + j } - - #[inline] - fn set(&mut self, i: uint, j: uint, t: &N) - { self.mij.set(i, j, t) } -} - -impl Dim for NMat -{ - #[inline] - fn dim() -> uint - { Dim::dim::() } -} - -impl Index<(uint, uint), N> for NMat -{ - #[inline] - fn index(&self, &idx: &(uint, uint)) -> N - { self.mij[idx] } -} - -impl One for NMat -{ - #[inline] - fn one() -> NMat - { NMat { mij: one_mat_with_dim(Dim::dim::()) } } -} - -impl Zero for NMat -{ - #[inline] - fn zero() -> NMat - { NMat { mij: zero_mat_with_dim(Dim::dim::()) } } - - #[inline] - fn is_zero(&self) -> bool - { is_zero_mat(&self.mij) } -} - -impl + Add + Zero> -Mul, NMat> for NMat -{ - fn mul(&self, other: &NMat) -> NMat - { - let dim = Dim::dim::(); - let mut res = Zero::zero::>(); - - for iterate(0u, dim) |i| - { - for iterate(0u, dim) |j| - { - let mut acc: N = Zero::zero(); - - for iterate(0u, dim) |k| - { acc = acc + self[(i, k)] * other[(k, j)]; } - - res.set(i, j, &acc); - } - } - - res - } -} - -impl + Mul + Zero> -RMul> for NMat -{ - fn rmul(&self, other: &NVec) -> NVec - { - let dim = Dim::dim::(); - let mut res : NVec = Zero::zero(); - - for iterate(0u, dim) |i| - { - for iterate(0u, dim) |j| - { res.at.at[i] = res.at.at[i] + other.at.at[j] * self[(i, j)]; } - } - - res - } -} - -impl + Mul + Zero> -LMul> for NMat -{ - fn lmul(&self, other: &NVec) -> NVec - { - let dim = Dim::dim::(); - let mut res : NVec = Zero::zero(); - - for iterate(0u, dim) |i| - { - for iterate(0u, dim) |j| - { res.at.at[i] = res.at.at[i] + other.at.at[j] * self[(j, i)]; } - } - - res - } -} - -impl -Inv for NMat -{ - #[inline] - fn inverse(&self) -> NMat - { NMat { mij: self.mij.inverse() } } - - #[inline] - fn invert(&mut self) - { self.mij.invert() } -} - -impl Transpose for NMat -{ - #[inline] - fn transposed(&self) -> NMat - { - let mut res = copy *self; - - res.transpose(); - - res - } - - #[inline] - fn transpose(&mut self) - { self.mij.transpose() } -} - -impl> ApproxEq for NMat -{ - #[inline] - fn approx_epsilon() -> N - { ApproxEq::approx_epsilon::() } - - #[inline] - fn approx_eq(&self, other: &NMat) -> bool - { self.mij.approx_eq(&other.mij) } - - #[inline] - fn approx_eq_eps(&self, other: &NMat, epsilon: &N) -> bool - { self.mij.approx_eq_eps(&other.mij, epsilon) } -} - -impl Rand for NMat -{ - fn rand(rng: &mut R) -> NMat - { - let dim = Dim::dim::(); - let mut res : NMat = Zero::zero(); - - for iterate(0u, dim) |i| - { - for iterate(0u, dim) |j| - { res.set(i, j, &rng.gen()); } - } - - res - } -} diff --git a/src/ndim/nvec.rs b/src/ndim/nvec.rs deleted file mode 100644 index 57dbfbe3..00000000 --- a/src/ndim/nvec.rs +++ /dev/null @@ -1,276 +0,0 @@ -use std::uint::iterate; -use std::num::{Zero, Algebraic, Bounded}; -use std::rand::{Rand, Rng, RngUtil}; -use std::vec::{VecIterator, VecMutIterator}; -use std::cmp::ApproxEq; -use std::iterator::{IteratorUtil, FromIterator}; -use ndim::dvec::{DVec, zero_vec_with_dim, is_zero_vec}; -use traits::iterable::{Iterable, IterableMut}; -use traits::basis::Basis; -use traits::ring::Ring; -use traits::division_ring::DivisionRing; -use traits::dim::Dim; -use traits::dot::Dot; -use traits::sub_dot::SubDot; -use traits::norm::Norm; -use traits::translation::{Translation, Translatable}; -use traits::scalar_op::{ScalarMul, ScalarDiv, ScalarAdd, ScalarSub}; - -// D is a phantom parameter, used only as a dimensional token. -// Its allows use to encode the vector dimension at the type-level. -// It can be anything implementing the Dim trait. However, to avoid confusion, -// using d0, d1, d2, d3, ..., d7 (or your own dn) are prefered. -#[deriving(Eq, Ord, ToStr)] -pub struct NVec -{ at: DVec } - - -impl Dim for NVec -{ - #[inline] - fn dim() -> uint - { Dim::dim::() } -} - -impl Clone for NVec -{ - #[inline] - fn clone(&self) -> NVec - { NVec{ at: self.at.clone() } } -} - -impl Iterable for NVec -{ - fn iter<'l>(&'l self) -> VecIterator<'l, N> - { self.at.iter() } -} - -impl IterableMut for NVec -{ - fn mut_iter<'l>(&'l mut self) -> VecMutIterator<'l, N> - { self.at.mut_iter() } -} - -impl> FromIterator for NVec -{ - fn from_iterator(param: &mut Iter) -> NVec - { - let mut res: NVec = Zero::zero(); - let mut i = 0; - - for param.advance |e| - { - res.at.at[i] = e; - i = i + 1; - } - - res - } -} - -impl> Add, NVec> for NVec -{ - #[inline] - fn add(&self, other: &NVec) -> NVec - { NVec { at: self.at + other.at } } -} - -impl> Sub, NVec> for NVec -{ - #[inline] - fn sub(&self, other: &NVec) -> NVec - { NVec { at: self.at - other.at } } -} - -impl> Neg> for NVec -{ - #[inline] - fn neg(&self) -> NVec - { NVec { at: -self.at } } -} - -impl -Dot for NVec -{ - #[inline] - fn dot(&self, other: &NVec) -> N - { self.at.dot(&other.at) } -} - -impl SubDot for NVec -{ - #[inline] - fn sub_dot(&self, a: &NVec, b: &NVec) -> N - { self.at.sub_dot(&a.at, &b.at) } -} - -impl> -ScalarMul for NVec -{ - #[inline] - fn scalar_mul(&self, s: &N) -> NVec - { NVec { at: self.at.scalar_mul(s) } } - - #[inline] - fn scalar_mul_inplace(&mut self, s: &N) - { self.at.scalar_mul_inplace(s) } -} - - -impl> -ScalarDiv for NVec -{ - #[inline] - fn scalar_div(&self, s: &N) -> NVec - { NVec { at: self.at.scalar_div(s) } } - - #[inline] - fn scalar_div_inplace(&mut self, s: &N) - { self.at.scalar_div_inplace(s) } -} - -impl> -ScalarAdd for NVec -{ - #[inline] - fn scalar_add(&self, s: &N) -> NVec - { NVec { at: self.at.scalar_add(s) } } - - #[inline] - fn scalar_add_inplace(&mut self, s: &N) - { self.at.scalar_add_inplace(s) } -} - -impl> -ScalarSub for NVec -{ - #[inline] - fn scalar_sub(&self, s: &N) -> NVec - { NVec { at: self.at.scalar_sub(s) } } - - #[inline] - fn scalar_sub_inplace(&mut self, s: &N) - { self.at.scalar_sub_inplace(s) } -} - -impl + Neg> Translation> for NVec -{ - #[inline] - fn translation(&self) -> NVec - { self.clone() } - - #[inline] - fn inv_translation(&self) -> NVec - { -self.clone() } - - - #[inline] - fn translate_by(&mut self, t: &NVec) - { *self = *self + *t; } -} - -impl + Copy> Translatable, NVec> for NVec -{ - #[inline] - fn translated(&self, t: &NVec) -> NVec - { self + *t } -} - -impl -Norm for NVec -{ - #[inline] - fn sqnorm(&self) -> N - { self.at.sqnorm() } - - #[inline] - fn norm(&self) -> N - { self.at.norm() } - - #[inline] - fn normalized(&self) -> NVec - { - let mut res : NVec = self.clone(); - - res.normalize(); - - res - } - - #[inline] - fn normalize(&mut self) -> N - { self.at.normalize() } -} - -impl> -Basis for NVec -{ - #[inline] - fn canonical_basis() -> ~[NVec] - { DVec::canonical_basis_with_dim(Dim::dim::()).map(|&e| NVec { at: e }) } - - #[inline] - fn orthogonal_subspace_basis(&self) -> ~[NVec] - { self.at.orthogonal_subspace_basis().map(|&e| NVec { at: e }) } -} - -// FIXME: I dont really know how te generalize the cross product int -// n-dimensions… -// impl + Sub> Cross for NVec -// { -// fn cross(&self, other: &NVec) -> N -// { self.x * other.y - self.y * other.x } -// } - -impl Zero for NVec -{ - #[inline] - fn zero() -> NVec - { NVec { at: zero_vec_with_dim(Dim::dim::()) } } - - #[inline] - fn is_zero(&self) -> bool - { is_zero_vec(&self.at) } -} - -impl> ApproxEq for NVec -{ - #[inline] - fn approx_epsilon() -> N - { ApproxEq::approx_epsilon::() } - - #[inline] - fn approx_eq(&self, other: &NVec) -> bool - { self.at.approx_eq(&other.at) } - - #[inline] - fn approx_eq_eps(&self, other: &NVec, epsilon: &N) -> bool - { self.at.approx_eq_eps(&other.at, epsilon) } -} - -impl Rand for NVec -{ - #[inline] - fn rand(rng: &mut R) -> NVec - { - let dim = Dim::dim::(); - let mut res : NVec = Zero::zero(); - - for iterate(0u, dim) |i| - { res.at.at[i] = rng.gen() } - - res - } -} - -impl + Copy> Bounded for NVec -{ - #[inline] - fn max_value() -> NVec - { Zero::zero::>().scalar_add(&Bounded::max_value()) } - - #[inline] - fn min_value() -> NVec - { Zero::zero::>().scalar_add(&Bounded::min_value()) } -} diff --git a/src/tests/vec.rs b/src/tests/vec.rs index f3602e27..5db1d5a5 100644 --- a/src/tests/vec.rs +++ b/src/tests/vec.rs @@ -7,11 +7,7 @@ use std::rand::{random}; #[test] use std::cmp::ApproxEq; #[test] -use vec::{Vec1, Vec2, Vec3}; -#[test] -use ndim::nvec::NVec; -#[test] -use traits::dim::d7; +use vec::{Vec1, Vec2, Vec3, Vec4, Vec5, Vec6}; #[test] use traits::basis::Basis; #[test] @@ -133,7 +129,7 @@ fn test_cross_vec3() #[test] fn test_commut_dot_nvec() -{ test_commut_dot_impl!(NVec); } +{ test_commut_dot_impl!(Vec6); } #[test] fn test_commut_dot_vec3() @@ -160,8 +156,16 @@ fn test_basis_vec3() { test_basis_impl!(Vec3); } #[test] -fn test_basis_nvec() -{ test_basis_impl!(NVec); } +fn test_basis_vec4() +{ test_basis_impl!(Vec4); } + +#[test] +fn test_basis_vec5() +{ test_basis_impl!(Vec5); } + +#[test] +fn test_basis_vec6() +{ test_basis_impl!(Vec6); } #[test] fn test_subspace_basis_vec1() @@ -176,8 +180,16 @@ fn test_subspace_basis_vec3() { test_subspace_basis_impl!(Vec3); } #[test] -fn test_subspace_basis_nvec() -{ test_subspace_basis_impl!(NVec); } +fn test_subspace_basis_vec4() +{ test_subspace_basis_impl!(Vec4); } + +#[test] +fn test_subspace_basis_vec5() +{ test_subspace_basis_impl!(Vec5); } + +#[test] +fn test_subspace_basis_vec6() +{ test_subspace_basis_impl!(Vec6); } #[test] fn test_scalar_op_vec1() @@ -190,10 +202,18 @@ fn test_scalar_op_vec2() #[test] fn test_scalar_op_vec3() { test_scalar_op_impl!(Vec3, f64); } - + #[test] -fn test_scalar_op_nvec() -{ test_scalar_op_impl!(NVec, f64); } +fn test_scalar_op_vec4() +{ test_scalar_op_impl!(Vec4, f64); } + +#[test] +fn test_scalar_op_vec5() +{ test_scalar_op_impl!(Vec5, f64); } + +#[test] +fn test_scalar_op_vec6() +{ test_scalar_op_impl!(Vec6, f64); } #[test] fn test_iterator_vec1() @@ -206,7 +226,15 @@ fn test_iterator_vec2() #[test] fn test_iterator_vec3() { test_iterator_impl!(Vec3, f64); } - + #[test] -fn test_iterator_nvec() -{ test_iterator_impl!(NVec, f64); } +fn test_iterator_vec4() +{ test_iterator_impl!(Vec4, f64); } + +#[test] +fn test_iterator_vec5() +{ test_iterator_impl!(Vec5, f64); } + +#[test] +fn test_iterator_vec6() +{ test_iterator_impl!(Vec6, f64); } diff --git a/src/vec.rs b/src/vec.rs index 686cf409..9ba016b0 100644 --- a/src/vec.rs +++ b/src/vec.rs @@ -1,457 +1,22 @@ -use std::num::{abs, Zero, One, Algebraic, Bounded}; +use std::num::{Zero, One, Algebraic, Bounded}; use std::rand::{Rand, Rng, RngUtil}; use std::vec::{VecIterator, VecMutIterator}; -use std::iterator::{Iterator, FromIterator}; +use std::iterator::{Iterator, IteratorUtil, FromIterator}; use std::cmp::ApproxEq; +use std::uint::iterate; use traits::iterable::{Iterable, IterableMut, FromAnyIterator}; use traits::basis::Basis; -use traits::cross::Cross; use traits::dim::Dim; use traits::dot::Dot; use traits::sub_dot::SubDot; use traits::norm::Norm; use traits::translation::{Translation, Translatable}; use traits::scalar_op::{ScalarMul, ScalarDiv, ScalarAdd, ScalarSub}; -use std::uint::iterate; - -use std::iterator::IteratorUtil; use traits::ring::Ring; use traits::division_ring::DivisionRing; -// FIXME: is there a way to split this file: -// − one file for macros -// − another file for macro calls and specializations -// ? +mod vec_impl; -macro_rules! new_impl( - ($t: ident, $dim: expr) => ( - impl $t - { - #[inline] - pub fn new(at: [N, ..$dim]) -> $t - { $t { at: at } } - } - ) -) - -macro_rules! new_repeat_impl( - ($t: ident, $param: ident, [ $($elem: ident)|+ ]) => ( - impl $t - { - #[inline] - pub fn new_repeat($param: N) -> $t - { $t{ at: [ $( copy $elem, )+ ] } } - } - ) -) - -macro_rules! iterable_impl( - ($t: ident) => ( - impl Iterable for $t - { - fn iter<'l>(&'l self) -> VecIterator<'l, N> - { self.at.iter() } - } - ) -) - -macro_rules! iterable_mut_impl( - ($t: ident) => ( - impl IterableMut for $t - { - fn mut_iter<'l>(&'l mut self) -> VecMutIterator<'l, N> - { self.at.mut_iter() } - } - ) -) - -macro_rules! eq_impl( - ($t: ident) => ( - impl Eq for $t - { - #[inline] - fn eq(&self, other: &$t) -> bool - { self.at.iter().zip(other.at.iter()).all(|(a, b)| a == b) } - - #[inline] - fn ne(&self, other: &$t) -> bool - { self.at.iter().zip(other.at.iter()).all(|(a, b)| a != b) } - } - ) -) - -macro_rules! dim_impl( - ($t: ident, $dim: expr) => ( - impl Dim for $t - { - #[inline] - fn dim() -> uint - { $dim } - } - ) -) - -// FIXME: add the possibility to specialize that -macro_rules! basis_impl( - ($t: ident, $dim: expr) => ( - impl> Basis for $t - { - pub fn canonical_basis() -> ~[$t] - { - let mut res : ~[$t] = ~[]; - - for iterate(0u, $dim) |i| - { - let mut basis_element : $t = Zero::zero(); - - basis_element.at[i] = One::one(); - - res.push(basis_element); - } - - res - } - - pub fn orthogonal_subspace_basis(&self) -> ~[$t] - { - // compute the basis of the orthogonal subspace using Gram-Schmidt - // orthogonalization algorithm - let mut res : ~[$t] = ~[]; - - for iterate(0u, $dim) |i| - { - let mut basis_element : $t = Zero::zero(); - - basis_element.at[i] = One::one(); - - if res.len() == $dim - 1 - { break; } - - let mut elt = copy basis_element; - - elt = elt - self.scalar_mul(&basis_element.dot(self)); - - for res.iter().advance |v| - { elt = elt - v.scalar_mul(&elt.dot(v)) }; - - if !elt.sqnorm().approx_eq(&Zero::zero()) - { res.push(elt.normalized()); } - } - - res - } - } - ) -) - -macro_rules! add_impl( - ($t: ident) => ( - impl> Add<$t, $t> for $t - { - #[inline] - fn add(&self, other: &$t) -> $t - { - self.at.iter() - .zip(other.at.iter()) - .transform(|(a, b)| { *a + *b }) - .collect() - } - } - ) -) - -macro_rules! sub_impl( - ($t: ident) => ( - impl> Sub<$t, $t> for $t - { - #[inline] - fn sub(&self, other: &$t) -> $t - { - self.at.iter() - .zip(other.at.iter()) - .transform(| (a, b) | { *a - *b }) - .collect() - } - } - ) -) - -macro_rules! neg_impl( - ($t: ident) => ( - impl> Neg<$t> for $t - { - #[inline] - fn neg(&self) -> $t - { self.at.iter().transform(|a| -a).collect() } - } - ) -) - -macro_rules! dot_impl( - ($t: ident, $dim: expr) => ( - impl Dot for $t - { - #[inline] - fn dot(&self, other: &$t) -> N - { - let mut res = Zero::zero::(); - - for iterate(0u, $dim) |i| - { res = res + self.at[i] * other.at[i]; } - - res - } - } - ) -) - -macro_rules! sub_dot_impl( - ($t: ident, $dim: expr) => ( - impl SubDot for $t - { - #[inline] - fn sub_dot(&self, a: &$t, b: &$t) -> N - { - let mut res = Zero::zero::(); - - for iterate(0u, $dim) |i| - { res = res + (self.at[i] - a.at[i]) * b.at[i]; } - - res - } - } - ) -) - -macro_rules! scalar_mul_impl( - ($t: ident, $dim: expr) => ( - impl> ScalarMul for $t - { - #[inline] - fn scalar_mul(&self, s: &N) -> $t - { self.at.iter().transform(|a| a * *s).collect() } - - #[inline] - fn scalar_mul_inplace(&mut self, s: &N) - { - for iterate(0u, $dim) |i| - { self.at[i] = self.at[i] * *s; } - } - } - ) -) - - -macro_rules! scalar_div_impl( - ($t: ident, $dim: expr) => ( - impl> ScalarDiv for $t - { - #[inline] - fn scalar_div(&self, s: &N) -> $t - { self.at.iter().transform(|a| a / *s).collect() } - - #[inline] - fn scalar_div_inplace(&mut self, s: &N) - { - for iterate(0u, $dim) |i| - { self.at[i] = self.at[i] / *s; } - } - } - ) -) - -macro_rules! scalar_add_impl( - ($t: ident, $dim: expr) => ( - impl> ScalarAdd for $t - { - #[inline] - fn scalar_add(&self, s: &N) -> $t - { self.at.iter().transform(|a| a + *s).collect() } - - #[inline] - fn scalar_add_inplace(&mut self, s: &N) - { - for iterate(0u, $dim) |i| - { self.at[i] = self.at[i] + *s; } - } - } - ) -) - -macro_rules! scalar_sub_impl( - ($t: ident, $dim: expr) => ( - impl> ScalarSub for $t - { - #[inline] - fn scalar_sub(&self, s: &N) -> $t - { self.at.iter().transform(|a| a - *s).collect() } - - #[inline] - fn scalar_sub_inplace(&mut self, s: &N) - { - for iterate(0u, $dim) |i| - { self.at[i] = self.at[i] - *s; } - } - } - ) -) - -macro_rules! translation_impl( - ($t: ident) => ( - impl + Neg> Translation<$t> for $t - { - #[inline] - fn translation(&self) -> $t - { copy *self } - - #[inline] - fn inv_translation(&self) -> $t - { -self } - - #[inline] - fn translate_by(&mut self, t: &$t) - { *self = *self + *t; } - } - ) -) - -macro_rules! translatable_impl( - ($t: ident) => ( - impl + Copy> Translatable<$t, $t> for $t - { - #[inline] - fn translated(&self, t: &$t) -> $t - { self + *t } - } - ) -) - -macro_rules! norm_impl( - ($t: ident, $dim: expr) => ( - impl Norm for $t - { - #[inline] - fn sqnorm(&self) -> N - { self.dot(self) } - - #[inline] - fn norm(&self) -> N - { self.sqnorm().sqrt() } - - #[inline] - fn normalized(&self) -> $t - { - let mut res : $t = copy *self; - - res.normalize(); - - res - } - - #[inline] - fn normalize(&mut self) -> N - { - let l = self.norm(); - - for iterate(0u, $dim) |i| - { self.at[i] = self.at[i] / l; } - - l - } - } - ) -) - -macro_rules! approx_eq_impl( - ($t: ident) => ( - impl> ApproxEq for $t - { - #[inline] - fn approx_epsilon() -> N - { ApproxEq::approx_epsilon::() } - - #[inline] - fn approx_eq(&self, other: &$t) -> bool - { - let mut zip = self.at.iter().zip(other.at.iter()); - - do zip.all |(a, b)| { a.approx_eq(b) } - } - - #[inline] - fn approx_eq_eps(&self, other: &$t, epsilon: &N) -> bool - { - let mut zip = self.at.iter().zip(other.at.iter()); - - do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) } - } - } - ) -) - -macro_rules! zero_impl( - ($t: ident) => ( - impl Zero for $t - { - #[inline] - fn zero() -> $t - { $t::new_repeat(Zero::zero()) } - - #[inline] - fn is_zero(&self) -> bool - { self.at.iter().all(|e| e.is_zero()) } - } - ) -) - -macro_rules! rand_impl( - ($t: ident, $param: ident, [ $($elem: ident)|+ ]) => ( - impl Rand for $t - { - #[inline] - fn rand($param: &mut R) -> $t - { $t::new([ $( $elem.gen(), )+ ]) } - } - ) -) - -macro_rules! from_any_iterator_impl( - ($t: ident, $param: ident, [ $($elem: ident)|+ ]) => ( - impl FromAnyIterator for $t - { - fn from_iterator<'l>($param: &mut VecIterator<'l, N>) -> $t - { $t { at: [ $( copy *$elem.next().unwrap(), )+ ] } } - - fn from_mut_iterator<'l>($param: &mut VecMutIterator<'l, N>) -> $t - { $t { at: [ $( copy *$elem.next().unwrap(), )+ ] } } - } - ) -) - -macro_rules! from_iterator_impl( - ($t: ident, $param: ident, [ $($elem: ident)|+ ]) => ( - impl> FromIterator for $t - { - fn from_iterator($param: &mut Iter) -> $t - { $t { at: [ $( $elem.next().unwrap(), )+ ] } } - } - ) -) - -macro_rules! bounded_impl( - ($t: ident) => ( - impl Bounded for $t - { - #[inline] - fn max_value() -> $t - { $t::new_repeat(Bounded::max_value()) } - - #[inline] - fn min_value() -> $t - { $t::new_repeat(Bounded::min_value()) } - } - ) -) #[deriving(Ord, ToStr)] pub struct Vec1 @@ -632,74 +197,3 @@ from_any_iterator_impl!(Vec6, iterator, [iterator | iterator | iterator | iterat bounded_impl!(Vec6) iterable_impl!(Vec6) iterable_mut_impl!(Vec6) - -impl + Sub> Cross> for Vec2 -{ - #[inline] - fn cross(&self, other : &Vec2) -> Vec1 - { Vec1::new([self.at[0] * other.at[1] - self.at[1] * other.at[0]]) } -} - -impl + Sub> Cross> for Vec3 -{ - #[inline] - fn cross(&self, other : &Vec3) -> Vec3 - { - Vec3::new( - [self.at[1] * other.at[2] - self.at[2] * other.at[1], - self.at[2] * other.at[0] - self.at[0] * other.at[2], - self.at[0] * other.at[1] - self.at[1] * other.at[0]] - ) - } -} - -impl Basis for Vec1 -{ - #[inline] - fn canonical_basis() -> ~[Vec1] - { ~[ Vec1::new([One::one()]) ] } // FIXME: this should be static - - #[inline] - fn orthogonal_subspace_basis(&self) -> ~[Vec1] - { ~[] } -} - -impl> Basis for Vec2 -{ - #[inline] - fn canonical_basis() -> ~[Vec2] - { - // FIXME: this should be static - ~[ Vec2::new([One::one(), Zero::zero()]), - Vec2::new([Zero::zero(), One::one()]) ] - } - - #[inline] - fn orthogonal_subspace_basis(&self) -> ~[Vec2] - { ~[ Vec2::new([-self.at[1], copy self.at[0]]) ] } -} - -impl -Basis for Vec3 -{ - #[inline] - fn canonical_basis() -> ~[Vec3] - { - // FIXME: this should be static - ~[ Vec3::new([One::one(), Zero::zero(), Zero::zero()]), - Vec3::new([Zero::zero(), One::one(), Zero::zero()]), - Vec3::new([Zero::zero(), Zero::zero(), One::one()]) ] - } - - #[inline] - fn orthogonal_subspace_basis(&self) -> ~[Vec3] - { - let a = - if abs(copy self.at[0]) > abs(copy self.at[1]) - { Vec3::new([copy self.at[2], Zero::zero(), -copy self.at[0]]).normalized() } - else - { Vec3::new([Zero::zero(), -self.at[2], copy self.at[1]]).normalized() }; - - ~[ a.cross(self), a ] - } -} diff --git a/src/vec_impl.rs b/src/vec_impl.rs new file mode 100644 index 00000000..787dbe49 --- /dev/null +++ b/src/vec_impl.rs @@ -0,0 +1,431 @@ +#[macro_escape]; + +macro_rules! new_impl( + ($t: ident, $dim: expr) => ( + impl $t + { + #[inline] + pub fn new(at: [N, ..$dim]) -> $t + { $t { at: at } } + } + ) +) + +macro_rules! new_repeat_impl( + ($t: ident, $param: ident, [ $($elem: ident)|+ ]) => ( + impl $t + { + #[inline] + pub fn new_repeat($param: N) -> $t + { $t{ at: [ $( copy $elem, )+ ] } } + } + ) +) + +macro_rules! iterable_impl( + ($t: ident) => ( + impl Iterable for $t + { + fn iter<'l>(&'l self) -> VecIterator<'l, N> + { self.at.iter() } + } + ) +) + +macro_rules! iterable_mut_impl( + ($t: ident) => ( + impl IterableMut for $t + { + fn mut_iter<'l>(&'l mut self) -> VecMutIterator<'l, N> + { self.at.mut_iter() } + } + ) +) + +macro_rules! eq_impl( + ($t: ident) => ( + impl Eq for $t + { + #[inline] + fn eq(&self, other: &$t) -> bool + { self.at.iter().zip(other.at.iter()).all(|(a, b)| a == b) } + + #[inline] + fn ne(&self, other: &$t) -> bool + { self.at.iter().zip(other.at.iter()).all(|(a, b)| a != b) } + } + ) +) + +macro_rules! dim_impl( + ($t: ident, $dim: expr) => ( + impl Dim for $t + { + #[inline] + fn dim() -> uint + { $dim } + } + ) +) + +// FIXME: add the possibility to specialize that +macro_rules! basis_impl( + ($t: ident, $dim: expr) => ( + impl> Basis for $t + { + pub fn canonical_basis() -> ~[$t] + { + let mut res : ~[$t] = ~[]; + + for iterate(0u, $dim) |i| + { + let mut basis_element : $t = Zero::zero(); + + basis_element.at[i] = One::one(); + + res.push(basis_element); + } + + res + } + + pub fn orthogonal_subspace_basis(&self) -> ~[$t] + { + // compute the basis of the orthogonal subspace using Gram-Schmidt + // orthogonalization algorithm + let mut res : ~[$t] = ~[]; + + for iterate(0u, $dim) |i| + { + let mut basis_element : $t = Zero::zero(); + + basis_element.at[i] = One::one(); + + if res.len() == $dim - 1 + { break; } + + let mut elt = copy basis_element; + + elt = elt - self.scalar_mul(&basis_element.dot(self)); + + for res.iter().advance |v| + { elt = elt - v.scalar_mul(&elt.dot(v)) }; + + if !elt.sqnorm().approx_eq(&Zero::zero()) + { res.push(elt.normalized()); } + } + + res + } + } + ) +) + +macro_rules! add_impl( + ($t: ident) => ( + impl> Add<$t, $t> for $t + { + #[inline] + fn add(&self, other: &$t) -> $t + { + self.at.iter() + .zip(other.at.iter()) + .transform(|(a, b)| { *a + *b }) + .collect() + } + } + ) +) + +macro_rules! sub_impl( + ($t: ident) => ( + impl> Sub<$t, $t> for $t + { + #[inline] + fn sub(&self, other: &$t) -> $t + { + self.at.iter() + .zip(other.at.iter()) + .transform(| (a, b) | { *a - *b }) + .collect() + } + } + ) +) + +macro_rules! neg_impl( + ($t: ident) => ( + impl> Neg<$t> for $t + { + #[inline] + fn neg(&self) -> $t + { self.at.iter().transform(|a| -a).collect() } + } + ) +) + +macro_rules! dot_impl( + ($t: ident, $dim: expr) => ( + impl Dot for $t + { + #[inline] + fn dot(&self, other: &$t) -> N + { + let mut res = Zero::zero::(); + + for iterate(0u, $dim) |i| + { res = res + self.at[i] * other.at[i]; } + + res + } + } + ) +) + +macro_rules! sub_dot_impl( + ($t: ident, $dim: expr) => ( + impl SubDot for $t + { + #[inline] + fn sub_dot(&self, a: &$t, b: &$t) -> N + { + let mut res = Zero::zero::(); + + for iterate(0u, $dim) |i| + { res = res + (self.at[i] - a.at[i]) * b.at[i]; } + + res + } + } + ) +) + +macro_rules! scalar_mul_impl( + ($t: ident, $dim: expr) => ( + impl> ScalarMul for $t + { + #[inline] + fn scalar_mul(&self, s: &N) -> $t + { self.at.iter().transform(|a| a * *s).collect() } + + #[inline] + fn scalar_mul_inplace(&mut self, s: &N) + { + for iterate(0u, $dim) |i| + { self.at[i] = self.at[i] * *s; } + } + } + ) +) + + +macro_rules! scalar_div_impl( + ($t: ident, $dim: expr) => ( + impl> ScalarDiv for $t + { + #[inline] + fn scalar_div(&self, s: &N) -> $t + { self.at.iter().transform(|a| a / *s).collect() } + + #[inline] + fn scalar_div_inplace(&mut self, s: &N) + { + for iterate(0u, $dim) |i| + { self.at[i] = self.at[i] / *s; } + } + } + ) +) + +macro_rules! scalar_add_impl( + ($t: ident, $dim: expr) => ( + impl> ScalarAdd for $t + { + #[inline] + fn scalar_add(&self, s: &N) -> $t + { self.at.iter().transform(|a| a + *s).collect() } + + #[inline] + fn scalar_add_inplace(&mut self, s: &N) + { + for iterate(0u, $dim) |i| + { self.at[i] = self.at[i] + *s; } + } + } + ) +) + +macro_rules! scalar_sub_impl( + ($t: ident, $dim: expr) => ( + impl> ScalarSub for $t + { + #[inline] + fn scalar_sub(&self, s: &N) -> $t + { self.at.iter().transform(|a| a - *s).collect() } + + #[inline] + fn scalar_sub_inplace(&mut self, s: &N) + { + for iterate(0u, $dim) |i| + { self.at[i] = self.at[i] - *s; } + } + } + ) +) + +macro_rules! translation_impl( + ($t: ident) => ( + impl + Neg> Translation<$t> for $t + { + #[inline] + fn translation(&self) -> $t + { copy *self } + + #[inline] + fn inv_translation(&self) -> $t + { -self } + + #[inline] + fn translate_by(&mut self, t: &$t) + { *self = *self + *t; } + } + ) +) + +macro_rules! translatable_impl( + ($t: ident) => ( + impl + Copy> Translatable<$t, $t> for $t + { + #[inline] + fn translated(&self, t: &$t) -> $t + { self + *t } + } + ) +) + +macro_rules! norm_impl( + ($t: ident, $dim: expr) => ( + impl Norm for $t + { + #[inline] + fn sqnorm(&self) -> N + { self.dot(self) } + + #[inline] + fn norm(&self) -> N + { self.sqnorm().sqrt() } + + #[inline] + fn normalized(&self) -> $t + { + let mut res : $t = copy *self; + + res.normalize(); + + res + } + + #[inline] + fn normalize(&mut self) -> N + { + let l = self.norm(); + + for iterate(0u, $dim) |i| + { self.at[i] = self.at[i] / l; } + + l + } + } + ) +) + +macro_rules! approx_eq_impl( + ($t: ident) => ( + impl> ApproxEq for $t + { + #[inline] + fn approx_epsilon() -> N + { ApproxEq::approx_epsilon::() } + + #[inline] + fn approx_eq(&self, other: &$t) -> bool + { + let mut zip = self.at.iter().zip(other.at.iter()); + + do zip.all |(a, b)| { a.approx_eq(b) } + } + + #[inline] + fn approx_eq_eps(&self, other: &$t, epsilon: &N) -> bool + { + let mut zip = self.at.iter().zip(other.at.iter()); + + do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) } + } + } + ) +) + +macro_rules! zero_impl( + ($t: ident) => ( + impl Zero for $t + { + #[inline] + fn zero() -> $t + { $t::new_repeat(Zero::zero()) } + + #[inline] + fn is_zero(&self) -> bool + { self.at.iter().all(|e| e.is_zero()) } + } + ) +) + +macro_rules! rand_impl( + ($t: ident, $param: ident, [ $($elem: ident)|+ ]) => ( + impl Rand for $t + { + #[inline] + fn rand($param: &mut R) -> $t + { $t::new([ $( $elem.gen(), )+ ]) } + } + ) +) + +macro_rules! from_any_iterator_impl( + ($t: ident, $param: ident, [ $($elem: ident)|+ ]) => ( + impl FromAnyIterator for $t + { + fn from_iterator<'l>($param: &mut VecIterator<'l, N>) -> $t + { $t { at: [ $( copy *$elem.next().unwrap(), )+ ] } } + + fn from_mut_iterator<'l>($param: &mut VecMutIterator<'l, N>) -> $t + { $t { at: [ $( copy *$elem.next().unwrap(), )+ ] } } + } + ) +) + +macro_rules! from_iterator_impl( + ($t: ident, $param: ident, [ $($elem: ident)|+ ]) => ( + impl> FromIterator for $t + { + fn from_iterator($param: &mut Iter) -> $t + { $t { at: [ $( $elem.next().unwrap(), )+ ] } } + } + ) +) + +macro_rules! bounded_impl( + ($t: ident) => ( + impl Bounded for $t + { + #[inline] + fn max_value() -> $t + { $t::new_repeat(Bounded::max_value()) } + + #[inline] + fn min_value() -> $t + { $t::new_repeat(Bounded::min_value()) } + } + ) +) diff --git a/src/vec_spec.rs b/src/vec_spec.rs new file mode 100644 index 00000000..6d663443 --- /dev/null +++ b/src/vec_spec.rs @@ -0,0 +1,77 @@ +use std::num::{Zero, One, abs}; +use traits::basis::Basis; +use traits::cross::Cross; +use traits::division_ring::DivisionRing; +use traits::norm::Norm; +use vec::{Vec1, Vec2, Vec3}; + +impl + Sub> Cross> for Vec2 +{ + #[inline] + fn cross(&self, other : &Vec2) -> Vec1 + { Vec1::new([self.at[0] * other.at[1] - self.at[1] * other.at[0]]) } +} + +impl + Sub> Cross> for Vec3 +{ + #[inline] + fn cross(&self, other : &Vec3) -> Vec3 + { + Vec3::new( + [self.at[1] * other.at[2] - self.at[2] * other.at[1], + self.at[2] * other.at[0] - self.at[0] * other.at[2], + self.at[0] * other.at[1] - self.at[1] * other.at[0]] + ) + } +} + +impl Basis for Vec1 +{ + #[inline] + fn canonical_basis() -> ~[Vec1] + { ~[ Vec1::new([One::one()]) ] } // FIXME: this should be static + + #[inline] + fn orthogonal_subspace_basis(&self) -> ~[Vec1] + { ~[] } +} + +impl> Basis for Vec2 +{ + #[inline] + fn canonical_basis() -> ~[Vec2] + { + // FIXME: this should be static + ~[ Vec2::new([One::one(), Zero::zero()]), + Vec2::new([Zero::zero(), One::one()]) ] + } + + #[inline] + fn orthogonal_subspace_basis(&self) -> ~[Vec2] + { ~[ Vec2::new([-self.at[1], copy self.at[0]]) ] } +} + +impl +Basis for Vec3 +{ + #[inline] + fn canonical_basis() -> ~[Vec3] + { + // FIXME: this should be static + ~[ Vec3::new([One::one(), Zero::zero(), Zero::zero()]), + Vec3::new([Zero::zero(), One::one(), Zero::zero()]), + Vec3::new([Zero::zero(), Zero::zero(), One::one()]) ] + } + + #[inline] + fn orthogonal_subspace_basis(&self) -> ~[Vec3] + { + let a = + if abs(copy self.at[0]) > abs(copy self.at[1]) + { Vec3::new([copy self.at[2], Zero::zero(), -copy self.at[0]]).normalized() } + else + { Vec3::new([Zero::zero(), -self.at[2], copy self.at[1]]).normalized() }; + + ~[ a.cross(self), a ] + } +}