forked from M-Labs/nalgebra
Add some documentation for Rotation.
This commit is contained in:
parent
bec0777d7f
commit
c24caa311f
@ -26,19 +26,15 @@ use geometry::{Point, Translation};
|
||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "R: Serialize,
|
||||
serde(bound(serialize = "R: Serialize,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
Owned<N, D>: Serialize"
|
||||
))
|
||||
Owned<N, D>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "R: Deserialize<'de>,
|
||||
serde(bound(deserialize = "R: Deserialize<'de>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
Owned<N, D>: Deserialize<'de>"
|
||||
))
|
||||
Owned<N, D>: Deserialize<'de>"))
|
||||
)]
|
||||
pub struct Isometry<N: Real, D: DimName, R>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
@ -96,7 +92,8 @@ impl<N: Real, D: DimName + Copy, R: Rotation<Point<N, D>> + Copy> Copy for Isome
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
Owned<N, D>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: Real, D: DimName, R: Rotation<Point<N, D>> + Clone> Clone for Isometry<N, D, R>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
@ -283,7 +280,6 @@ where DefaultAllocator: Allocator<N, D>
|
||||
/// 0.5, 0.8660254, 20.0,
|
||||
/// 0.0, 0.0, 1.0);
|
||||
///
|
||||
/// // The translation part should not have changed.
|
||||
/// assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);
|
||||
/// ```
|
||||
#[inline]
|
||||
@ -305,7 +301,8 @@ impl<N: Real, D: DimName, R> Eq for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>> + Eq,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: Real, D: DimName, R> PartialEq for Isometry<N, D, R>
|
||||
where
|
||||
|
@ -941,7 +941,6 @@ impl<N: Real> UnitQuaternion<N> {
|
||||
/// 0.5, 0.8660254, 0.0,
|
||||
/// 0.0, 0.0, 1.0);
|
||||
///
|
||||
/// // The translation part should not have changed.
|
||||
/// assert_relative_eq!(*rot.matrix(), expected, epsilon = 1.0e-6);
|
||||
/// ```
|
||||
#[inline]
|
||||
@ -1019,7 +1018,6 @@ impl<N: Real> UnitQuaternion<N> {
|
||||
/// 0.0, 0.0, 1.0, 0.0,
|
||||
/// 0.0, 0.0, 0.0, 1.0);
|
||||
///
|
||||
/// // The translation part should not have changed.
|
||||
/// assert_relative_eq!(rot.to_homogeneous(), expected, epsilon = 1.0e-6);
|
||||
/// ```
|
||||
#[inline]
|
||||
|
@ -43,7 +43,8 @@ impl<N: Scalar, D: DimName> Copy for Rotation<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: Scalar, D: DimName> Clone for Rotation<N, D>
|
||||
where
|
||||
@ -107,28 +108,92 @@ impl<N: Scalar, D: DimName> Rotation<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
{
|
||||
/// A reference to the underlying matrix representation of this rotation.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3};
|
||||
/// # use std::f32;
|
||||
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
|
||||
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
|
||||
/// 0.5, 0.8660254, 0.0,
|
||||
/// 0.0, 0.0, 1.0);
|
||||
/// assert_eq!(*rot.matrix(), expected);
|
||||
///
|
||||
///
|
||||
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
|
||||
/// let expected = Matrix2::new(0.8660254, -0.5,
|
||||
/// 0.5, 0.8660254);
|
||||
/// assert_eq!(*rot.matrix(), expected);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn matrix(&self) -> &MatrixN<N, D> {
|
||||
&self.matrix
|
||||
}
|
||||
|
||||
/// A mutable reference to the underlying matrix representation of this rotation.
|
||||
///
|
||||
/// This is unsafe because this allows the user to replace the matrix by another one that is
|
||||
/// non-square, non-inversible, or non-orthonormal. If one of those properties is broken,
|
||||
/// subsequent method calls may be UB.
|
||||
#[inline]
|
||||
#[deprecated(note = "Use `.matrix_mut_unchecked()` instead.")]
|
||||
pub unsafe fn matrix_mut(&mut self) -> &mut MatrixN<N, D> {
|
||||
&mut self.matrix
|
||||
}
|
||||
|
||||
/// A mutable reference to the underlying matrix representation of this rotation.
|
||||
///
|
||||
/// This is suffixed by "_unchecked" because this allows the user to replace the matrix by another one that is
|
||||
/// non-square, non-inversible, or non-orthonormal. If one of those properties is broken,
|
||||
/// subsequent method calls may be UB.
|
||||
#[inline]
|
||||
pub fn matrix_mut_unchecked(&mut self) -> &mut MatrixN<N, D> {
|
||||
&mut self.matrix
|
||||
}
|
||||
|
||||
/// Unwraps the underlying matrix.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3};
|
||||
/// # use std::f32;
|
||||
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
|
||||
/// let mat = rot.unwrap();
|
||||
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
|
||||
/// 0.5, 0.8660254, 0.0,
|
||||
/// 0.0, 0.0, 1.0);
|
||||
/// assert_eq!(mat, expected);
|
||||
///
|
||||
///
|
||||
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
|
||||
/// let mat = rot.unwrap();
|
||||
/// let expected = Matrix2::new(0.8660254, -0.5,
|
||||
/// 0.5, 0.8660254);
|
||||
/// assert_eq!(mat, expected);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn unwrap(self) -> MatrixN<N, D> {
|
||||
self.matrix
|
||||
}
|
||||
|
||||
/// Converts this rotation into its equivalent homogeneous transformation matrix.
|
||||
///
|
||||
/// This is the same as `self.into()`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3, Matrix4};
|
||||
/// # use std::f32;
|
||||
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
|
||||
/// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0,
|
||||
/// 0.5, 0.8660254, 0.0, 0.0,
|
||||
/// 0.0, 0.0, 1.0, 0.0,
|
||||
/// 0.0, 0.0, 0.0, 1.0);
|
||||
/// assert_eq!(rot.to_homogeneous(), expected);
|
||||
///
|
||||
///
|
||||
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
|
||||
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
|
||||
/// 0.5, 0.8660254, 0.0,
|
||||
/// 0.0, 0.0, 1.0);
|
||||
/// assert_eq!(rot.to_homogeneous(), expected);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>>
|
||||
where
|
||||
@ -145,6 +210,25 @@ where DefaultAllocator: Allocator<N, D, D>
|
||||
/// Creates a new rotation from the given square matrix.
|
||||
///
|
||||
/// The matrix squareness is checked but not its orthonormality.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Rotation2, Rotation3, Matrix2, Matrix3};
|
||||
/// # use std::f32;
|
||||
/// let mat = Matrix3::new(0.8660254, -0.5, 0.0,
|
||||
/// 0.5, 0.8660254, 0.0,
|
||||
/// 0.0, 0.0, 1.0);
|
||||
/// let rot = Rotation3::from_matrix_unchecked(mat);
|
||||
///
|
||||
/// assert_eq!(*rot.matrix(), mat);
|
||||
///
|
||||
///
|
||||
/// let mat = Matrix2::new(0.8660254, -0.5,
|
||||
/// 0.5, 0.8660254);
|
||||
/// let rot = Rotation2::from_matrix_unchecked(mat);
|
||||
///
|
||||
/// assert_eq!(*rot.matrix(), mat);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn from_matrix_unchecked(matrix: MatrixN<N, D>) -> Rotation<N, D> {
|
||||
assert!(
|
||||
@ -162,6 +246,22 @@ where DefaultAllocator: Allocator<N, D, D>
|
||||
}
|
||||
|
||||
/// Inverts `self`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
|
||||
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
||||
/// let inv = rot.inverse();
|
||||
/// assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
|
||||
/// assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
|
||||
///
|
||||
/// let rot = Rotation2::new(1.2);
|
||||
/// let inv = rot.inverse();
|
||||
/// assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
|
||||
/// assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn inverse(&self) -> Rotation<N, D> {
|
||||
self.transpose()
|
||||
|
@ -138,16 +138,16 @@ md_assign_impl_all!(
|
||||
MulAssign, mul_assign;
|
||||
(D, D), (D, D) for D: DimName;
|
||||
self: Rotation<N, D>, right: Rotation<N, D>;
|
||||
[val] => unsafe { self.matrix_mut().mul_assign(right.unwrap()) };
|
||||
[ref] => unsafe { self.matrix_mut().mul_assign(right.matrix()) };
|
||||
[val] => self.matrix_mut_unchecked().mul_assign(right.unwrap());
|
||||
[ref] => self.matrix_mut_unchecked().mul_assign(right.matrix());
|
||||
);
|
||||
|
||||
md_assign_impl_all!(
|
||||
DivAssign, div_assign;
|
||||
(D, D), (D, D) for D: DimName;
|
||||
self: Rotation<N, D>, right: Rotation<N, D>;
|
||||
[val] => unsafe { self.matrix_mut().mul_assign(right.inverse().unwrap()) };
|
||||
[ref] => unsafe { self.matrix_mut().mul_assign(right.inverse().matrix()) };
|
||||
[val] => self.matrix_mut_unchecked().mul_assign(right.inverse().unwrap());
|
||||
[ref] => self.matrix_mut_unchecked().mul_assign(right.inverse().matrix());
|
||||
);
|
||||
|
||||
// Matrix *= Rotation
|
||||
|
Loading…
Reference in New Issue
Block a user