Complete the documentation.

This commit is contained in:
Sébastien Crozet 2016-03-24 19:04:01 +01:00
parent 87a80c2de6
commit c1ec00cfe7
11 changed files with 31 additions and 31 deletions

View File

@ -9,12 +9,12 @@ nalgebra
* real time computer graphics.
* real time computer physics.
An on-line version of this documentation is available [here](http://nalgebra.org).
An on-line version of this documentation is available [here](http://nalgebra.org/doc/nalgebra).
## Using **nalgebra**
All the functionality of **nalgebra** is grouped in one place: the root module `nalgebra::`.
This module re-exports everything and includes free functions for all traits methods doing
out-of-place modifications.
All the functionality of **nalgebra** is grouped in one place: the root module `nalgebra::`. This
module re-exports everything and includes free functions for all traits methods performing
out-of-place operations.
* You can import the whole prelude using:
@ -46,12 +46,12 @@ an optimized set of tools for computer graphics and physics. Those features incl
* Vectors with predefined static sizes: `Vec1`, `Vec2`, `Vec3`, `Vec4`, `Vec5`, `Vec6`.
* Vector with a user-defined static size: `VecN`.
* Points with static sizes: ``Pnt1`, `Pnt2`, `Pnt3`, `Pnt4`, `Pnt5`, `Pnt6`.
* Points with static sizes: `Pnt1`, `Pnt2`, `Pnt3`, `Pnt4`, `Pnt5`, `Pnt6`.
* Square matrices with static sizes: `Mat1`, `Mat2`, `Mat3`, `Mat4`, `Mat5`, `Mat6 `.
* Rotation matrices: `Rot2`, `Rot3`
* Quaternions: `Quat`, `UnitQuat`.
* Isometries (translation * rotation): `Iso2`, `Iso3`
* Similarity transformations (translation * rotation * uniform scale): `Sim2`, `Sim3`.
* Isometries (translation rotation): `Iso2`, `Iso3`
* Similarity transformations (translation rotation uniform scale): `Sim2`, `Sim3`.
* 3D projections for computer graphics: `Persp3`, `PerspMat3`, `Ortho3`, `OrthoMat3`.
* Dynamically sized heap-allocated vector: `DVec`.
* Dynamically sized stack-allocated vectors with a maximum size: `DVec1` to `DVec6`.

View File

@ -3,16 +3,16 @@
**nalgebra** is a low-dimensional linear algebra library written for Rust targeting:
* general-purpose linear algebra (still lacks a lot of features).
* low-dimensional general-purpose linear algebra (still lacks a lot of features).
* real time computer graphics.
* real time computer physics.
An on-line version of this documentation is available [here](http://nalgebra.org).
An on-line version of this documentation is available [here](http://nalgebra.org/doc/nalgebra).
## Using **nalgebra**
All the functionality of **nalgebra** is grouped in one place: the root module `nalgebra::`.
This module re-exports everything and includes free functions for all traits methods doing
out-of-place modifications.
All the functionality of **nalgebra** is grouped in one place: the root module `nalgebra::`. This
module re-exports everything and includes free functions for all traits methods performing
out-of-place operations.
* You can import the whole prelude using:
@ -47,8 +47,8 @@ an optimized set of tools for computer graphics and physics. Those features incl
* Square matrices with static sizes: `Mat1`, `Mat2`, `Mat3`, `Mat4`, `Mat5`, `Mat6 `.
* Rotation matrices: `Rot2`, `Rot3`
* Quaternions: `Quat`, `UnitQuat`.
* Isometries (translation * rotation): `Iso2`, `Iso3`
* Similarity transformations (translation * rotation * uniform scale): `Sim2`, `Sim3`.
* Isometries (translation rotation): `Iso2`, `Iso3`
* Similarity transformations (translation rotation uniform scale): `Sim2`, `Sim3`.
* 3D projections for computer graphics: `Persp3`, `PerspMat3`, `Ortho3`, `OrthoMat3`.
* Dynamically sized heap-allocated vector: `DVec`.
* Dynamically sized stack-allocated vectors with a maximum size: `DVec1` to `DVec6`.

View File

@ -1,7 +1,5 @@
//! Matrix with dimensions unknown at compile-time.
#![allow(missing_docs)] // we hide doc to not have to document the $trhs double dispatch trait.
use std::cmp;
use std::mem;
use std::iter::repeat;
@ -131,6 +129,7 @@ impl<N> DMat<N> {
dmat_impl!(DMat, DVec);
/// A stack-allocated dynamically sized matrix with at most one row and column.
pub struct DMat1<N> {
nrows: usize,
ncols: usize,
@ -141,6 +140,7 @@ small_dmat_impl!(DMat1, DVec1, 1, 0);
small_dmat_from_impl!(DMat1, 1, ::zero());
/// A stack-allocated dynamically sized square or rectangular matrix with at most 2 rows and columns.
pub struct DMat2<N> {
nrows: usize,
ncols: usize,
@ -153,6 +153,7 @@ small_dmat_from_impl!(DMat2, 2, ::zero(), ::zero(),
::zero(), ::zero());
/// A stack-allocated dynamically sized square or rectangular matrix with at most 3 rows and columns.
pub struct DMat3<N> {
nrows: usize,
ncols: usize,
@ -167,6 +168,7 @@ small_dmat_from_impl!(DMat3, 3, ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero());
/// A stack-allocated dynamically sized square or rectangular matrix with at most 4 rows and columns.
pub struct DMat4<N> {
nrows: usize,
ncols: usize,
@ -183,6 +185,7 @@ small_dmat_from_impl!(DMat4, 4, ::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero());
/// A stack-allocated dynamically sized square or rectangular matrix with at most 5 rows and columns.
pub struct DMat5<N> {
nrows: usize,
ncols: usize,
@ -201,6 +204,7 @@ small_dmat_from_impl!(DMat5, 5, ::zero(), ::zero(), ::zero(), ::zero(), ::zero()
::zero(), ::zero(), ::zero(), ::zero(), ::zero());
/// A stack-allocated dynamically sized square or rectangular matrix with at most 6 rows and columns.
pub struct DMat6<N> {
nrows: usize,
ncols: usize,

View File

@ -19,6 +19,7 @@ macro_rules! dmat_impl(
self.mij.iter().all(|e| e.is_zero())
}
/// Set this matrix components to zero.
#[inline]
pub fn reset(&mut self) {
for mij in self.mij.iter_mut() {
@ -881,7 +882,8 @@ macro_rules! small_dmat_from_impl(
}
}
impl<N> $dmat<N> {
impl<N: Copy> $dmat<N> {
/// Creates a new matrix with uninitialized components (with `mem::uninitialized()`).
#[inline]
pub unsafe fn new_uninitialized(nrows: usize, ncols: usize) -> $dmat<N> {
assert!(nrows <= $dim);

View File

@ -1,7 +1,5 @@
//! Vector with dimensions unknown at compile-time.
#![allow(missing_docs)] // we hide doc to not have to document the $trhs double dispatch trait.
use std::slice::{Iter, IterMut};
use std::iter::{FromIterator, IntoIterator};
use std::iter::repeat;

View File

@ -1,7 +1,5 @@
//! Points with dimension known at compile-time.
#![allow(missing_docs)] // we allow missing to avoid having to document the point components.
use std::mem;
use std::slice::{Iter, IterMut};
use std::iter::{Iterator, FromIterator, IntoIterator};

View File

@ -1,7 +1,5 @@
//! Quaternion definition.
#![allow(missing_docs)] // we allow missing to avoid having to document the dispatch trait.
use std::mem;
use std::slice::{Iter, IterMut};
use std::ops::{Add, Sub, Mul, Div, Neg, Index, IndexMut};

View File

@ -1,7 +1,5 @@
//! Rotations matrices.
#![allow(missing_docs)]
use std::ops::{Mul, Neg, Index};
use rand::{Rand, Rng};
use num::{Zero, One};

View File

@ -3,6 +3,7 @@
macro_rules! submat_impl(
($t: ident, $submat: ident) => (
impl<N> $t<N> {
/// This rotation's underlying matrix.
#[inline]
pub fn submat<'r>(&'r self) -> &'r $submat<N> {
&self.submat

View File

@ -1,7 +1,5 @@
//! Vectors with dimension known at compile-time.
#![allow(missing_docs)] // we allow missing to avoid having to document the dispatch traits.
use std::ops::{Add, Sub, Mul, Div, Neg, Index, IndexMut};
use std::mem;
use std::slice::{Iter, IterMut};

View File

@ -278,6 +278,7 @@ macro_rules! dim_impl(
macro_rules! container_impl(
($t: ident) => (
impl<N> $t<N> {
/// The dimension of this entity.
#[inline]
pub fn len(&self) -> usize {
Dim::dim(None::<$t<N>>)
@ -291,18 +292,18 @@ macro_rules! basis_impl(
impl<N: BaseFloat + ApproxEq<N>> Basis for $t<N> {
#[inline]
fn canonical_basis<F: FnMut($t<N>) -> bool>(mut f: F) {
for i in 0..$dim {
for i in 0 .. $dim {
if !f(Basis::canonical_basis_element(i).unwrap()) { return }
}
}
#[inline]
fn orthonormal_subspace_basis<F: FnMut($t<N>) -> bool>(n: &$t<N>, mut f: F) {
// compute the basis of the orthogonal subspace using Gram-Schmidt
// orthogonalization algorithm
// Compute the basis of the orthogonal subspace using Gram-Schmidt
// orthogonalization algorithm.
let mut basis: Vec<$t<N>> = Vec::new();
for i in 0..$dim {
for i in 0 .. $dim {
let mut basis_element : $t<N> = ::zero();
unsafe {
@ -743,6 +744,7 @@ macro_rules! transform_impl(
macro_rules! vec_as_pnt_impl(
($tv: ident, $t: ident, $($compN: ident),+) => (
impl<N> $tv<N> {
/// Converts this vector to a point.
#[inline]
pub fn to_pnt(self) -> $t<N> {
$t::new(
@ -750,6 +752,7 @@ macro_rules! vec_as_pnt_impl(
)
}
/// Reinterprets this vector as a point.
#[inline]
pub fn as_pnt(&self) -> &$t<N> {
unsafe {