Remove over-restrictive assertions on Orthographic3 construction + add doc-tests.

Fix #365
This commit is contained in:
sebcrozet 2018-11-10 12:34:17 +01:00 committed by Sébastien Crozet
parent 69490c2cea
commit bd7d0be7a8

View File

@ -63,21 +63,50 @@ impl<'a, N: Real + Deserialize<'a>> Deserialize<'a> for Orthographic3<N> {
impl<N: Real> Orthographic3<N> { impl<N: Real> Orthographic3<N> {
/// Creates a new orthographic projection matrix. /// Creates a new orthographic projection matrix.
///
/// This follows the OpenGL convention, so this will flip the `z` axis.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Orthographic3, Point3};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// // Check this projection actually transforms the view cuboid into the double-unit cube.
/// // See https://www.nalgebra.org/projections/#orthographic-projection for more details.
/// let p1 = Point3::new(1.0, 2.0, -0.1);
/// let p2 = Point3::new(1.0, 2.0, -1000.0);
/// let p3 = Point3::new(1.0, 20.0, -0.1);
/// let p4 = Point3::new(1.0, 20.0, -1000.0);
/// let p5 = Point3::new(10.0, 2.0, -0.1);
/// let p6 = Point3::new(10.0, 2.0, -1000.0);
/// let p7 = Point3::new(10.0, 20.0, -0.1);
/// let p8 = Point3::new(10.0, 20.0, -1000.0);
///
/// assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0));
///
/// // This also works with flipped axis. In other words, we allow that
/// // `left > right`, `bottom > top`, and/or `znear > zfar`.
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
///
/// assert_relative_eq!(proj.project_point(&p1), Point3::new( 1.0, 1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p2), Point3::new( 1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p3), Point3::new( 1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p4), Point3::new( 1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p5), Point3::new(-1.0, 1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p6), Point3::new(-1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p7), Point3::new(-1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p8), Point3::new(-1.0, -1.0, -1.0));
/// ```
#[inline] #[inline]
pub fn new(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> Self { pub fn new(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> Self {
assert!(
left < right,
"The left corner must be farther than the right corner."
);
assert!(
bottom < top,
"The top corner must be higher than the bottom corner."
);
assert!(
znear < zfar,
"The far plane must be farther than the near plane."
);
let matrix = Matrix4::<N>::identity(); let matrix = Matrix4::<N>::identity();
let mut res = Self::from_matrix_unchecked(matrix); let mut res = Self::from_matrix_unchecked(matrix);
@ -92,6 +121,19 @@ impl<N: Real> Orthographic3<N> {
/// ///
/// It is not checked whether or not the given matrix actually represents an orthographic /// It is not checked whether or not the given matrix actually represents an orthographic
/// projection. /// projection.
///
/// # Example
/// ```
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let mat = Matrix4::new(
/// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
/// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
/// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
/// 0.0, 0.0, 0.0, 1.0
/// );
/// let proj = Orthographic3::from_matrix_unchecked(mat);
/// assert_eq!(proj, Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0));
/// ```
#[inline] #[inline]
pub fn from_matrix_unchecked(matrix: Matrix4<N>) -> Self { pub fn from_matrix_unchecked(matrix: Matrix4<N>) -> Self {
Orthographic3 { matrix: matrix } Orthographic3 { matrix: matrix }
@ -101,8 +143,8 @@ impl<N: Real> Orthographic3<N> {
#[inline] #[inline]
pub fn from_fov(aspect: N, vfov: N, znear: N, zfar: N) -> Self { pub fn from_fov(aspect: N, vfov: N, znear: N, zfar: N) -> Self {
assert!( assert!(
znear < zfar, znear != zfar,
"The far plane must be farther than the near plane." "The far plane must not be equal to the near plane."
); );
assert!( assert!(
!relative_eq!(aspect, N::zero()), !relative_eq!(aspect, N::zero()),
@ -124,6 +166,23 @@ impl<N: Real> Orthographic3<N> {
} }
/// Retrieves the inverse of the underlying homogeneous matrix. /// Retrieves the inverse of the underlying homogeneous matrix.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// let inv = proj.inverse();
///
/// assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity());
/// assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity());
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// let inv = proj.inverse();
/// assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity());
/// assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity());
/// ```
#[inline] #[inline]
pub fn inverse(&self) -> Matrix4<N> { pub fn inverse(&self) -> Matrix4<N> {
let mut res = self.to_homogeneous(); let mut res = self.to_homogeneous();
@ -144,66 +203,187 @@ impl<N: Real> Orthographic3<N> {
} }
/// Computes the corresponding homogeneous matrix. /// Computes the corresponding homogeneous matrix.
///
/// # Example
/// ```
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// let expected = Matrix4::new(
/// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
/// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
/// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
/// 0.0, 0.0, 0.0, 1.0
/// );
/// assert_eq!(proj.to_homogeneous(), expected);
/// ```
#[inline] #[inline]
pub fn to_homogeneous(&self) -> Matrix4<N> { pub fn to_homogeneous(&self) -> Matrix4<N> {
self.matrix self.matrix
} }
/// A reference to the underlying homogeneous transformation matrix. /// A reference to the underlying homogeneous transformation matrix.
///
/// # Example
/// ```
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// let expected = Matrix4::new(
/// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
/// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
/// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
/// 0.0, 0.0, 0.0, 1.0
/// );
/// assert_eq!(*proj.as_matrix(), expected);
/// ```
#[inline] #[inline]
pub fn as_matrix(&self) -> &Matrix4<N> { pub fn as_matrix(&self) -> &Matrix4<N> {
&self.matrix &self.matrix
} }
/// A reference to this transformation seen as a `Projective3`. /// A reference to this transformation seen as a `Projective3`.
///
/// # Example
/// ```
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_eq!(proj.as_projective().to_homogeneous(), proj.to_homogeneous());
/// ```
#[inline] #[inline]
pub fn as_projective(&self) -> &Projective3<N> { pub fn as_projective(&self) -> &Projective3<N> {
unsafe { mem::transmute(self) } unsafe { mem::transmute(self) }
} }
/// This transformation seen as a `Projective3`. /// This transformation seen as a `Projective3`.
///
/// # Example
/// ```
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_eq!(proj.to_projective().to_homogeneous(), proj.to_homogeneous());
/// ```
#[inline] #[inline]
pub fn to_projective(&self) -> Projective3<N> { pub fn to_projective(&self) -> Projective3<N> {
Projective3::from_matrix_unchecked(self.matrix) Projective3::from_matrix_unchecked(self.matrix)
} }
/// Retrieves the underlying homogeneous matrix. /// Retrieves the underlying homogeneous matrix.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// let expected = Matrix4::new(
/// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
/// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
/// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
/// 0.0, 0.0, 0.0, 1.0
/// );
/// assert_eq!(proj.unwrap(), expected);
/// ```
#[inline] #[inline]
pub fn unwrap(self) -> Matrix4<N> { pub fn unwrap(self) -> Matrix4<N> {
self.matrix self.matrix
} }
/// The smallest x-coordinate of the view cuboid. /// The left offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.left(), 1.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.left(), 10.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn left(&self) -> N { pub fn left(&self) -> N {
(-N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)] (-N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)]
} }
/// The largest x-coordinate of the view cuboid. /// The right offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.right(), 10.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.right(), 1.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn right(&self) -> N { pub fn right(&self) -> N {
(N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)] (N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)]
} }
/// The smallest y-coordinate of the view cuboid. /// The bottom offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.bottom(), 2.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.bottom(), 20.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn bottom(&self) -> N { pub fn bottom(&self) -> N {
(-N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)] (-N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)]
} }
/// The largest y-coordinate of the view cuboid. /// The top offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.top(), 20.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.top(), 2.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn top(&self) -> N { pub fn top(&self) -> N {
(N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)] (N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)]
} }
/// The near plane offset of the view cuboid. /// The near plane offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.znear(), 0.1, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.znear(), 1000.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn znear(&self) -> N { pub fn znear(&self) -> N {
(N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)] (N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)]
} }
/// The far plane offset of the view cuboid. /// The far plane offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.zfar(), 1000.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.zfar(), 0.1, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn zfar(&self) -> N { pub fn zfar(&self) -> N {
(-N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)] (-N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)]
@ -211,6 +391,32 @@ impl<N: Real> Orthographic3<N> {
// FIXME: when we get specialization, specialize the Mul impl instead. // FIXME: when we get specialization, specialize the Mul impl instead.
/// Projects a point. Faster than matrix multiplication. /// Projects a point. Faster than matrix multiplication.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Orthographic3, Point3};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
///
/// let p1 = Point3::new(1.0, 2.0, -0.1);
/// let p2 = Point3::new(1.0, 2.0, -1000.0);
/// let p3 = Point3::new(1.0, 20.0, -0.1);
/// let p4 = Point3::new(1.0, 20.0, -1000.0);
/// let p5 = Point3::new(10.0, 2.0, -0.1);
/// let p6 = Point3::new(10.0, 2.0, -1000.0);
/// let p7 = Point3::new(10.0, 20.0, -0.1);
/// let p8 = Point3::new(10.0, 20.0, -1000.0);
///
/// assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0));
/// ```
#[inline] #[inline]
pub fn project_point(&self, p: &Point3<N>) -> Point3<N> { pub fn project_point(&self, p: &Point3<N>) -> Point3<N> {
Point3::new( Point3::new(
@ -221,6 +427,32 @@ impl<N: Real> Orthographic3<N> {
} }
/// Un-projects a point. Faster than multiplication by the underlying matrix inverse. /// Un-projects a point. Faster than multiplication by the underlying matrix inverse.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Orthographic3, Point3};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
///
/// let p1 = Point3::new(-1.0, -1.0, -1.0);
/// let p2 = Point3::new(-1.0, -1.0, 1.0);
/// let p3 = Point3::new(-1.0, 1.0, -1.0);
/// let p4 = Point3::new(-1.0, 1.0, 1.0);
/// let p5 = Point3::new( 1.0, -1.0, -1.0);
/// let p6 = Point3::new( 1.0, -1.0, 1.0);
/// let p7 = Point3::new( 1.0, 1.0, -1.0);
/// let p8 = Point3::new( 1.0, 1.0, 1.0);
///
/// assert_relative_eq!(proj.unproject_point(&p1), Point3::new(1.0, 2.0, -0.1), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p2), Point3::new(1.0, 2.0, -1000.0), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p3), Point3::new(1.0, 20.0, -0.1), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p4), Point3::new(1.0, 20.0, -1000.0), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p5), Point3::new(10.0, 2.0, -0.1), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p6), Point3::new(10.0, 2.0, -1000.0), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p7), Point3::new(10.0, 20.0, -0.1), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p8), Point3::new(10.0, 20.0, -1000.0), epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn unproject_point(&self, p: &Point3<N>) -> Point3<N> { pub fn unproject_point(&self, p: &Point3<N>) -> Point3<N> {
Point3::new( Point3::new(
@ -232,6 +464,24 @@ impl<N: Real> Orthographic3<N> {
// FIXME: when we get specialization, specialize the Mul impl instead. // FIXME: when we get specialization, specialize the Mul impl instead.
/// Projects a vector. Faster than matrix multiplication. /// Projects a vector. Faster than matrix multiplication.
///
/// Vectors are not affected by the translation part of the projection.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Orthographic3, Vector3};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
///
/// let v1 = Vector3::x();
/// let v2 = Vector3::y();
/// let v3 = Vector3::z();
///
/// assert_relative_eq!(proj.project_vector(&v1), Vector3::x() * 2.0 / 9.0);
/// assert_relative_eq!(proj.project_vector(&v2), Vector3::y() * 2.0 / 18.0);
/// assert_relative_eq!(proj.project_vector(&v3), Vector3::z() * -2.0 / 999.9);
/// ```
#[inline] #[inline]
pub fn project_vector<SB>(&self, p: &Vector<N, U3, SB>) -> Vector3<N> pub fn project_vector<SB>(&self, p: &Vector<N, U3, SB>) -> Vector3<N>
where SB: Storage<N, U3> { where SB: Storage<N, U3> {
@ -242,28 +492,80 @@ impl<N: Real> Orthographic3<N> {
) )
} }
/// Sets the smallest x-coordinate of the view cuboid. /// Sets the left offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_left(2.0);
/// assert_relative_eq!(proj.left(), 2.0, epsilon = 1.0e-6);
///
/// // It is OK to set a left offset greater than the current right offset.
/// proj.set_left(20.0);
/// assert_relative_eq!(proj.left(), 20.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn set_left(&mut self, left: N) { pub fn set_left(&mut self, left: N) {
let right = self.right(); let right = self.right();
self.set_left_and_right(left, right); self.set_left_and_right(left, right);
} }
/// Sets the largest x-coordinate of the view cuboid. /// Sets the right offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_right(15.0);
/// assert_relative_eq!(proj.right(), 15.0, epsilon = 1.0e-6);
///
/// // It is OK to set a right offset smaller than the current left offset.
/// proj.set_right(-3.0);
/// assert_relative_eq!(proj.right(), -3.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn set_right(&mut self, right: N) { pub fn set_right(&mut self, right: N) {
let left = self.left(); let left = self.left();
self.set_left_and_right(left, right); self.set_left_and_right(left, right);
} }
/// Sets the smallest y-coordinate of the view cuboid. /// Sets the bottom offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_bottom(8.0);
/// assert_relative_eq!(proj.bottom(), 8.0, epsilon = 1.0e-6);
///
/// // It is OK to set a bottom offset greater than the current top offset.
/// proj.set_bottom(50.0);
/// assert_relative_eq!(proj.bottom(), 50.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn set_bottom(&mut self, bottom: N) { pub fn set_bottom(&mut self, bottom: N) {
let top = self.top(); let top = self.top();
self.set_bottom_and_top(bottom, top); self.set_bottom_and_top(bottom, top);
} }
/// Sets the largest y-coordinate of the view cuboid. /// Sets the top offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_top(15.0);
/// assert_relative_eq!(proj.top(), 15.0, epsilon = 1.0e-6);
///
/// // It is OK to set a top offset smaller than the current bottom offset.
/// proj.set_top(-3.0);
/// assert_relative_eq!(proj.top(), -3.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn set_top(&mut self, top: N) { pub fn set_top(&mut self, top: N) {
let bottom = self.bottom(); let bottom = self.bottom();
@ -271,6 +573,19 @@ impl<N: Real> Orthographic3<N> {
} }
/// Sets the near plane offset of the view cuboid. /// Sets the near plane offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_znear(8.0);
/// assert_relative_eq!(proj.znear(), 8.0, epsilon = 1.0e-6);
///
/// // It is OK to set a znear greater than the current zfar.
/// proj.set_znear(5000.0);
/// assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn set_znear(&mut self, znear: N) { pub fn set_znear(&mut self, znear: N) {
let zfar = self.zfar(); let zfar = self.zfar();
@ -278,39 +593,97 @@ impl<N: Real> Orthographic3<N> {
} }
/// Sets the far plane offset of the view cuboid. /// Sets the far plane offset of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_zfar(15.0);
/// assert_relative_eq!(proj.zfar(), 15.0, epsilon = 1.0e-6);
///
/// // It is OK to set a zfar smaller than the current znear.
/// proj.set_zfar(-3.0);
/// assert_relative_eq!(proj.zfar(), -3.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn set_zfar(&mut self, zfar: N) { pub fn set_zfar(&mut self, zfar: N) {
let znear = self.znear(); let znear = self.znear();
self.set_znear_and_zfar(znear, zfar); self.set_znear_and_zfar(znear, zfar);
} }
/// Sets the view cuboid coordinates along the `x` axis. /// Sets the view cuboid offsets along the `x` axis.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_left_and_right(7.0, 70.0);
/// assert_relative_eq!(proj.left(), 7.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.right(), 70.0, epsilon = 1.0e-6);
///
/// // It is also OK to have `left > right`.
/// proj.set_left_and_right(70.0, 7.0);
/// assert_relative_eq!(proj.left(), 70.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.right(), 7.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn set_left_and_right(&mut self, left: N, right: N) { pub fn set_left_and_right(&mut self, left: N, right: N) {
assert!( assert!(
left < right, left != right,
"The left corner must be farther than the right corner." "The left corner must not be equal to the right corner."
); );
self.matrix[(0, 0)] = ::convert::<_, N>(2.0) / (right - left); self.matrix[(0, 0)] = ::convert::<_, N>(2.0) / (right - left);
self.matrix[(0, 3)] = -(right + left) / (right - left); self.matrix[(0, 3)] = -(right + left) / (right - left);
} }
/// Sets the view cuboid coordinates along the `y` axis. /// Sets the view cuboid offsets along the `y` axis.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_bottom_and_top(7.0, 70.0);
/// assert_relative_eq!(proj.bottom(), 7.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.top(), 70.0, epsilon = 1.0e-6);
///
/// // It is also OK to have `bottom > top`.
/// proj.set_bottom_and_top(70.0, 7.0);
/// assert_relative_eq!(proj.bottom(), 70.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.top(), 7.0, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn set_bottom_and_top(&mut self, bottom: N, top: N) { pub fn set_bottom_and_top(&mut self, bottom: N, top: N) {
assert!( assert!(
bottom < top, bottom != top,
"The top corner must be higher than the bottom corner." "The top corner must not be equal to the bottom corner."
); );
self.matrix[(1, 1)] = ::convert::<_, N>(2.0) / (top - bottom); self.matrix[(1, 1)] = ::convert::<_, N>(2.0) / (top - bottom);
self.matrix[(1, 3)] = -(top + bottom) / (top - bottom); self.matrix[(1, 3)] = -(top + bottom) / (top - bottom);
} }
/// Sets the near and far plane offsets of the view cuboid. /// Sets the near and far plane offsets of the view cuboid.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_znear_and_zfar(50.0, 5000.0);
/// assert_relative_eq!(proj.znear(), 50.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.zfar(), 5000.0, epsilon = 1.0e-6);
///
/// // It is also OK to have `znear > zfar`.
/// proj.set_znear_and_zfar(5000.0, 0.5);
/// assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.zfar(), 0.5, epsilon = 1.0e-6);
/// ```
#[inline] #[inline]
pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N) { pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N) {
assert!( assert!(
!relative_eq!(zfar - znear, N::zero()), zfar != znear,
"The near-plane and far-plane must not be superimposed." "The near-plane and far-plane must not be superimposed."
); );
self.matrix[(2, 2)] = -::convert::<_, N>(2.0) / (zfar - znear); self.matrix[(2, 2)] = -::convert::<_, N>(2.0) / (zfar - znear);