forked from M-Labs/nalgebra
Restructure test modules to avoid warnings
These warnings occurred only when running the test suite with no features. Lots of uses had to be rescoped into newly created modules to make it easier to separate these issues.
This commit is contained in:
parent
4a926736fe
commit
bba1993e58
@ -1,9 +1,8 @@
|
||||
use std::cmp;
|
||||
#![cfg(feature = "arbitrary")]
|
||||
|
||||
use std::cmp;
|
||||
use na::{DVector, DMatrix};
|
||||
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck! {
|
||||
/*
|
||||
*
|
||||
|
@ -1,8 +1,5 @@
|
||||
use num::{Zero, One};
|
||||
use num::Float;
|
||||
use std::fmt::Display;
|
||||
|
||||
use alga::linear::FiniteDimInnerSpace;
|
||||
|
||||
use na::{self,
|
||||
DVector, DMatrix,
|
||||
@ -806,93 +803,100 @@ mod normalization_tests {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
// FIXME: move this to alga ?
|
||||
macro_rules! finite_dim_inner_space_test(
|
||||
($($Vector: ident, $orthonormal_subspace: ident, $orthonormalization: ident);* $(;)*) => {$(
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck!{
|
||||
fn $orthonormal_subspace(vs: Vec<$Vector<f64>>) -> bool {
|
||||
let mut given_basis = vs.clone();
|
||||
let given_basis_dim = $Vector::orthonormalize(&mut given_basis[..]);
|
||||
let mut ortho_basis = Vec::new();
|
||||
$Vector::orthonormal_subspace_basis(
|
||||
&given_basis[.. given_basis_dim],
|
||||
|e| { ortho_basis.push(*e); true }
|
||||
);
|
||||
mod finite_dim_inner_space_tests {
|
||||
use super::*;
|
||||
use std::fmt::Display;
|
||||
use alga::linear::FiniteDimInnerSpace;
|
||||
|
||||
if !is_subspace_basis(&ortho_basis[..]) {
|
||||
return false;
|
||||
macro_rules! finite_dim_inner_space_test(
|
||||
($($Vector: ident, $orthonormal_subspace: ident, $orthonormalization: ident);* $(;)*) => {$(
|
||||
quickcheck!{
|
||||
fn $orthonormal_subspace(vs: Vec<$Vector<f64>>) -> bool {
|
||||
let mut given_basis = vs.clone();
|
||||
let given_basis_dim = $Vector::orthonormalize(&mut given_basis[..]);
|
||||
let mut ortho_basis = Vec::new();
|
||||
$Vector::orthonormal_subspace_basis(
|
||||
&given_basis[.. given_basis_dim],
|
||||
|e| { ortho_basis.push(*e); true }
|
||||
);
|
||||
|
||||
if !is_subspace_basis(&ortho_basis[..]) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for v in vs {
|
||||
for b in &ortho_basis {
|
||||
if !relative_eq!(v.dot(b), 0.0, epsilon = 1.0e-7) {
|
||||
println!("Found dot product: {} · {} = {}", v, b, v.dot(b));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
|
||||
for v in vs {
|
||||
for b in &ortho_basis {
|
||||
if !relative_eq!(v.dot(b), 0.0, epsilon = 1.0e-7) {
|
||||
println!("Found dot product: {} · {} = {}", v, b, v.dot(b));
|
||||
fn $orthonormalization(vs: Vec<$Vector<f64>>) -> bool {
|
||||
let mut basis = vs.clone();
|
||||
let subdim = $Vector::orthonormalize(&mut basis[..]);
|
||||
|
||||
if !is_subspace_basis(&basis[.. subdim]) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for mut e in vs {
|
||||
for b in &basis[.. subdim] {
|
||||
e -= e.dot(b) * b
|
||||
}
|
||||
|
||||
// Any element of `e` must be a linear combination of the basis elements.
|
||||
if !relative_eq!(e.norm(), 0.0, epsilon = 1.0e-7) {
|
||||
println!("Orthonormalization; element decomposition failure: {}", e);
|
||||
println!("... the non-zero norm is: {}", e.norm());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
true
|
||||
}
|
||||
}
|
||||
)*}
|
||||
);
|
||||
|
||||
finite_dim_inner_space_test!(
|
||||
Vector1, orthonormal_subspace_basis1, orthonormalize1;
|
||||
Vector2, orthonormal_subspace_basis2, orthonormalize2;
|
||||
Vector3, orthonormal_subspace_basis3, orthonormalize3;
|
||||
Vector4, orthonormal_subspace_basis4, orthonormalize4;
|
||||
Vector5, orthonormal_subspace_basis5, orthonormalize5;
|
||||
Vector6, orthonormal_subspace_basis6, orthonormalize6;
|
||||
);
|
||||
|
||||
/*
|
||||
*
|
||||
* Helper functions.
|
||||
*
|
||||
*/
|
||||
#[cfg(feature = "arbitrary")]
|
||||
fn is_subspace_basis<T: FiniteDimInnerSpace<Real = f64> + Display>(vs: &[T]) -> bool {
|
||||
for i in 0 .. vs.len() {
|
||||
// Basis elements must be normalized.
|
||||
if !relative_eq!(vs[i].norm(), 1.0, epsilon = 1.0e-7) {
|
||||
println!("Non-zero basis element norm: {}", vs[i].norm());
|
||||
return false;
|
||||
}
|
||||
|
||||
fn $orthonormalization(vs: Vec<$Vector<f64>>) -> bool {
|
||||
let mut basis = vs.clone();
|
||||
let subdim = $Vector::orthonormalize(&mut basis[..]);
|
||||
|
||||
if !is_subspace_basis(&basis[.. subdim]) {
|
||||
return false;
|
||||
for j in 0 .. i {
|
||||
// Basis elements must be orthogonal.
|
||||
if !relative_eq!(vs[i].dot(&vs[j]), 0.0, epsilon = 1.0e-7) {
|
||||
println!("Non-orthogonal basis elements: {} · {} = {}", vs[i], vs[j], vs[i].dot(&vs[j]));
|
||||
return false
|
||||
}
|
||||
|
||||
for mut e in vs {
|
||||
for b in &basis[.. subdim] {
|
||||
e -= e.dot(b) * b
|
||||
}
|
||||
|
||||
// Any element of `e` must be a linear combination of the basis elements.
|
||||
if !relative_eq!(e.norm(), 0.0, epsilon = 1.0e-7) {
|
||||
println!("Orthonormalization; element decomposition failure: {}", e);
|
||||
println!("... the non-zero norm is: {}", e.norm());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
}
|
||||
)*}
|
||||
);
|
||||
|
||||
finite_dim_inner_space_test!(
|
||||
Vector1, orthonormal_subspace_basis1, orthonormalize1;
|
||||
Vector2, orthonormal_subspace_basis2, orthonormalize2;
|
||||
Vector3, orthonormal_subspace_basis3, orthonormalize3;
|
||||
Vector4, orthonormal_subspace_basis4, orthonormalize4;
|
||||
Vector5, orthonormal_subspace_basis5, orthonormalize5;
|
||||
Vector6, orthonormal_subspace_basis6, orthonormalize6;
|
||||
);
|
||||
|
||||
/*
|
||||
*
|
||||
* Helper functions.
|
||||
*
|
||||
*/
|
||||
fn is_subspace_basis<T: FiniteDimInnerSpace<Real = f64> + Display>(vs: &[T]) -> bool {
|
||||
for i in 0 .. vs.len() {
|
||||
// Basis elements must be normalized.
|
||||
if !relative_eq!(vs[i].norm(), 1.0, epsilon = 1.0e-7) {
|
||||
println!("Non-zero basis element norm: {}", vs[i].norm());
|
||||
return false;
|
||||
}
|
||||
|
||||
for j in 0 .. i {
|
||||
// Basis elements must be orthogonal.
|
||||
if !relative_eq!(vs[i].dot(&vs[j]), 0.0, epsilon = 1.0e-7) {
|
||||
println!("Non-orthogonal basis elements: {} · {} = {}", vs[i], vs[j], vs[i].dot(&vs[j]));
|
||||
return false
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
use na::{Point3, Perspective3, Orthographic3};
|
||||
use na::{Perspective3, Orthographic3};
|
||||
|
||||
#[test]
|
||||
fn perspective_inverse() {
|
||||
@ -22,22 +22,26 @@ fn orthographic_inverse() {
|
||||
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck!{
|
||||
fn perspective_project_unproject(pt: Point3<f64>) -> bool {
|
||||
let proj = Perspective3::new(800.0 / 600.0, 3.14 / 2.0, 1.0, 1000.0);
|
||||
mod quickcheck_tests {
|
||||
use na::{Point3, Perspective3, Orthographic3};
|
||||
|
||||
let projected = proj.project_point(&pt);
|
||||
let unprojected = proj.unproject_point(&projected);
|
||||
quickcheck!{
|
||||
fn perspective_project_unproject(pt: Point3<f64>) -> bool {
|
||||
let proj = Perspective3::new(800.0 / 600.0, 3.14 / 2.0, 1.0, 1000.0);
|
||||
|
||||
relative_eq!(pt, unprojected, epsilon = 1.0e-7)
|
||||
}
|
||||
let projected = proj.project_point(&pt);
|
||||
let unprojected = proj.unproject_point(&projected);
|
||||
|
||||
fn orthographic_project_unproject(pt: Point3<f64>) -> bool {
|
||||
let proj = Orthographic3::new(1.0, 2.0, -3.0, -2.5, 10.0, 900.0);
|
||||
relative_eq!(pt, unprojected, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
let projected = proj.project_point(&pt);
|
||||
let unprojected = proj.unproject_point(&projected);
|
||||
fn orthographic_project_unproject(pt: Point3<f64>) -> bool {
|
||||
let proj = Orthographic3::new(1.0, 2.0, -3.0, -2.5, 10.0, 900.0);
|
||||
|
||||
relative_eq!(pt, unprojected, epsilon = 1.0e-7)
|
||||
let projected = proj.project_point(&pt);
|
||||
let unprojected = proj.unproject_point(&projected);
|
||||
|
||||
relative_eq!(pt, unprojected, epsilon = 1.0e-7)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,4 @@
|
||||
use std::f64;
|
||||
use alga::general::Real;
|
||||
use na::{self, Vector2, Vector3, Rotation2, Rotation3, Unit};
|
||||
use na::{Vector2, Vector3};
|
||||
|
||||
#[test]
|
||||
fn angle_2() {
|
||||
@ -19,187 +17,193 @@ fn angle_3() {
|
||||
}
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck!(
|
||||
/*
|
||||
*
|
||||
* Euler angles.
|
||||
*
|
||||
*/
|
||||
fn from_euler_angles(r: f64, p: f64, y: f64) -> bool {
|
||||
let roll = Rotation3::from_euler_angles(r, 0.0, 0.0);
|
||||
let pitch = Rotation3::from_euler_angles(0.0, p, 0.0);
|
||||
let yaw = Rotation3::from_euler_angles(0.0, 0.0, y);
|
||||
mod quickcheck_tests {
|
||||
use std::f64;
|
||||
use alga::general::Real;
|
||||
use na::{self, Vector2, Vector3, Rotation2, Rotation3, Unit};
|
||||
|
||||
let rpy = Rotation3::from_euler_angles(r, p, y);
|
||||
quickcheck! {
|
||||
/*
|
||||
*
|
||||
* Euler angles.
|
||||
*
|
||||
*/
|
||||
fn from_euler_angles(r: f64, p: f64, y: f64) -> bool {
|
||||
let roll = Rotation3::from_euler_angles(r, 0.0, 0.0);
|
||||
let pitch = Rotation3::from_euler_angles(0.0, p, 0.0);
|
||||
let yaw = Rotation3::from_euler_angles(0.0, 0.0, y);
|
||||
|
||||
roll[(0, 0)] == 1.0 && // rotation wrt. x axis.
|
||||
pitch[(1, 1)] == 1.0 && // rotation wrt. y axis.
|
||||
yaw[(2, 2)] == 1.0 && // rotation wrt. z axis.
|
||||
yaw * pitch * roll == rpy
|
||||
}
|
||||
let rpy = Rotation3::from_euler_angles(r, p, y);
|
||||
|
||||
fn to_euler_angles(r: f64, p: f64, y: f64) -> bool {
|
||||
let rpy = Rotation3::from_euler_angles(r, p, y);
|
||||
let (roll, pitch, yaw) = rpy.to_euler_angles();
|
||||
relative_eq!(Rotation3::from_euler_angles(roll, pitch, yaw), rpy, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn to_euler_angles_gimble_lock(r: f64, y: f64) -> bool {
|
||||
let pos = Rotation3::from_euler_angles(r, f64::frac_pi_2(), y);
|
||||
let neg = Rotation3::from_euler_angles(r, -f64::frac_pi_2(), y);
|
||||
let (pos_r, pos_p, pos_y) = pos.to_euler_angles();
|
||||
let (neg_r, neg_p, neg_y) = neg.to_euler_angles();
|
||||
relative_eq!(Rotation3::from_euler_angles(pos_r, pos_p, pos_y), pos, epsilon = 1.0e-7) &&
|
||||
relative_eq!(Rotation3::from_euler_angles(neg_r, neg_p, neg_y), neg, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Inversion is transposition.
|
||||
*
|
||||
*/
|
||||
fn rotation_inv_3(a: Rotation3<f64>) -> bool {
|
||||
let ta = a.transpose();
|
||||
let ia = a.inverse();
|
||||
|
||||
ta == ia &&
|
||||
relative_eq!(&ta * &a, Rotation3::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!(&ia * a, Rotation3::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!( a * &ta, Rotation3::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!( a * ia, Rotation3::identity(), epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn rotation_inv_2(a: Rotation2<f64>) -> bool {
|
||||
let ta = a.transpose();
|
||||
let ia = a.inverse();
|
||||
|
||||
ta == ia &&
|
||||
relative_eq!(&ta * &a, Rotation2::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!(&ia * a, Rotation2::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!( a * &ta, Rotation2::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!( a * ia, Rotation2::identity(), epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Angle between vectors.
|
||||
*
|
||||
*/
|
||||
fn angle_is_commutative_2(a: Vector2<f64>, b: Vector2<f64>) -> bool {
|
||||
a.angle(&b) == b.angle(&a)
|
||||
}
|
||||
|
||||
fn angle_is_commutative_3(a: Vector3<f64>, b: Vector3<f64>) -> bool {
|
||||
a.angle(&b) == b.angle(&a)
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Rotation matrix between vectors.
|
||||
*
|
||||
*/
|
||||
fn rotation_between_is_anticommutative_2(a: Vector2<f64>, b: Vector2<f64>) -> bool {
|
||||
let rab = Rotation2::rotation_between(&a, &b);
|
||||
let rba = Rotation2::rotation_between(&b, &a);
|
||||
|
||||
relative_eq!(rab * rba, Rotation2::identity())
|
||||
}
|
||||
|
||||
fn rotation_between_is_anticommutative_3(a: Vector3<f64>, b: Vector3<f64>) -> bool {
|
||||
let rots = (Rotation3::rotation_between(&a, &b), Rotation3::rotation_between(&b, &a));
|
||||
if let (Some(rab), Some(rba)) = rots {
|
||||
relative_eq!(rab * rba, Rotation3::identity(), epsilon = 1.0e-7)
|
||||
roll[(0, 0)] == 1.0 && // rotation wrt. x axis.
|
||||
pitch[(1, 1)] == 1.0 && // rotation wrt. y axis.
|
||||
yaw[(2, 2)] == 1.0 && // rotation wrt. z axis.
|
||||
yaw * pitch * roll == rpy
|
||||
}
|
||||
else {
|
||||
true
|
||||
|
||||
fn to_euler_angles(r: f64, p: f64, y: f64) -> bool {
|
||||
let rpy = Rotation3::from_euler_angles(r, p, y);
|
||||
let (roll, pitch, yaw) = rpy.to_euler_angles();
|
||||
relative_eq!(Rotation3::from_euler_angles(roll, pitch, yaw), rpy, epsilon = 1.0e-7)
|
||||
}
|
||||
}
|
||||
|
||||
fn rotation_between_is_identity(v2: Vector2<f64>, v3: Vector3<f64>) -> bool {
|
||||
let vv2 = 3.42 * v2;
|
||||
let vv3 = 4.23 * v3;
|
||||
|
||||
relative_eq!(v2.angle(&vv2), 0.0, epsilon = 1.0e-7) &&
|
||||
relative_eq!(v3.angle(&vv3), 0.0, epsilon = 1.0e-7) &&
|
||||
relative_eq!(Rotation2::rotation_between(&v2, &vv2), Rotation2::identity()) &&
|
||||
Rotation3::rotation_between(&v3, &vv3).unwrap() == Rotation3::identity()
|
||||
}
|
||||
|
||||
fn rotation_between_2(a: Vector2<f64>, b: Vector2<f64>) -> bool {
|
||||
if !relative_eq!(a.angle(&b), 0.0, epsilon = 1.0e-7) {
|
||||
let r = Rotation2::rotation_between(&a, &b);
|
||||
relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7)
|
||||
fn to_euler_angles_gimble_lock(r: f64, y: f64) -> bool {
|
||||
let pos = Rotation3::from_euler_angles(r, f64::frac_pi_2(), y);
|
||||
let neg = Rotation3::from_euler_angles(r, -f64::frac_pi_2(), y);
|
||||
let (pos_r, pos_p, pos_y) = pos.to_euler_angles();
|
||||
let (neg_r, neg_p, neg_y) = neg.to_euler_angles();
|
||||
relative_eq!(Rotation3::from_euler_angles(pos_r, pos_p, pos_y), pos, epsilon = 1.0e-7) &&
|
||||
relative_eq!(Rotation3::from_euler_angles(neg_r, neg_p, neg_y), neg, epsilon = 1.0e-7)
|
||||
}
|
||||
else {
|
||||
true
|
||||
|
||||
/*
|
||||
*
|
||||
* Inversion is transposition.
|
||||
*
|
||||
*/
|
||||
fn rotation_inv_3(a: Rotation3<f64>) -> bool {
|
||||
let ta = a.transpose();
|
||||
let ia = a.inverse();
|
||||
|
||||
ta == ia &&
|
||||
relative_eq!(&ta * &a, Rotation3::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!(&ia * a, Rotation3::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!( a * &ta, Rotation3::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!( a * ia, Rotation3::identity(), epsilon = 1.0e-7)
|
||||
}
|
||||
}
|
||||
|
||||
fn rotation_between_3(a: Vector3<f64>, b: Vector3<f64>) -> bool {
|
||||
if !relative_eq!(a.angle(&b), 0.0, epsilon = 1.0e-7) {
|
||||
let r = Rotation3::rotation_between(&a, &b).unwrap();
|
||||
relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7)
|
||||
fn rotation_inv_2(a: Rotation2<f64>) -> bool {
|
||||
let ta = a.transpose();
|
||||
let ia = a.inverse();
|
||||
|
||||
ta == ia &&
|
||||
relative_eq!(&ta * &a, Rotation2::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!(&ia * a, Rotation2::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!( a * &ta, Rotation2::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!( a * ia, Rotation2::identity(), epsilon = 1.0e-7)
|
||||
}
|
||||
else {
|
||||
true
|
||||
|
||||
/*
|
||||
*
|
||||
* Angle between vectors.
|
||||
*
|
||||
*/
|
||||
fn angle_is_commutative_2(a: Vector2<f64>, b: Vector2<f64>) -> bool {
|
||||
a.angle(&b) == b.angle(&a)
|
||||
}
|
||||
|
||||
fn angle_is_commutative_3(a: Vector3<f64>, b: Vector3<f64>) -> bool {
|
||||
a.angle(&b) == b.angle(&a)
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Rotation matrix between vectors.
|
||||
*
|
||||
*/
|
||||
fn rotation_between_is_anticommutative_2(a: Vector2<f64>, b: Vector2<f64>) -> bool {
|
||||
let rab = Rotation2::rotation_between(&a, &b);
|
||||
let rba = Rotation2::rotation_between(&b, &a);
|
||||
|
||||
relative_eq!(rab * rba, Rotation2::identity())
|
||||
}
|
||||
|
||||
fn rotation_between_is_anticommutative_3(a: Vector3<f64>, b: Vector3<f64>) -> bool {
|
||||
let rots = (Rotation3::rotation_between(&a, &b), Rotation3::rotation_between(&b, &a));
|
||||
if let (Some(rab), Some(rba)) = rots {
|
||||
relative_eq!(rab * rba, Rotation3::identity(), epsilon = 1.0e-7)
|
||||
}
|
||||
else {
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
fn rotation_between_is_identity(v2: Vector2<f64>, v3: Vector3<f64>) -> bool {
|
||||
let vv2 = 3.42 * v2;
|
||||
let vv3 = 4.23 * v3;
|
||||
|
||||
relative_eq!(v2.angle(&vv2), 0.0, epsilon = 1.0e-7) &&
|
||||
relative_eq!(v3.angle(&vv3), 0.0, epsilon = 1.0e-7) &&
|
||||
relative_eq!(Rotation2::rotation_between(&v2, &vv2), Rotation2::identity()) &&
|
||||
Rotation3::rotation_between(&v3, &vv3).unwrap() == Rotation3::identity()
|
||||
}
|
||||
|
||||
fn rotation_between_2(a: Vector2<f64>, b: Vector2<f64>) -> bool {
|
||||
if !relative_eq!(a.angle(&b), 0.0, epsilon = 1.0e-7) {
|
||||
let r = Rotation2::rotation_between(&a, &b);
|
||||
relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7)
|
||||
}
|
||||
else {
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
fn rotation_between_3(a: Vector3<f64>, b: Vector3<f64>) -> bool {
|
||||
if !relative_eq!(a.angle(&b), 0.0, epsilon = 1.0e-7) {
|
||||
let r = Rotation3::rotation_between(&a, &b).unwrap();
|
||||
relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7)
|
||||
}
|
||||
else {
|
||||
true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Rotation construction.
|
||||
*
|
||||
*/
|
||||
fn new_rotation_2(angle: f64) -> bool {
|
||||
let r = Rotation2::new(angle);
|
||||
/*
|
||||
*
|
||||
* Rotation construction.
|
||||
*
|
||||
*/
|
||||
fn new_rotation_2(angle: f64) -> bool {
|
||||
let r = Rotation2::new(angle);
|
||||
|
||||
let angle = na::wrap(angle, -f64::pi(), f64::pi());
|
||||
relative_eq!(r.angle(), angle, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn new_rotation_3(axisangle: Vector3<f64>) -> bool {
|
||||
let r = Rotation3::new(axisangle);
|
||||
|
||||
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, 0.0) {
|
||||
let angle = na::wrap(angle, -f64::pi(), f64::pi());
|
||||
(relative_eq!(r.angle(), angle, epsilon = 1.0e-7) &&
|
||||
relative_eq!(r.axis().unwrap(), axis, epsilon = 1.0e-7)) ||
|
||||
(relative_eq!(r.angle(), -angle, epsilon = 1.0e-7) &&
|
||||
relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7))
|
||||
relative_eq!(r.angle(), angle, epsilon = 1.0e-7)
|
||||
}
|
||||
else {
|
||||
r == Rotation3::identity()
|
||||
|
||||
fn new_rotation_3(axisangle: Vector3<f64>) -> bool {
|
||||
let r = Rotation3::new(axisangle);
|
||||
|
||||
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, 0.0) {
|
||||
let angle = na::wrap(angle, -f64::pi(), f64::pi());
|
||||
(relative_eq!(r.angle(), angle, epsilon = 1.0e-7) &&
|
||||
relative_eq!(r.axis().unwrap(), axis, epsilon = 1.0e-7)) ||
|
||||
(relative_eq!(r.angle(), -angle, epsilon = 1.0e-7) &&
|
||||
relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7))
|
||||
}
|
||||
else {
|
||||
r == Rotation3::identity()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Rotation pow.
|
||||
*
|
||||
*/
|
||||
fn powf_rotation_2(angle: f64, pow: f64) -> bool {
|
||||
let r = Rotation2::new(angle).powf(pow);
|
||||
/*
|
||||
*
|
||||
* Rotation pow.
|
||||
*
|
||||
*/
|
||||
fn powf_rotation_2(angle: f64, pow: f64) -> bool {
|
||||
let r = Rotation2::new(angle).powf(pow);
|
||||
|
||||
let angle = na::wrap(angle, -f64::pi(), f64::pi());
|
||||
let pangle = na::wrap(angle * pow, -f64::pi(), f64::pi());
|
||||
relative_eq!(r.angle(), pangle, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn powf_rotation_3(axisangle: Vector3<f64>, pow: f64) -> bool {
|
||||
let r = Rotation3::new(axisangle).powf(pow);
|
||||
|
||||
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, 0.0) {
|
||||
let angle = na::wrap(angle, -f64::pi(), f64::pi());
|
||||
let angle = na::wrap(angle, -f64::pi(), f64::pi());
|
||||
let pangle = na::wrap(angle * pow, -f64::pi(), f64::pi());
|
||||
|
||||
(relative_eq!(r.angle(), pangle, epsilon = 1.0e-7) &&
|
||||
relative_eq!(r.axis().unwrap(), axis, epsilon = 1.0e-7)) ||
|
||||
(relative_eq!(r.angle(), -pangle, epsilon = 1.0e-7) &&
|
||||
relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7))
|
||||
relative_eq!(r.angle(), pangle, epsilon = 1.0e-7)
|
||||
}
|
||||
else {
|
||||
r == Rotation3::identity()
|
||||
|
||||
fn powf_rotation_3(axisangle: Vector3<f64>, pow: f64) -> bool {
|
||||
let r = Rotation3::new(axisangle).powf(pow);
|
||||
|
||||
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, 0.0) {
|
||||
let angle = na::wrap(angle, -f64::pi(), f64::pi());
|
||||
let pangle = na::wrap(angle * pow, -f64::pi(), f64::pi());
|
||||
|
||||
(relative_eq!(r.angle(), pangle, epsilon = 1.0e-7) &&
|
||||
relative_eq!(r.axis().unwrap(), axis, epsilon = 1.0e-7)) ||
|
||||
(relative_eq!(r.angle(), -pangle, epsilon = 1.0e-7) &&
|
||||
relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7))
|
||||
}
|
||||
else {
|
||||
r == Rotation3::identity()
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
}
|
||||
|
@ -1,9 +1,9 @@
|
||||
#![cfg(feature = "arbitrary")]
|
||||
#![allow(non_snake_case)]
|
||||
|
||||
use alga::linear::{Transformation, ProjectiveTransformation};
|
||||
use na::{Vector3, Point3, Similarity3, Translation3, Isometry3, UnitQuaternion};
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck!(
|
||||
fn inverse_is_identity(i: Similarity3<f64>, p: Point3<f64>, v: Vector3<f64>) -> bool {
|
||||
let ii = i.inverse();
|
||||
|
@ -1,9 +1,8 @@
|
||||
#![cfg(feature = "arbitrary")]
|
||||
#![allow(non_snake_case)]
|
||||
|
||||
use na::{Unit, UnitComplex, Vector2, Point2, Rotation2};
|
||||
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck!(
|
||||
|
||||
/*
|
||||
|
@ -1,9 +1,10 @@
|
||||
#![cfg(feature = "arbitrary")]
|
||||
|
||||
use std::cmp;
|
||||
|
||||
use na::{DMatrix, Matrix4};
|
||||
use na::balancing;
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck! {
|
||||
fn balancing_parlett_reinsch(n: usize) -> bool {
|
||||
let n = cmp::min(n, 10);
|
||||
|
@ -1,7 +1,7 @@
|
||||
#![cfg(feature = "arbitrary")]
|
||||
|
||||
use na::{DMatrix, Matrix2, Matrix4, Matrix5x3, Matrix3x5};
|
||||
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck! {
|
||||
fn bidiagonal(m: DMatrix<f64>) -> bool {
|
||||
if m.len() == 0 {
|
||||
|
@ -1,58 +1,61 @@
|
||||
use std::cmp;
|
||||
|
||||
use na::{DMatrix, Matrix2, Matrix3, Matrix4};
|
||||
use na::DMatrix;
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck! {
|
||||
fn symmetric_eigen(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 10));
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
let eig = m.clone().symmetric_eigen();
|
||||
let recomp = eig.recompose();
|
||||
mod quickcheck_tests {
|
||||
use std::cmp;
|
||||
use na::{DMatrix, Matrix2, Matrix3, Matrix4};
|
||||
|
||||
println!("{}{}", m.lower_triangle(), recomp.lower_triangle());
|
||||
quickcheck! {
|
||||
fn symmetric_eigen(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 10));
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
let eig = m.clone().symmetric_eigen();
|
||||
let recomp = eig.recompose();
|
||||
|
||||
relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)
|
||||
}
|
||||
println!("{}{}", m.lower_triangle(), recomp.lower_triangle());
|
||||
|
||||
fn symmetric_eigen_singular(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 10));
|
||||
let mut m = DMatrix::<f64>::new_random(n, n);
|
||||
m.row_mut(n / 2).fill(0.0);
|
||||
m.column_mut(n / 2).fill(0.0);
|
||||
let eig = m.clone().symmetric_eigen();
|
||||
let recomp = eig.recompose();
|
||||
relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)
|
||||
}
|
||||
|
||||
println!("{}{}", m.lower_triangle(), recomp.lower_triangle());
|
||||
fn symmetric_eigen_singular(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 10));
|
||||
let mut m = DMatrix::<f64>::new_random(n, n);
|
||||
m.row_mut(n / 2).fill(0.0);
|
||||
m.column_mut(n / 2).fill(0.0);
|
||||
let eig = m.clone().symmetric_eigen();
|
||||
let recomp = eig.recompose();
|
||||
|
||||
relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)
|
||||
}
|
||||
println!("{}{}", m.lower_triangle(), recomp.lower_triangle());
|
||||
|
||||
fn symmetric_eigen_static_square_4x4(m: Matrix4<f64>) -> bool {
|
||||
let eig = m.symmetric_eigen();
|
||||
let recomp = eig.recompose();
|
||||
relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)
|
||||
}
|
||||
|
||||
println!("{}{}", m.lower_triangle(), recomp.lower_triangle());
|
||||
fn symmetric_eigen_static_square_4x4(m: Matrix4<f64>) -> bool {
|
||||
let eig = m.symmetric_eigen();
|
||||
let recomp = eig.recompose();
|
||||
|
||||
relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)
|
||||
}
|
||||
println!("{}{}", m.lower_triangle(), recomp.lower_triangle());
|
||||
|
||||
fn symmetric_eigen_static_square_3x3(m: Matrix3<f64>) -> bool {
|
||||
let eig = m.symmetric_eigen();
|
||||
let recomp = eig.recompose();
|
||||
relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)
|
||||
}
|
||||
|
||||
println!("{}{}", m.lower_triangle(), recomp.lower_triangle());
|
||||
fn symmetric_eigen_static_square_3x3(m: Matrix3<f64>) -> bool {
|
||||
let eig = m.symmetric_eigen();
|
||||
let recomp = eig.recompose();
|
||||
|
||||
relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)
|
||||
}
|
||||
println!("{}{}", m.lower_triangle(), recomp.lower_triangle());
|
||||
|
||||
fn symmetric_eigen_static_square_2x2(m: Matrix2<f64>) -> bool {
|
||||
let eig = m.symmetric_eigen();
|
||||
let recomp = eig.recompose();
|
||||
relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)
|
||||
}
|
||||
|
||||
println!("{}{}", m.lower_triangle(), recomp.lower_triangle());
|
||||
fn symmetric_eigen_static_square_2x2(m: Matrix2<f64>) -> bool {
|
||||
let eig = m.symmetric_eigen();
|
||||
let recomp = eig.recompose();
|
||||
|
||||
relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)
|
||||
println!("{}{}", m.lower_triangle(), recomp.lower_triangle());
|
||||
|
||||
relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,7 +1,4 @@
|
||||
use std::cmp;
|
||||
use na::{DMatrix, Matrix3, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5,
|
||||
DVector, Vector4};
|
||||
|
||||
use na::Matrix3;
|
||||
|
||||
#[test]
|
||||
fn full_piv_lu_simple() {
|
||||
@ -42,114 +39,119 @@ fn full_piv_lu_simple_with_pivot() {
|
||||
}
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck! {
|
||||
fn full_piv_lu(m: DMatrix<f64>) -> bool {
|
||||
let mut m = m;
|
||||
if m.len() == 0 {
|
||||
m = DMatrix::new_random(1, 1);
|
||||
}
|
||||
mod quickcheck_tests {
|
||||
use std::cmp;
|
||||
use na::{DMatrix, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5, DVector, Vector4};
|
||||
|
||||
let lu = m.clone().full_piv_lu();
|
||||
let (p, l, u, q) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
q.inv_permute_columns(&mut lu);
|
||||
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn full_piv_lu_static_3_5(m: Matrix3x5<f64>) -> bool {
|
||||
let lu = m.full_piv_lu();
|
||||
let (p, l, u, q) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
q.inv_permute_columns(&mut lu);
|
||||
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn full_piv_lu_static_5_3(m: Matrix5x3<f64>) -> bool {
|
||||
let lu = m.full_piv_lu();
|
||||
let (p, l, u, q) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
q.inv_permute_columns(&mut lu);
|
||||
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn full_piv_lu_static_square(m: Matrix4<f64>) -> bool {
|
||||
let lu = m.full_piv_lu();
|
||||
let (p, l, u, q) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
q.inv_permute_columns(&mut lu);
|
||||
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn full_piv_lu_solve(n: usize, nb: usize) -> bool {
|
||||
if n != 0 && nb != 0 {
|
||||
let n = cmp::min(n, 50); // To avoid slowing down the test too much.
|
||||
let nb = cmp::min(nb, 50); // To avoid slowing down the test too much.
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
quickcheck! {
|
||||
fn full_piv_lu(m: DMatrix<f64>) -> bool {
|
||||
let mut m = m;
|
||||
if m.len() == 0 {
|
||||
m = DMatrix::new_random(1, 1);
|
||||
}
|
||||
|
||||
let lu = m.clone().full_piv_lu();
|
||||
let b1 = DVector::new_random(n);
|
||||
let b2 = DMatrix::new_random(n, nb);
|
||||
let (p, l, u, q) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
q.inv_permute_columns(&mut lu);
|
||||
|
||||
let sol1 = lu.solve(&b1);
|
||||
let sol2 = lu.solve(&b2);
|
||||
|
||||
return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) &&
|
||||
(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6))
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
fn full_piv_lu_static_3_5(m: Matrix3x5<f64>) -> bool {
|
||||
let lu = m.full_piv_lu();
|
||||
let (p, l, u, q) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
q.inv_permute_columns(&mut lu);
|
||||
|
||||
fn full_piv_lu_solve_static(m: Matrix4<f64>) -> bool {
|
||||
let lu = m.full_piv_lu();
|
||||
let b1 = Vector4::new_random();
|
||||
let b2 = Matrix4x3::new_random();
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
let sol1 = lu.solve(&b1);
|
||||
let sol2 = lu.solve(&b2);
|
||||
fn full_piv_lu_static_5_3(m: Matrix5x3<f64>) -> bool {
|
||||
let lu = m.full_piv_lu();
|
||||
let (p, l, u, q) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
q.inv_permute_columns(&mut lu);
|
||||
|
||||
return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) &&
|
||||
(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6))
|
||||
}
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn full_piv_lu_inverse(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much.
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
fn full_piv_lu_static_square(m: Matrix4<f64>) -> bool {
|
||||
let lu = m.full_piv_lu();
|
||||
let (p, l, u, q) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
q.inv_permute_columns(&mut lu);
|
||||
|
||||
let mut l = m.lower_triangle();
|
||||
let mut u = m.upper_triangle();
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
// Ensure the matrix is well conditioned for inversion.
|
||||
l.fill_diagonal(1.0);
|
||||
u.fill_diagonal(1.0);
|
||||
let m = l * u;
|
||||
fn full_piv_lu_solve(n: usize, nb: usize) -> bool {
|
||||
if n != 0 && nb != 0 {
|
||||
let n = cmp::min(n, 50); // To avoid slowing down the test too much.
|
||||
let nb = cmp::min(nb, 50); // To avoid slowing down the test too much.
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
|
||||
let m1 = m.clone().full_piv_lu().try_inverse().unwrap();
|
||||
let id1 = &m * &m1;
|
||||
let id2 = &m1 * &m;
|
||||
let lu = m.clone().full_piv_lu();
|
||||
let b1 = DVector::new_random(n);
|
||||
let b2 = DMatrix::new_random(n, nb);
|
||||
|
||||
return id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5);
|
||||
}
|
||||
let sol1 = lu.solve(&b1);
|
||||
let sol2 = lu.solve(&b2);
|
||||
|
||||
fn full_piv_lu_inverse_static(m: Matrix4<f64>) -> bool {
|
||||
let lu = m.full_piv_lu();
|
||||
return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) &&
|
||||
(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6))
|
||||
}
|
||||
|
||||
if let Some(m1) = lu.try_inverse() {
|
||||
return true;
|
||||
}
|
||||
|
||||
fn full_piv_lu_solve_static(m: Matrix4<f64>) -> bool {
|
||||
let lu = m.full_piv_lu();
|
||||
let b1 = Vector4::new_random();
|
||||
let b2 = Matrix4x3::new_random();
|
||||
|
||||
let sol1 = lu.solve(&b1);
|
||||
let sol2 = lu.solve(&b2);
|
||||
|
||||
return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) &&
|
||||
(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6))
|
||||
}
|
||||
|
||||
fn full_piv_lu_inverse(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much.
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
|
||||
let mut l = m.lower_triangle();
|
||||
let mut u = m.upper_triangle();
|
||||
|
||||
// Ensure the matrix is well conditioned for inversion.
|
||||
l.fill_diagonal(1.0);
|
||||
u.fill_diagonal(1.0);
|
||||
let m = l * u;
|
||||
|
||||
let m1 = m.clone().full_piv_lu().try_inverse().unwrap();
|
||||
let id1 = &m * &m1;
|
||||
let id2 = &m1 * &m;
|
||||
|
||||
id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5)
|
||||
return id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5);
|
||||
}
|
||||
else {
|
||||
true
|
||||
|
||||
fn full_piv_lu_inverse_static(m: Matrix4<f64>) -> bool {
|
||||
let lu = m.full_piv_lu();
|
||||
|
||||
if let Some(m1) = lu.try_inverse() {
|
||||
let id1 = &m * &m1;
|
||||
let id2 = &m1 * &m;
|
||||
|
||||
id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5)
|
||||
}
|
||||
else {
|
||||
true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +1,8 @@
|
||||
#![cfg(feature = "arbitrary")]
|
||||
|
||||
use std::cmp;
|
||||
use na::{DMatrix, Matrix2, Matrix4};
|
||||
|
||||
|
||||
#[test]
|
||||
fn hessenberg_simple() {
|
||||
let m = Matrix2::new(1.0, 0.0,
|
||||
@ -11,8 +12,6 @@ fn hessenberg_simple() {
|
||||
assert!(relative_eq!(m, p * h * p.transpose(), epsilon = 1.0e-7))
|
||||
}
|
||||
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck! {
|
||||
fn hessenberg(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 50));
|
||||
|
@ -1,7 +1,4 @@
|
||||
use std::cmp;
|
||||
use na::{DMatrix, Matrix3, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5,
|
||||
DVector, Vector4};
|
||||
|
||||
use na::Matrix3;
|
||||
|
||||
#[test]
|
||||
fn lu_simple() {
|
||||
@ -40,110 +37,115 @@ fn lu_simple_with_pivot() {
|
||||
}
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck! {
|
||||
fn lu(m: DMatrix<f64>) -> bool {
|
||||
let mut m = m;
|
||||
if m.len() == 0 {
|
||||
m = DMatrix::new_random(1, 1);
|
||||
}
|
||||
mod quickcheck_tests {
|
||||
use std::cmp;
|
||||
use na::{DMatrix, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5, DVector, Vector4};
|
||||
|
||||
let lu = m.clone().lu();
|
||||
let (p, l, u) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn lu_static_3_5(m: Matrix3x5<f64>) -> bool {
|
||||
let lu = m.lu();
|
||||
let (p, l, u) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn lu_static_5_3(m: Matrix5x3<f64>) -> bool {
|
||||
let lu = m.lu();
|
||||
let (p, l, u) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn lu_static_square(m: Matrix4<f64>) -> bool {
|
||||
let lu = m.lu();
|
||||
let (p, l, u) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn lu_solve(n: usize, nb: usize) -> bool {
|
||||
if n != 0 && nb != 0 {
|
||||
let n = cmp::min(n, 50); // To avoid slowing down the test too much.
|
||||
let nb = cmp::min(nb, 50); // To avoid slowing down the test too much.
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
quickcheck! {
|
||||
fn lu(m: DMatrix<f64>) -> bool {
|
||||
let mut m = m;
|
||||
if m.len() == 0 {
|
||||
m = DMatrix::new_random(1, 1);
|
||||
}
|
||||
|
||||
let lu = m.clone().lu();
|
||||
let b1 = DVector::new_random(n);
|
||||
let b2 = DMatrix::new_random(n, nb);
|
||||
let (p, l, u) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
|
||||
let sol1 = lu.solve(&b1);
|
||||
let sol2 = lu.solve(&b2);
|
||||
|
||||
return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) &&
|
||||
(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6))
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
fn lu_static_3_5(m: Matrix3x5<f64>) -> bool {
|
||||
let lu = m.lu();
|
||||
let (p, l, u) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
|
||||
fn lu_solve_static(m: Matrix4<f64>) -> bool {
|
||||
let lu = m.lu();
|
||||
let b1 = Vector4::new_random();
|
||||
let b2 = Matrix4x3::new_random();
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
let sol1 = lu.solve(&b1);
|
||||
let sol2 = lu.solve(&b2);
|
||||
fn lu_static_5_3(m: Matrix5x3<f64>) -> bool {
|
||||
let lu = m.lu();
|
||||
let (p, l, u) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
|
||||
return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) &&
|
||||
(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6))
|
||||
}
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn lu_inverse(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much.
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
fn lu_static_square(m: Matrix4<f64>) -> bool {
|
||||
let lu = m.lu();
|
||||
let (p, l, u) = lu.unpack();
|
||||
let mut lu = l * u;
|
||||
p.inv_permute_rows(&mut lu);
|
||||
|
||||
let mut l = m.lower_triangle();
|
||||
let mut u = m.upper_triangle();
|
||||
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
// Ensure the matrix is well conditioned for inversion.
|
||||
l.fill_diagonal(1.0);
|
||||
u.fill_diagonal(1.0);
|
||||
let m = l * u;
|
||||
fn lu_solve(n: usize, nb: usize) -> bool {
|
||||
if n != 0 && nb != 0 {
|
||||
let n = cmp::min(n, 50); // To avoid slowing down the test too much.
|
||||
let nb = cmp::min(nb, 50); // To avoid slowing down the test too much.
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
|
||||
let m1 = m.clone().lu().try_inverse().unwrap();
|
||||
let id1 = &m * &m1;
|
||||
let id2 = &m1 * &m;
|
||||
let lu = m.clone().lu();
|
||||
let b1 = DVector::new_random(n);
|
||||
let b2 = DMatrix::new_random(n, nb);
|
||||
|
||||
return id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5);
|
||||
}
|
||||
let sol1 = lu.solve(&b1);
|
||||
let sol2 = lu.solve(&b2);
|
||||
|
||||
fn lu_inverse_static(m: Matrix4<f64>) -> bool {
|
||||
let lu = m.lu();
|
||||
return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) &&
|
||||
(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6))
|
||||
}
|
||||
|
||||
if let Some(m1) = lu.try_inverse() {
|
||||
return true;
|
||||
}
|
||||
|
||||
fn lu_solve_static(m: Matrix4<f64>) -> bool {
|
||||
let lu = m.lu();
|
||||
let b1 = Vector4::new_random();
|
||||
let b2 = Matrix4x3::new_random();
|
||||
|
||||
let sol1 = lu.solve(&b1);
|
||||
let sol2 = lu.solve(&b2);
|
||||
|
||||
return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) &&
|
||||
(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6))
|
||||
}
|
||||
|
||||
fn lu_inverse(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much.
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
|
||||
let mut l = m.lower_triangle();
|
||||
let mut u = m.upper_triangle();
|
||||
|
||||
// Ensure the matrix is well conditioned for inversion.
|
||||
l.fill_diagonal(1.0);
|
||||
u.fill_diagonal(1.0);
|
||||
let m = l * u;
|
||||
|
||||
let m1 = m.clone().lu().try_inverse().unwrap();
|
||||
let id1 = &m * &m1;
|
||||
let id2 = &m1 * &m;
|
||||
|
||||
id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5)
|
||||
return id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5);
|
||||
}
|
||||
else {
|
||||
true
|
||||
|
||||
fn lu_inverse_static(m: Matrix4<f64>) -> bool {
|
||||
let lu = m.lu();
|
||||
|
||||
if let Some(m1) = lu.try_inverse() {
|
||||
let id1 = &m * &m1;
|
||||
let id2 = &m1 * &m;
|
||||
|
||||
id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5)
|
||||
}
|
||||
else {
|
||||
true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,8 +1,9 @@
|
||||
#![cfg(feature = "arbitrary")]
|
||||
|
||||
use std::cmp;
|
||||
use na::{DMatrix, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5,
|
||||
DVector, Vector4};
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck! {
|
||||
fn qr(m: DMatrix<f64>) -> bool {
|
||||
let qr = m.clone().qr();
|
||||
|
@ -1,5 +1,4 @@
|
||||
use std::cmp;
|
||||
use na::{DMatrix, Matrix2, Matrix3, Matrix4};
|
||||
use na::{DMatrix, Matrix3, Matrix4};
|
||||
|
||||
|
||||
#[test]
|
||||
@ -15,49 +14,54 @@ fn schur_simpl_mat3() {
|
||||
}
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck! {
|
||||
fn schur(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 10));
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
mod quickcheck_tests {
|
||||
use std::cmp;
|
||||
use na::{DMatrix, Matrix2, Matrix3, Matrix4};
|
||||
|
||||
let (vecs, vals) = m.clone().real_schur().unpack();
|
||||
quickcheck! {
|
||||
fn schur(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 10));
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
|
||||
if !relative_eq!(&vecs * &vals * vecs.transpose(), m, epsilon = 1.0e-7) {
|
||||
println!("{:.5}{:.5}", m, &vecs * &vals * vecs.transpose());
|
||||
let (vecs, vals) = m.clone().real_schur().unpack();
|
||||
|
||||
if !relative_eq!(&vecs * &vals * vecs.transpose(), m, epsilon = 1.0e-7) {
|
||||
println!("{:.5}{:.5}", m, &vecs * &vals * vecs.transpose());
|
||||
}
|
||||
|
||||
relative_eq!(&vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
relative_eq!(&vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7)
|
||||
}
|
||||
fn schur_static_mat2(m: Matrix2<f64>) -> bool {
|
||||
let (vecs, vals) = m.clone().real_schur().unpack();
|
||||
|
||||
fn schur_static_mat2(m: Matrix2<f64>) -> bool {
|
||||
let (vecs, vals) = m.clone().real_schur().unpack();
|
||||
|
||||
let ok = relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7);
|
||||
if !ok {
|
||||
println!("{:.5}{:.5}", vecs, vals);
|
||||
println!("Reconstruction:{}{}", m, &vecs * &vals * vecs.transpose());
|
||||
let ok = relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7);
|
||||
if !ok {
|
||||
println!("{:.5}{:.5}", vecs, vals);
|
||||
println!("Reconstruction:{}{}", m, &vecs * &vals * vecs.transpose());
|
||||
}
|
||||
ok
|
||||
}
|
||||
ok
|
||||
}
|
||||
|
||||
fn schur_static_mat3(m: Matrix3<f64>) -> bool {
|
||||
let (vecs, vals) = m.clone().real_schur().unpack();
|
||||
fn schur_static_mat3(m: Matrix3<f64>) -> bool {
|
||||
let (vecs, vals) = m.clone().real_schur().unpack();
|
||||
|
||||
let ok = relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7);
|
||||
if !ok {
|
||||
println!("{:.5}{:.5}", m, &vecs * &vals * vecs.transpose());
|
||||
let ok = relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7);
|
||||
if !ok {
|
||||
println!("{:.5}{:.5}", m, &vecs * &vals * vecs.transpose());
|
||||
}
|
||||
ok
|
||||
}
|
||||
ok
|
||||
}
|
||||
|
||||
fn schur_static_mat4(m: Matrix4<f64>) -> bool {
|
||||
let (vecs, vals) = m.clone().real_schur().unpack();
|
||||
fn schur_static_mat4(m: Matrix4<f64>) -> bool {
|
||||
let (vecs, vals) = m.clone().real_schur().unpack();
|
||||
|
||||
let ok = relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7);
|
||||
if !ok {
|
||||
println!("{:.5}{:.5}", m, &vecs * &vals * vecs.transpose());
|
||||
let ok = relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7);
|
||||
if !ok {
|
||||
println!("{:.5}{:.5}", m, &vecs * &vals * vecs.transpose());
|
||||
}
|
||||
ok
|
||||
}
|
||||
ok
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,3 +1,5 @@
|
||||
#![cfg(feature = "arbitrary")]
|
||||
|
||||
use na::{Matrix4, Matrix4x5};
|
||||
|
||||
fn unzero_diagonal(a: &mut Matrix4<f64>) {
|
||||
@ -8,7 +10,6 @@ fn unzero_diagonal(a: &mut Matrix4<f64>) {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck! {
|
||||
fn solve_lower_triangular(a: Matrix4<f64>, b: Matrix4x5<f64>) -> bool {
|
||||
let mut a = a;
|
||||
|
@ -1,142 +1,143 @@
|
||||
use std::cmp;
|
||||
|
||||
use na::{DMatrix, Matrix2, Matrix3, Matrix4, Matrix6, Matrix5x2, Matrix5x3, Matrix2x5, Matrix3x5,
|
||||
DVector};
|
||||
|
||||
use na::{DMatrix, Matrix6};
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck! {
|
||||
fn svd(m: DMatrix<f64>) -> bool {
|
||||
if m.len() > 0 {
|
||||
let svd = m.clone().svd(true, true);
|
||||
let recomp_m = svd.clone().recompose();
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = DMatrix::from_diagonal(&s);
|
||||
mod quickcheck_tests {
|
||||
use std::cmp;
|
||||
use na::{DMatrix, Matrix2, Matrix3, Matrix4, Matrix5x2, Matrix5x3, Matrix2x5, Matrix3x5, DVector};
|
||||
|
||||
println!("{}{}", &m, &u * &ds * &v_t);
|
||||
quickcheck! {
|
||||
fn svd(m: DMatrix<f64>) -> bool {
|
||||
if m.len() > 0 {
|
||||
let svd = m.clone().svd(true, true);
|
||||
let recomp_m = svd.clone().recompose();
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = DMatrix::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(&u * ds * &v_t, recomp_m, epsilon = 1.0e-5) &&
|
||||
relative_eq!(m, recomp_m, epsilon = 1.0e-5)
|
||||
}
|
||||
else {
|
||||
true
|
||||
}
|
||||
}
|
||||
println!("{}{}", &m, &u * &ds * &v_t);
|
||||
|
||||
fn svd_static_5_3(m: Matrix5x3<f64>) -> bool {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix3::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5) &&
|
||||
u.is_orthogonal(1.0e-5) &&
|
||||
v_t.is_orthogonal(1.0e-5)
|
||||
}
|
||||
|
||||
fn svd_static_5_2(m: Matrix5x2<f64>) -> bool {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix2::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5) &&
|
||||
u.is_orthogonal(1.0e-5) &&
|
||||
v_t.is_orthogonal(1.0e-5)
|
||||
}
|
||||
|
||||
fn svd_static_3_5(m: Matrix3x5<f64>) -> bool {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
|
||||
let ds = Matrix3::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5)
|
||||
}
|
||||
|
||||
fn svd_static_2_5(m: Matrix2x5<f64>) -> bool {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix2::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5)
|
||||
}
|
||||
|
||||
fn svd_static_square(m: Matrix4<f64>) -> bool {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix4::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) &&
|
||||
u.is_orthogonal(1.0e-5) &&
|
||||
v_t.is_orthogonal(1.0e-5)
|
||||
}
|
||||
|
||||
fn svd_static_square_2x2(m: Matrix2<f64>) -> bool {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix2::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) &&
|
||||
u.is_orthogonal(1.0e-5) &&
|
||||
v_t.is_orthogonal(1.0e-5)
|
||||
}
|
||||
|
||||
fn svd_pseudo_inverse(m: DMatrix<f64>) -> bool {
|
||||
if m.len() > 0 {
|
||||
let svd = m.clone().svd(true, true);
|
||||
let pinv = svd.pseudo_inverse(1.0e-10);
|
||||
|
||||
if m.nrows() > m.ncols() {
|
||||
println!("{}", &pinv * &m);
|
||||
(pinv * m).is_identity(1.0e-5)
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(&u * ds * &v_t, recomp_m, epsilon = 1.0e-5) &&
|
||||
relative_eq!(m, recomp_m, epsilon = 1.0e-5)
|
||||
}
|
||||
else {
|
||||
println!("{}", &m * &pinv);
|
||||
(m * pinv).is_identity(1.0e-5)
|
||||
true
|
||||
}
|
||||
}
|
||||
else {
|
||||
|
||||
fn svd_static_5_3(m: Matrix5x3<f64>) -> bool {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix3::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5) &&
|
||||
u.is_orthogonal(1.0e-5) &&
|
||||
v_t.is_orthogonal(1.0e-5)
|
||||
}
|
||||
|
||||
fn svd_static_5_2(m: Matrix5x2<f64>) -> bool {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix2::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5) &&
|
||||
u.is_orthogonal(1.0e-5) &&
|
||||
v_t.is_orthogonal(1.0e-5)
|
||||
}
|
||||
|
||||
fn svd_static_3_5(m: Matrix3x5<f64>) -> bool {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
|
||||
let ds = Matrix3::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5)
|
||||
}
|
||||
|
||||
fn svd_static_2_5(m: Matrix2x5<f64>) -> bool {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix2::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5)
|
||||
}
|
||||
|
||||
fn svd_static_square(m: Matrix4<f64>) -> bool {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix4::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) &&
|
||||
u.is_orthogonal(1.0e-5) &&
|
||||
v_t.is_orthogonal(1.0e-5)
|
||||
}
|
||||
|
||||
fn svd_static_square_2x2(m: Matrix2<f64>) -> bool {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix2::from_diagonal(&s);
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) &&
|
||||
u.is_orthogonal(1.0e-5) &&
|
||||
v_t.is_orthogonal(1.0e-5)
|
||||
}
|
||||
|
||||
fn svd_pseudo_inverse(m: DMatrix<f64>) -> bool {
|
||||
if m.len() > 0 {
|
||||
let svd = m.clone().svd(true, true);
|
||||
let pinv = svd.pseudo_inverse(1.0e-10);
|
||||
|
||||
if m.nrows() > m.ncols() {
|
||||
println!("{}", &pinv * &m);
|
||||
(pinv * m).is_identity(1.0e-5)
|
||||
}
|
||||
else {
|
||||
println!("{}", &m * &pinv);
|
||||
(m * pinv).is_identity(1.0e-5)
|
||||
}
|
||||
}
|
||||
else {
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
fn svd_solve(n: usize, nb: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 10));
|
||||
let nb = cmp::min(nb, 10);
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
|
||||
let svd = m.clone().svd(true, true);
|
||||
|
||||
if svd.rank(1.0e-7) == n {
|
||||
let b1 = DVector::new_random(n);
|
||||
let b2 = DMatrix::new_random(n, nb);
|
||||
|
||||
let sol1 = svd.solve(&b1, 1.0e-7);
|
||||
let sol2 = svd.solve(&b2, 1.0e-7);
|
||||
|
||||
let recomp = svd.recompose();
|
||||
if !relative_eq!(m, recomp, epsilon = 1.0e-6) {
|
||||
println!("{}{}", m, recomp);
|
||||
}
|
||||
|
||||
if !relative_eq!(&m * &sol1, b1, epsilon = 1.0e-6) {
|
||||
println!("Problem 1: {:.6}{:.6}", b1, &m * sol1);
|
||||
return false;
|
||||
}
|
||||
if !relative_eq!(&m * &sol2, b2, epsilon = 1.0e-6) {
|
||||
println!("Problem 2: {:.6}{:.6}", b2, &m * sol2);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
fn svd_solve(n: usize, nb: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 10));
|
||||
let nb = cmp::min(nb, 10);
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
|
||||
let svd = m.clone().svd(true, true);
|
||||
|
||||
if svd.rank(1.0e-7) == n {
|
||||
let b1 = DVector::new_random(n);
|
||||
let b2 = DMatrix::new_random(n, nb);
|
||||
|
||||
let sol1 = svd.solve(&b1, 1.0e-7);
|
||||
let sol2 = svd.solve(&b2, 1.0e-7);
|
||||
|
||||
let recomp = svd.recompose();
|
||||
if !relative_eq!(m, recomp, epsilon = 1.0e-6) {
|
||||
println!("{}{}", m, recomp);
|
||||
}
|
||||
|
||||
if !relative_eq!(&m * &sol1, b1, epsilon = 1.0e-6) {
|
||||
println!("Problem 1: {:.6}{:.6}", b1, &m * sol1);
|
||||
return false;
|
||||
}
|
||||
if !relative_eq!(&m * &sol2, b2, epsilon = 1.0e-6) {
|
||||
println!("Problem 2: {:.6}{:.6}", b2, &m * sol2);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
// Test proposed on the issue #176 of rulinalg.
|
||||
|
@ -1,9 +1,9 @@
|
||||
#![cfg(feature = "arbitrary")]
|
||||
|
||||
use std::cmp;
|
||||
|
||||
use na::{DMatrix, Matrix2, Matrix4};
|
||||
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
quickcheck! {
|
||||
fn symm_tridiagonal(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 50));
|
||||
|
Loading…
Reference in New Issue
Block a user