Deprecate na::, move all reexport to the root crate.

This also moves the tests and benches to cargo-complient folders.

Fix #21.
This commit is contained in:
Sébastien Crozet 2014-09-28 19:20:22 +02:00
parent 8f89ac421c
commit ba18f5aa70
7 changed files with 962 additions and 248 deletions

View File

@ -7,8 +7,7 @@ test:
cargo test
bench:
rustc --test src/lib.rs --opt-level 3 -o bench~ && ./bench~ --bench
rm bench~
cargo bench
doc:
cargo doc

View File

@ -1,3 +1,9 @@
#![feature(macro_rules)]
extern crate debug;
extern crate test;
extern crate "nalgebra" as na;
use std::rand::random;
use test::Bencher;
use na::{Vec2, Vec3, Vec4, Vec5, Vec6, DVec, Mat2, Mat3, Mat4, Mat5, Mat6, DMat};

View File

@ -1,7 +1,12 @@
#![feature(macro_rules)]
extern crate debug;
extern crate test;
extern crate "nalgebra" as na;
use std::rand::random;
use test::Bencher;
use na::{Vec2, Vec3, Vec4, Vec5, Vec6};
use na;
macro_rules! bench_dot_vec(
($bh: expr, $t: ty) => {

View File

@ -10,23 +10,22 @@
An on-line version of this documentation is available [here](http://nalgebra.org).
## Using **nalgebra**
All the functionalities of **nalgebra** are grouped in one place: the `na` module.
All the functionalities of **nalgebra** are grouped in one place: the root `nalgebra::` module.
This module re-exports everything and includes free functions for all traits methods doing
out-of-place modifications.
* You can import the whole prelude using:
```.ignore
use nalgebra::na::*;
use nalgebra::*;
```
The preferred way to use **nalgebra** is to import types and traits explicitly, and call
free-functions using the `na::` prefix:
```.rust
extern crate nalgebra;
use nalgebra::na::{Vec3, Rot3, Rotation};
use nalgebra::na;
extern crate "nalgebra" as na;
use na::{Vec3, Rot3, Rotation};
fn main() {
let a = Vec3::new(1.0f64, 1.0, 1.0);
@ -55,9 +54,8 @@ and keeps an optimized set of tools for computational graphics and physics. Thos
For example, the following works:
```rust
extern crate nalgebra;
use nalgebra::na::{Vec3, Mat3};
use nalgebra::na;
extern crate "nalgebra" as na;
use na::{Vec3, Mat3};
fn main() {
let v: Vec3<f64> = na::zero();
@ -99,6 +97,7 @@ Feel free to add your project to this list if you happen to use **nalgebra**!
#![deny(unused_result)]
#![warn(missing_doc)]
#![feature(macro_rules)]
#![feature(globs)]
#![doc(html_root_url = "http://nalgebra.org/doc")]
extern crate rand;
@ -109,6 +108,71 @@ extern crate test;
#[cfg(test)]
extern crate debug;
use std::num::{Zero, One, FloatMath};
use std::cmp;
pub use traits::{PartialLess, PartialEqual, PartialGreater, NotComparable};
pub use traits::{
Absolute,
AbsoluteRotate,
AnyVec,
ApproxEq,
Basis,
Cast,
Col,
ColSlice, RowSlice,
Cov,
Cross,
CrossMatrix,
Det,
Diag,
Dim,
Dot,
Eye,
FloatVec,
FloatVecExt,
FromHomogeneous,
Indexable,
Inv,
Iterable,
IterableMut,
LMul,
Mat,
Mean,
Norm,
Outer,
PartialOrd,
PartialOrdering,
RMul,
Rotate, Rotation, RotationMatrix, RotationWithTranslation,
Row,
ScalarAdd, ScalarSub,
ScalarMul, ScalarDiv,
ToHomogeneous,
Transform, Transformation,
Translate, Translation,
Transpose,
UniformSphereSample,
VecExt
};
pub use structs::{
Identity,
DMat,
DVec, DVec1, DVec2, DVec3, DVec4, DVec5, DVec6,
Iso2, Iso3, Iso4,
Mat1, Mat2, Mat3, Mat4,
Mat5, Mat6,
Rot2, Rot3, Rot4,
Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6
};
pub use linalg::{
qr,
eigen_qr,
householder_matrix
};
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub mod na;
mod structs;
mod traits;
@ -117,14 +181,746 @@ mod linalg;
// mod lower_triangular;
// mod chol;
#[cfg(test)]
mod tests {
mod vec;
mod mat;
/*
* Reexport everything.
*/
/// Traits to work around the language limitations related to operator overloading.
///
/// The trait names are formed by:
///
/// * a type name (eg. Vec1, Vec2, Mat3, Mat4, etc.).
/// * the name of a binary operation (eg. Mul, Div, Add, Sub, etc.).
/// * the word `Rhs`.
///
/// When implemented by the type `T`, the trait makes it possible to overload the binary operator
/// between `T` and the type name given by the trait.
///
/// # Examples:
///
/// * `Vec3MulRhs` will allow the overload of the `*` operator between the implementor type and
/// `Vec3`. The `Vec3` being the first argument of the multiplication.
/// * `Mat4DivRhs` will allow the overload of the `/` operator between the implementor type and
/// `Mat4`. The `Mat4` being the first argument of the division.
pub mod overload {
pub use structs::{Vec1MulRhs, Vec2MulRhs, Vec3MulRhs, Vec4MulRhs, Vec5MulRhs, Vec6MulRhs,
Vec1DivRhs, Vec2DivRhs, Vec3DivRhs, Vec4DivRhs, Vec5DivRhs, Vec6DivRhs,
Vec1AddRhs, Vec2AddRhs, Vec3AddRhs, Vec4AddRhs, Vec5AddRhs, Vec6AddRhs,
Vec1SubRhs, Vec2SubRhs, Vec3SubRhs, Vec4SubRhs, Vec5SubRhs, Vec6SubRhs,
Mat1MulRhs, Mat2MulRhs, Mat3MulRhs, Mat4MulRhs, Mat5MulRhs, Mat6MulRhs,
Mat1DivRhs, Mat2DivRhs, Mat3DivRhs, Mat4DivRhs, Mat5DivRhs, Mat6DivRhs,
Mat1AddRhs, Mat2AddRhs, Mat3AddRhs, Mat4AddRhs, Mat5AddRhs, Mat6AddRhs,
Mat1SubRhs, Mat2SubRhs, Mat3SubRhs, Mat4SubRhs, Mat5SubRhs, Mat6SubRhs};
}
#[cfg(test)]
mod bench {
mod vec;
mod mat;
/// Change the input value to ensure it is on the range `[min, max]`.
#[inline(always)]
pub fn clamp<T: cmp::PartialOrd>(val: T, min: T, max: T) -> T {
if val > min {
if val < max {
val
}
else {
max
}
}
else {
min
}
}
/// Same as `cmp::max`.
#[inline(always)]
pub fn max<T: Ord>(a: T, b: T) -> T {
cmp::max(a, b)
}
/// Same as `cmp::min`.
#[inline(always)]
pub fn min<T: Ord>(a: T, b: T) -> T {
cmp::min(a, b)
}
/// Returns the infimum of `a` and `b`.
#[inline(always)]
pub fn inf<T: PartialOrd>(a: &T, b: &T) -> T {
PartialOrd::inf(a, b)
}
/// Returns the supremum of `a` and `b`.
#[inline(always)]
pub fn sup<T: PartialOrd>(a: &T, b: &T) -> T {
PartialOrd::sup(a, b)
}
/// Compare `a` and `b` using a partial ordering relation.
#[inline(always)]
pub fn partial_cmp<T: PartialOrd>(a: &T, b: &T) -> PartialOrdering {
PartialOrd::partial_cmp(a, b)
}
/// Returns `true` iff `a` and `b` are comparable and `a < b`.
#[inline(always)]
pub fn partial_lt<T: PartialOrd>(a: &T, b: &T) -> bool {
PartialOrd::partial_lt(a, b)
}
/// Returns `true` iff `a` and `b` are comparable and `a <= b`.
#[inline(always)]
pub fn partial_le<T: PartialOrd>(a: &T, b: &T) -> bool {
PartialOrd::partial_le(a, b)
}
/// Returns `true` iff `a` and `b` are comparable and `a > b`.
#[inline(always)]
pub fn partial_gt<T: PartialOrd>(a: &T, b: &T) -> bool {
PartialOrd::partial_gt(a, b)
}
/// Returns `true` iff `a` and `b` are comparable and `a >= b`.
#[inline(always)]
pub fn partial_ge<T: PartialOrd>(a: &T, b: &T) -> bool {
PartialOrd::partial_ge(a, b)
}
/// Return the minimum of `a` and `b` if they are comparable.
#[inline(always)]
pub fn partial_min<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
PartialOrd::partial_min(a, b)
}
/// Return the maximum of `a` and `b` if they are comparable.
#[inline(always)]
pub fn partial_max<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
PartialOrd::partial_max(a, b)
}
/// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to
/// `min` or `max`.
#[inline(always)]
pub fn partial_clamp<'a, T: PartialOrd>(value: &'a T, min: &'a T, max: &'a T) -> Option<&'a T> {
PartialOrd::partial_clamp(value, min, max)
}
//
//
// Constructors
//
//
/// Create a special identity object.
///
/// Same as `Identity::new()`.
#[inline(always)]
pub fn identity() -> Identity {
Identity::new()
}
/// Create a zero-valued value.
///
/// This is the same as `std::num::zero()`.
#[inline(always)]
pub fn zero<T: Zero>() -> T {
Zero::zero()
}
/// Create a one-valued value.
///
/// This is the same as `std::num::one()`.
#[inline(always)]
pub fn one<T: One>() -> T {
One::one()
}
//
//
// Geometry
//
//
/*
* Perspective
*/
/// Computes a projection matrix given the frustrum near plane width, height, the field of
/// view, and the distance to the clipping planes (`znear` and `zfar`).
pub fn perspective3d<N: FloatMath + Cast<f32> + Zero + One>(width: N, height: N, fov: N, znear: N, zfar: N) -> Mat4<N> {
let aspect = width / height;
let _1: N = one();
let sy = _1 / (fov * cast(0.5)).tan();
let sx = -sy / aspect;
let sz = -(zfar + znear) / (znear - zfar);
let tz = zfar * znear * cast(2.0) / (znear - zfar);
Mat4::new(
sx, zero(), zero(), zero(),
zero(), sy, zero(), zero(),
zero(), zero(), sz, tz,
zero(), zero(), one(), zero())
}
/*
* Translation<V>
*/
/// Gets the translation applicable by `m`.
///
/// ```rust
/// extern crate "nalgebra" as na;
/// use na::{Vec3, Iso3};
///
/// fn main() {
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
/// let trans = na::translation(&t);
///
/// assert!(trans == Vec3::new(1.0, 1.0, 1.0));
/// }
/// ```
#[inline(always)]
pub fn translation<V, M: Translation<V>>(m: &M) -> V {
m.translation()
}
/// Gets the inverse translation applicable by `m`.
///
/// ```rust
/// extern crate "nalgebra" as na;
/// use na::{Vec3, Iso3};
///
/// fn main() {
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
/// let itrans = na::inv_translation(&t);
///
/// assert!(itrans == Vec3::new(-1.0, -1.0, -1.0));
/// }
/// ```
#[inline(always)]
pub fn inv_translation<V, M: Translation<V>>(m: &M) -> V {
m.inv_translation()
}
/// Applies the translation `v` to a copy of `m`.
#[inline(always)]
pub fn append_translation<V, M: Translation<V>>(m: &M, v: &V) -> M {
Translation::append_translation_cpy(m, v)
}
/*
* Translate<V>
*/
/// Applies a translation to a vector.
///
/// ```rust
/// extern crate "nalgebra" as na;
/// use na::{Vec3, Iso3};
///
/// fn main() {
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
/// let v = Vec3::new(2.0, 2.0, 2.0);
///
/// let tv = na::translate(&t, &v);
///
/// assert!(tv == Vec3::new(3.0, 3.0, 3.0))
/// }
/// ```
#[inline(always)]
pub fn translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
m.translate(v)
}
/// Applies an inverse translation to a vector.
///
/// ```rust
/// extern crate "nalgebra" as na;
/// use na::{Vec3, Iso3};
///
/// fn main() {
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
/// let v = Vec3::new(2.0, 2.0, 2.0);
///
/// let tv = na::inv_translate(&t, &v);
///
/// assert!(na::approx_eq(&tv, &Vec3::new(1.0, 1.0, 1.0)))
/// }
#[inline(always)]
pub fn inv_translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
m.inv_translate(v)
}
/*
* Rotation<V>
*/
/// Gets the rotation applicable by `m`.
///
/// ```rust
/// extern crate "nalgebra" as na;
/// use na::{Vec3, Rot3};
///
/// fn main() {
/// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0));
///
/// assert!(na::approx_eq(&na::rotation(&t), &Vec3::new(1.0, 1.0, 1.0)));
/// }
/// ```
#[inline(always)]
pub fn rotation<V, M: Rotation<V>>(m: &M) -> V {
m.rotation()
}
/// Gets the inverse rotation applicable by `m`.
///
/// ```rust
/// extern crate "nalgebra" as na;
/// use na::{Vec3, Rot3};
///
/// fn main() {
/// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0));
///
/// assert!(na::approx_eq(&na::inv_rotation(&t), &Vec3::new(-1.0, -1.0, -1.0)));
/// }
/// ```
#[inline(always)]
pub fn inv_rotation<V, M: Rotation<V>>(m: &M) -> V {
m.inv_rotation()
}
// FIXME: this example is a bit shity
/// Applies the rotation `v` to a copy of `m`.
///
/// ```rust
/// extern crate "nalgebra" as na;
/// use na::{Vec3, Rot3};
///
/// fn main() {
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0));
/// let v = Vec3::new(1.0, 1.0, 1.0);
/// let rt = na::append_rotation(&t, &v);
///
/// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0)))
/// }
/// ```
#[inline(always)]
pub fn append_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
Rotation::append_rotation_cpy(m, v)
}
// FIXME: this example is a bit shity
/// Pre-applies the rotation `v` to a copy of `m`.
///
/// ```rust
/// extern crate "nalgebra" as na;
/// use na::{Vec3, Rot3};
///
/// fn main() {
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0));
/// let v = Vec3::new(1.0, 1.0, 1.0);
/// let rt = na::prepend_rotation(&t, &v);
///
/// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0)))
/// }
/// ```
#[inline(always)]
pub fn prepend_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
Rotation::prepend_rotation_cpy(m, v)
}
/*
* Rotate<V>
*/
/// Applies a rotation to a vector.
///
/// ```rust
/// extern crate "nalgebra" as na;
/// use std::num::Float;
/// use na::{Rot3, Vec3};
///
/// fn main() {
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * Float::pi()));
/// let v = Vec3::new(1.0, 0.0, 0.0);
///
/// let tv = na::rotate(&t, &v);
///
/// assert!(na::approx_eq(&tv, &Vec3::new(0.0, 1.0, 0.0)))
/// }
/// ```
#[inline(always)]
pub fn rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
m.rotate(v)
}
/// Applies an inverse rotation to a vector.
///
/// ```rust
/// extern crate "nalgebra" as na;
/// use std::num::Float;
/// use na::{Rot3, Vec3};
///
/// fn main() {
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * Float::pi()));
/// let v = Vec3::new(1.0, 0.0, 0.0);
///
/// let tv = na::inv_rotate(&t, &v);
///
/// assert!(na::approx_eq(&tv, &Vec3::new(0.0, -1.0, 0.0)))
/// }
/// ```
#[inline(always)]
pub fn inv_rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
m.inv_rotate(v)
}
/*
* RotationWithTranslation<LV, AV>
*/
/// Rotates a copy of `m` by `amount` using `center` as the pivot point.
#[inline(always)]
pub fn append_rotation_wrt_point<LV: Neg<LV>,
AV,
M: RotationWithTranslation<LV, AV>>(
m: &M,
amount: &AV,
center: &LV) -> M {
RotationWithTranslation::append_rotation_wrt_point_cpy(m, amount, center)
}
/// Rotates a copy of `m` by `amount` using `m.translation()` as the pivot point.
#[inline(always)]
pub fn append_rotation_wrt_center<LV: Neg<LV>,
AV,
M: RotationWithTranslation<LV, AV>>(
m: &M,
amount: &AV) -> M {
RotationWithTranslation::append_rotation_wrt_center_cpy(m, amount)
}
/*
* RotationMatrix<LV, AV, R>
*/
/// Builds a rotation matrix from `r`.
#[inline(always)]
pub fn to_rot_mat<LV, AV, M: Mat<LV, LV> + Rotation<AV>, R: RotationMatrix<LV, AV, M>>(r: &R) -> M {
r.to_rot_mat()
}
/*
* AbsoluteRotate<V>
*/
/// Applies a rotation using the absolute values of its components.
#[inline(always)]
pub fn absolute_rotate<V, M: AbsoluteRotate<V>>(m: &M, v: &V) -> V {
m.absolute_rotate(v)
}
/*
* Transformation<T>
*/
/// Gets the transformation applicable by `m`.
#[inline(always)]
pub fn transformation<T, M: Transformation<T>>(m: &M) -> T {
m.transformation()
}
/// Gets the inverse transformation applicable by `m`.
#[inline(always)]
pub fn inv_transformation<T, M: Transformation<T>>(m: &M) -> T {
m.inv_transformation()
}
/// Gets a transformed copy of `m`.
#[inline(always)]
pub fn append_transformation<T, M: Transformation<T>>(m: &M, t: &T) -> M {
Transformation::append_transformation_cpy(m, t)
}
/*
* Transform<V>
*/
/// Applies a transformation to a vector.
#[inline(always)]
pub fn transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
m.transform(v)
}
/// Applies an inverse transformation to a vector.
#[inline(always)]
pub fn inv_transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
m.inv_transform(v)
}
/*
* Dot<N>
*/
/// Computes the dot product of two vectors.
#[inline(always)]
pub fn dot<V: Dot<N>, N>(a: &V, b: &V) -> N {
Dot::dot(a, b)
}
/// Computes a subtraction followed by a dot product.
#[inline(always)]
pub fn sub_dot<V: Dot<N>, N>(a: &V, b: &V, c: &V) -> N {
Dot::sub_dot(a, b, c)
}
/*
* Norm<N>
*/
/// Computes the L2 norm of a vector.
#[inline(always)]
pub fn norm<V: Norm<N>, N: Float>(v: &V) -> N {
Norm::norm(v)
}
/// Computes the squared L2 norm of a vector.
#[inline(always)]
pub fn sqnorm<V: Norm<N>, N: Float>(v: &V) -> N {
Norm::sqnorm(v)
}
/// Gets the normalized version of a vector.
#[inline(always)]
pub fn normalize<V: Norm<N>, N: Float>(v: &V) -> V {
Norm::normalize_cpy(v)
}
/*
* Det<N>
*/
/// Computes the determinant of a square matrix.
#[inline(always)]
pub fn det<M: Det<N>, N>(m: &M) -> N {
Det::det(m)
}
/*
* Cross<V>
*/
/// Computes the cross product of two vectors.
#[inline(always)]
pub fn cross<LV: Cross<AV>, AV>(a: &LV, b: &LV) -> AV {
Cross::cross(a, b)
}
/*
* CrossMatrix<M>
*/
/// Given a vector, computes the matrix which, when multiplied by another vector, computes a cross
/// product.
#[inline(always)]
pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
CrossMatrix::cross_matrix(v)
}
/*
* ToHomogeneous<U>
*/
/// Converts a matrix or vector to homogeneous coordinates.
#[inline(always)]
pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
ToHomogeneous::to_homogeneous(m)
}
/*
* FromHomogeneous<U>
*/
/// Converts a matrix or vector from homogeneous coordinates.
///
/// w-normalization is appied.
#[inline(always)]
pub fn from_homogeneous<M, Res: FromHomogeneous<M>>(m: &M) -> Res {
FromHomogeneous::from(m)
}
/*
* UniformSphereSample
*/
/// Samples the unit sphere living on the dimension as the samples types.
///
/// The number of sampling point is implementation-specific. It is always uniform.
#[inline(always)]
pub fn sample_sphere<V: UniformSphereSample>(f: |V| -> ()) {
UniformSphereSample::sample(f)
}
//
//
// Operations
//
//
/*
* AproxEq<N>
*/
/// Tests approximate equality.
#[inline(always)]
pub fn approx_eq<T: ApproxEq<N>, N>(a: &T, b: &T) -> bool {
ApproxEq::approx_eq(a, b)
}
/// Tests approximate equality using a custom epsilon.
#[inline(always)]
pub fn approx_eq_eps<T: ApproxEq<N>, N>(a: &T, b: &T, eps: &N) -> bool {
ApproxEq::approx_eq_eps(a, b, eps)
}
/*
* Absolute<A>
*/
/// Computes a component-wise absolute value.
#[inline(always)]
pub fn abs<M: Absolute<Res>, Res>(m: &M) -> Res {
Absolute::abs(m)
}
/*
* Inv
*/
/// Gets an inverted copy of a matrix.
#[inline(always)]
pub fn inv<M: Inv>(m: &M) -> Option<M> {
Inv::inv_cpy(m)
}
/*
* Transpose
*/
/// Gets a transposed copy of a matrix.
#[inline(always)]
pub fn transpose<M: Transpose>(m: &M) -> M {
Transpose::transpose_cpy(m)
}
/*
* Outer<M>
*/
/// Computes the outer product of two vectors.
#[inline(always)]
pub fn outer<V: Outer<M>, M>(a: &V, b: &V) -> M {
Outer::outer(a, b)
}
/*
* Cov<M>
*/
/// Computes the covariance of a set of observations.
#[inline(always)]
pub fn cov<M: Cov<Res>, Res>(observations: &M) -> Res {
Cov::cov(observations)
}
/*
* Mean<N>
*/
/// Computes the mean of a set of observations.
#[inline(always)]
pub fn mean<N, M: Mean<N>>(observations: &M) -> N {
Mean::mean(observations)
}
//
//
// Structure
//
//
/*
* Eye
*/
/// Construct the identity matrix for a given dimension
#[inline(always)]
pub fn new_identity<M: Eye>(dim: uint) -> M {
Eye::new_identity(dim)
}
/*
* Basis
*/
/// Computes the canonical basis for a given dimension.
#[inline(always)]
pub fn canonical_basis<V: Basis>(f: |V| -> bool) {
Basis::canonical_basis(f)
}
/// Computes the basis of the orthonormal subspace of a given vector.
#[inline(always)]
pub fn orthonormal_subspace_basis<V: Basis>(v: &V, f: |V| -> bool) {
Basis::orthonormal_subspace_basis(v, f)
}
/*
* Row<R>
*/
/*
* Col<C>
*/
/*
* Diag<V>
*/
/// Gets the diagonal of a square matrix.
#[inline(always)]
pub fn diag<M: Diag<V>, V>(m: &M) -> V {
m.diag()
}
/*
* Dim
*/
/// Gets the dimension an object lives in.
///
/// Same as `Dim::dim::(None::<V>)`.
#[inline(always)]
pub fn dim<V: Dim>() -> uint {
Dim::dim(None::<V>)
}
/*
* Cast<T>
*/
/// Converts an object from one type to another.
///
/// For primitive types, this is the same as the `as` keywords.
/// The following properties are preserved by a cast:
///
/// * Type-level geometric invariants cannot be broken (eg. a cast from Rot3<f64> to Rot3<i64> is
/// not possible)
/// * A cast to a type with more type-level invariants cannot be done (eg. a cast from Mat<f64> to
/// Rot3<f64> is not possible)
/// * For primitive types an unbounded cast is done using the `as` keyword (this is different from
/// the standard library which makes bound-checking to ensure eg. that a i64 is not out of the
/// range of an i32 when a cast from i64 to i32 is done).
/// * A cast does not affect the dimension of an algebraic object. Note that this prevents an
/// isometric transform to be cast to a raw matrix. Use `to_homogeneous` for that special purpose.
#[inline(always)]
pub fn cast<T, U: Cast<T>>(t: T) -> U {
Cast::from(t)
}
/*
* Indexable
*/

349
src/na.rs
View File

@ -1,4 +1,4 @@
//! **nalgebra** prelude.
//! [DEPRECATED] **nalgebra** prelude.
use std::num::{Zero, One, FloatMath};
use std::cmp;
@ -94,91 +94,94 @@ pub mod overload {
/// Change the input value to ensure it is on the range `[min, max]`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn clamp<T: cmp::PartialOrd>(val: T, min: T, max: T) -> T {
if val > min {
if val < max {
val
}
else {
max
}
}
else {
min
}
super::clamp(val, min, max)
}
/// Same as `cmp::max`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn max<T: Ord>(a: T, b: T) -> T {
cmp::max(a, b)
super::max(a, b)
}
/// Same as `cmp::min`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn min<T: Ord>(a: T, b: T) -> T {
cmp::min(a, b)
super::min(a, b)
}
/// Returns the infimum of `a` and `b`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn inf<T: PartialOrd>(a: &T, b: &T) -> T {
PartialOrd::inf(a, b)
super::inf(a, b)
}
/// Returns the supremum of `a` and `b`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn sup<T: PartialOrd>(a: &T, b: &T) -> T {
PartialOrd::sup(a, b)
super::sup(a, b)
}
/// Compare `a` and `b` using a partial ordering relation.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn partial_cmp<T: PartialOrd>(a: &T, b: &T) -> PartialOrdering {
PartialOrd::partial_cmp(a, b)
super::partial_cmp(a, b)
}
/// Returns `true` iff `a` and `b` are comparable and `a < b`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn partial_lt<T: PartialOrd>(a: &T, b: &T) -> bool {
PartialOrd::partial_lt(a, b)
super::partial_lt(a, b)
}
/// Returns `true` iff `a` and `b` are comparable and `a <= b`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn partial_le<T: PartialOrd>(a: &T, b: &T) -> bool {
PartialOrd::partial_le(a, b)
super::partial_le(a, b)
}
/// Returns `true` iff `a` and `b` are comparable and `a > b`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn partial_gt<T: PartialOrd>(a: &T, b: &T) -> bool {
PartialOrd::partial_gt(a, b)
super::partial_gt(a, b)
}
/// Returns `true` iff `a` and `b` are comparable and `a >= b`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn partial_ge<T: PartialOrd>(a: &T, b: &T) -> bool {
PartialOrd::partial_ge(a, b)
super::partial_ge(a, b)
}
/// Return the minimum of `a` and `b` if they are comparable.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn partial_min<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
PartialOrd::partial_min(a, b)
super::partial_min(a, b)
}
/// Return the maximum of `a` and `b` if they are comparable.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn partial_max<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
PartialOrd::partial_max(a, b)
super::partial_max(a, b)
}
/// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to
/// `min` or `max`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn partial_clamp<'a, T: PartialOrd>(value: &'a T, min: &'a T, max: &'a T) -> Option<&'a T> {
PartialOrd::partial_clamp(value, min, max)
super::partial_clamp(value, min, max)
}
//
@ -191,24 +194,27 @@ pub fn partial_clamp<'a, T: PartialOrd>(value: &'a T, min: &'a T, max: &'a T) ->
///
/// Same as `Identity::new()`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn identity() -> Identity {
Identity::new()
super::identity()
}
/// Create a zero-valued value.
///
/// This is the same as `std::num::zero()`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn zero<T: Zero>() -> T {
Zero::zero()
super::zero()
}
/// Create a one-valued value.
///
/// This is the same as `std::num::one()`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn one<T: One>() -> T {
One::one()
super::one()
}
//
@ -223,19 +229,7 @@ pub fn one<T: One>() -> T {
/// Computes a projection matrix given the frustrum near plane width, height, the field of
/// view, and the distance to the clipping planes (`znear` and `zfar`).
pub fn perspective3d<N: FloatMath + Cast<f32> + Zero + One>(width: N, height: N, fov: N, znear: N, zfar: N) -> Mat4<N> {
let aspect = width / height;
let _1: N = one();
let sy = _1 / (fov * cast(0.5)).tan();
let sx = -sy / aspect;
let sz = -(zfar + znear) / (znear - zfar);
let tz = zfar * znear * cast(2.0) / (znear - zfar);
Mat4::new(
sx, zero(), zero(), zero(),
zero(), sy, zero(), zero(),
zero(), zero(), sz, tz,
zero(), zero(), one(), zero())
super::perspective3d(width, height, fov, znear, zfar)
}
/*
@ -243,47 +237,24 @@ pub fn perspective3d<N: FloatMath + Cast<f32> + Zero + One>(width: N, height: N,
*/
/// Gets the translation applicable by `m`.
///
/// ```rust
/// extern crate nalgebra;
/// use nalgebra::na::{Vec3, Iso3};
/// use nalgebra::na;
///
/// fn main() {
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
/// let trans = na::translation(&t);
///
/// assert!(trans == Vec3::new(1.0, 1.0, 1.0));
/// }
/// ```
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn translation<V, M: Translation<V>>(m: &M) -> V {
m.translation()
super::translation(m)
}
/// Gets the inverse translation applicable by `m`.
///
/// ```rust
/// extern crate nalgebra;
/// use nalgebra::na::{Vec3, Iso3};
/// use nalgebra::na;
///
/// fn main() {
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
/// let itrans = na::inv_translation(&t);
///
/// assert!(itrans == Vec3::new(-1.0, -1.0, -1.0));
/// }
/// ```
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn inv_translation<V, M: Translation<V>>(m: &M) -> V {
m.inv_translation()
super::inv_translation(m)
}
/// Applies the translation `v` to a copy of `m`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn append_translation<V, M: Translation<V>>(m: &M, v: &V) -> M {
Translation::append_translation_cpy(m, v)
super::append_translation(m, v)
}
/*
@ -291,44 +262,17 @@ pub fn append_translation<V, M: Translation<V>>(m: &M, v: &V) -> M {
*/
/// Applies a translation to a vector.
///
/// ```rust
/// extern crate nalgebra;
/// use nalgebra::na::{Vec3, Iso3};
/// use nalgebra::na;
///
/// fn main() {
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
/// let v = Vec3::new(2.0, 2.0, 2.0);
///
/// let tv = na::translate(&t, &v);
///
/// assert!(tv == Vec3::new(3.0, 3.0, 3.0))
/// }
/// ```
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
m.translate(v)
super::translate(m, v)
}
/// Applies an inverse translation to a vector.
///
/// ```rust
/// extern crate nalgebra;
/// use nalgebra::na::{Vec3, Iso3};
/// use nalgebra::na;
///
/// fn main() {
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
/// let v = Vec3::new(2.0, 2.0, 2.0);
///
/// let tv = na::inv_translate(&t, &v);
///
/// assert!(na::approx_eq(&tv, &Vec3::new(1.0, 1.0, 1.0)))
/// }
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn inv_translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
m.inv_translate(v)
super::inv_translate(m, v)
}
/*
@ -336,82 +280,34 @@ pub fn inv_translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
*/
/// Gets the rotation applicable by `m`.
///
/// ```rust
/// extern crate nalgebra;
/// use nalgebra::na::{Vec3, Rot3};
/// use nalgebra::na;
///
/// fn main() {
/// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0));
///
/// assert!(na::approx_eq(&na::rotation(&t), &Vec3::new(1.0, 1.0, 1.0)));
/// }
/// ```
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn rotation<V, M: Rotation<V>>(m: &M) -> V {
m.rotation()
super::rotation(m)
}
/// Gets the inverse rotation applicable by `m`.
///
/// ```rust
/// extern crate nalgebra;
/// use nalgebra::na::{Vec3, Rot3};
/// use nalgebra::na;
///
/// fn main() {
/// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0));
///
/// assert!(na::approx_eq(&na::inv_rotation(&t), &Vec3::new(-1.0, -1.0, -1.0)));
/// }
/// ```
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn inv_rotation<V, M: Rotation<V>>(m: &M) -> V {
m.inv_rotation()
super::inv_rotation(m)
}
// FIXME: this example is a bit shity
/// Applies the rotation `v` to a copy of `m`.
///
/// ```rust
/// extern crate nalgebra;
/// use nalgebra::na::{Vec3, Rot3};
/// use nalgebra::na;
///
/// fn main() {
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0));
/// let v = Vec3::new(1.0, 1.0, 1.0);
/// let rt = na::append_rotation(&t, &v);
///
/// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0)))
/// }
/// ```
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn append_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
Rotation::append_rotation_cpy(m, v)
super::append_rotation(m, v)
}
// FIXME: this example is a bit shity
/// Pre-applies the rotation `v` to a copy of `m`.
///
/// ```rust
/// extern crate nalgebra;
/// use nalgebra::na::{Vec3, Rot3};
/// use nalgebra::na;
///
/// fn main() {
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0));
/// let v = Vec3::new(1.0, 1.0, 1.0);
/// let rt = na::prepend_rotation(&t, &v);
///
/// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0)))
/// }
/// ```
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn prepend_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
Rotation::prepend_rotation_cpy(m, v)
super::prepend_rotation(m, v)
}
/*
@ -419,48 +315,18 @@ pub fn prepend_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
*/
/// Applies a rotation to a vector.
///
/// ```rust
/// extern crate nalgebra;
/// use std::num::Float;
/// use nalgebra::na::{Rot3, Vec3};
/// use nalgebra::na;
///
/// fn main() {
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * Float::pi()));
/// let v = Vec3::new(1.0, 0.0, 0.0);
///
/// let tv = na::rotate(&t, &v);
///
/// assert!(na::approx_eq(&tv, &Vec3::new(0.0, 1.0, 0.0)))
/// }
/// ```
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
m.rotate(v)
super::rotate(m, v)
}
/// Applies an inverse rotation to a vector.
///
/// ```rust
/// extern crate nalgebra;
/// use std::num::Float;
/// use nalgebra::na::{Rot3, Vec3};
/// use nalgebra::na;
///
/// fn main() {
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * Float::pi()));
/// let v = Vec3::new(1.0, 0.0, 0.0);
///
/// let tv = na::inv_rotate(&t, &v);
///
/// assert!(na::approx_eq(&tv, &Vec3::new(0.0, -1.0, 0.0)))
/// }
/// ```
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn inv_rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
m.inv_rotate(v)
super::inv_rotate(m, v)
}
/*
@ -469,23 +335,25 @@ pub fn inv_rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
/// Rotates a copy of `m` by `amount` using `center` as the pivot point.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn append_rotation_wrt_point<LV: Neg<LV>,
AV,
M: RotationWithTranslation<LV, AV>>(
m: &M,
amount: &AV,
center: &LV) -> M {
RotationWithTranslation::append_rotation_wrt_point_cpy(m, amount, center)
super::append_rotation_wrt_point(m, amount, center)
}
/// Rotates a copy of `m` by `amount` using `m.translation()` as the pivot point.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn append_rotation_wrt_center<LV: Neg<LV>,
AV,
M: RotationWithTranslation<LV, AV>>(
m: &M,
amount: &AV) -> M {
RotationWithTranslation::append_rotation_wrt_center_cpy(m, amount)
super::append_rotation_wrt_center(m, amount)
}
/*
@ -494,8 +362,9 @@ pub fn append_rotation_wrt_center<LV: Neg<LV>,
/// Builds a rotation matrix from `r`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn to_rot_mat<LV, AV, M: Mat<LV, LV> + Rotation<AV>, R: RotationMatrix<LV, AV, M>>(r: &R) -> M {
r.to_rot_mat()
super::to_rot_mat(r)
}
/*
@ -504,8 +373,9 @@ pub fn to_rot_mat<LV, AV, M: Mat<LV, LV> + Rotation<AV>, R: RotationMatrix<LV, A
/// Applies a rotation using the absolute values of its components.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn absolute_rotate<V, M: AbsoluteRotate<V>>(m: &M, v: &V) -> V {
m.absolute_rotate(v)
super::absolute_rotate(m, v)
}
/*
@ -514,20 +384,22 @@ pub fn absolute_rotate<V, M: AbsoluteRotate<V>>(m: &M, v: &V) -> V {
/// Gets the transformation applicable by `m`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn transformation<T, M: Transformation<T>>(m: &M) -> T {
m.transformation()
super::transformation(m)
}
/// Gets the inverse transformation applicable by `m`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn inv_transformation<T, M: Transformation<T>>(m: &M) -> T {
m.inv_transformation()
super::inv_transformation(m)
}
/// Gets a transformed copy of `m`.
#[inline(always)]
pub fn append_transformation<T, M: Transformation<T>>(m: &M, t: &T) -> M {
Transformation::append_transformation_cpy(m, t)
super::append_transformation(m, t)
}
/*
@ -536,14 +408,16 @@ pub fn append_transformation<T, M: Transformation<T>>(m: &M, t: &T) -> M {
/// Applies a transformation to a vector.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
m.transform(v)
super::transform(m, v)
}
/// Applies an inverse transformation to a vector.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn inv_transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
m.inv_transform(v)
super::inv_transform(m, v)
}
/*
@ -552,14 +426,16 @@ pub fn inv_transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
/// Computes the dot product of two vectors.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn dot<V: Dot<N>, N>(a: &V, b: &V) -> N {
Dot::dot(a, b)
super::dot(a, b)
}
/// Computes a subtraction followed by a dot product.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn sub_dot<V: Dot<N>, N>(a: &V, b: &V, c: &V) -> N {
Dot::sub_dot(a, b, c)
super::sub_dot(a, b, c)
}
/*
@ -568,20 +444,23 @@ pub fn sub_dot<V: Dot<N>, N>(a: &V, b: &V, c: &V) -> N {
/// Computes the L2 norm of a vector.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn norm<V: Norm<N>, N: Float>(v: &V) -> N {
Norm::norm(v)
super::norm(v)
}
/// Computes the squared L2 norm of a vector.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn sqnorm<V: Norm<N>, N: Float>(v: &V) -> N {
Norm::sqnorm(v)
super::sqnorm(v)
}
/// Gets the normalized version of a vector.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn normalize<V: Norm<N>, N: Float>(v: &V) -> V {
Norm::normalize_cpy(v)
super::normalize(v)
}
/*
@ -589,8 +468,9 @@ pub fn normalize<V: Norm<N>, N: Float>(v: &V) -> V {
*/
/// Computes the determinant of a square matrix.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn det<M: Det<N>, N>(m: &M) -> N {
Det::det(m)
super::det(m)
}
/*
@ -599,8 +479,9 @@ pub fn det<M: Det<N>, N>(m: &M) -> N {
/// Computes the cross product of two vectors.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn cross<LV: Cross<AV>, AV>(a: &LV, b: &LV) -> AV {
Cross::cross(a, b)
super::cross(a, b)
}
/*
@ -610,8 +491,9 @@ pub fn cross<LV: Cross<AV>, AV>(a: &LV, b: &LV) -> AV {
/// Given a vector, computes the matrix which, when multiplied by another vector, computes a cross
/// product.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
CrossMatrix::cross_matrix(v)
super::cross_matrix(v)
}
/*
@ -620,8 +502,9 @@ pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
/// Converts a matrix or vector to homogeneous coordinates.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
ToHomogeneous::to_homogeneous(m)
super::to_homogeneous(m)
}
/*
@ -632,8 +515,9 @@ pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
///
/// w-normalization is appied.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn from_homogeneous<M, Res: FromHomogeneous<M>>(m: &M) -> Res {
FromHomogeneous::from(m)
super::from_homogeneous(m)
}
/*
@ -644,8 +528,9 @@ pub fn from_homogeneous<M, Res: FromHomogeneous<M>>(m: &M) -> Res {
///
/// The number of sampling point is implementation-specific. It is always uniform.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn sample_sphere<V: UniformSphereSample>(f: |V| -> ()) {
UniformSphereSample::sample(f)
super::sample_sphere(f)
}
//
@ -659,14 +544,16 @@ pub fn sample_sphere<V: UniformSphereSample>(f: |V| -> ()) {
*/
/// Tests approximate equality.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn approx_eq<T: ApproxEq<N>, N>(a: &T, b: &T) -> bool {
ApproxEq::approx_eq(a, b)
super::approx_eq(a, b)
}
/// Tests approximate equality using a custom epsilon.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn approx_eq_eps<T: ApproxEq<N>, N>(a: &T, b: &T, eps: &N) -> bool {
ApproxEq::approx_eq_eps(a, b, eps)
super::approx_eq_eps(a, b, eps)
}
@ -676,8 +563,9 @@ pub fn approx_eq_eps<T: ApproxEq<N>, N>(a: &T, b: &T, eps: &N) -> bool {
/// Computes a component-wise absolute value.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn abs<M: Absolute<Res>, Res>(m: &M) -> Res {
Absolute::abs(m)
super::abs(m)
}
/*
@ -686,8 +574,9 @@ pub fn abs<M: Absolute<Res>, Res>(m: &M) -> Res {
/// Gets an inverted copy of a matrix.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn inv<M: Inv>(m: &M) -> Option<M> {
Inv::inv_cpy(m)
super::inv(m)
}
/*
@ -696,8 +585,9 @@ pub fn inv<M: Inv>(m: &M) -> Option<M> {
/// Gets a transposed copy of a matrix.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn transpose<M: Transpose>(m: &M) -> M {
Transpose::transpose_cpy(m)
super::transpose(m)
}
/*
@ -706,8 +596,9 @@ pub fn transpose<M: Transpose>(m: &M) -> M {
/// Computes the outer product of two vectors.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn outer<V: Outer<M>, M>(a: &V, b: &V) -> M {
Outer::outer(a, b)
super::outer(a, b)
}
/*
@ -716,8 +607,9 @@ pub fn outer<V: Outer<M>, M>(a: &V, b: &V) -> M {
/// Computes the covariance of a set of observations.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn cov<M: Cov<Res>, Res>(observations: &M) -> Res {
Cov::cov(observations)
super::cov(observations)
}
/*
@ -726,8 +618,9 @@ pub fn cov<M: Cov<Res>, Res>(observations: &M) -> Res {
/// Computes the mean of a set of observations.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn mean<N, M: Mean<N>>(observations: &M) -> N {
Mean::mean(observations)
super::mean(observations)
}
//
@ -741,7 +634,10 @@ pub fn mean<N, M: Mean<N>>(observations: &M) -> N {
*/
/// Construct the identity matrix for a given dimension
#[inline(always)]
pub fn new_identity<M: Eye>(dim: uint) -> M { Eye::new_identity(dim) }
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn new_identity<M: Eye>(dim: uint) -> M {
super::new_identity(dim)
}
/*
* Basis
@ -749,14 +645,16 @@ pub fn new_identity<M: Eye>(dim: uint) -> M { Eye::new_identity(dim) }
/// Computes the canonical basis for a given dimension.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn canonical_basis<V: Basis>(f: |V| -> bool) {
Basis::canonical_basis(f)
super::canonical_basis(f)
}
/// Computes the basis of the orthonormal subspace of a given vector.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn orthonormal_subspace_basis<V: Basis>(v: &V, f: |V| -> bool) {
Basis::orthonormal_subspace_basis(v, f)
super::orthonormal_subspace_basis(v, f)
}
/*
@ -772,8 +670,9 @@ pub fn orthonormal_subspace_basis<V: Basis>(v: &V, f: |V| -> bool) {
*/
/// Gets the diagonal of a square matrix.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn diag<M: Diag<V>, V>(m: &M) -> V {
m.diag()
super::diag(m)
}
/*
@ -783,8 +682,9 @@ pub fn diag<M: Diag<V>, V>(m: &M) -> V {
///
/// Same as `Dim::dim::(None::<V>)`.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn dim<V: Dim>() -> uint {
Dim::dim(None::<V>)
super::dim::<V>()
}
/*
@ -805,8 +705,9 @@ pub fn dim<V: Dim>() -> uint {
/// * A cast does not affect the dimension of an algebraic object. Note that this prevents an
/// isometric transform to be cast to a raw matrix. Use `to_homogeneous` for that special purpose.
#[inline(always)]
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
pub fn cast<T, U: Cast<T>>(t: T) -> U {
Cast::from(t)
super::cast::<T, U>(t)
}
/*

View File

@ -1,8 +1,12 @@
#![feature(macro_rules)]
extern crate debug;
extern crate "nalgebra" as na;
use std::num::{Float, abs};
use std::rand::random;
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot3, DMat, DVec, Indexable, Row, Col};
use na;
use std::cmp::{min, max};
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot3, DMat, DVec, Indexable, Row, Col};
macro_rules! test_inv_mat_impl(
($t: ty) => (

View File

@ -1,7 +1,10 @@
#![feature(macro_rules)]
extern crate debug;
extern crate "nalgebra" as na;
use std::rand::random;
use na::{Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6};
use na::{Mat3, Iterable, IterableMut}; // FIXME: get rid of that
use na;
use na::{Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6, Mat3, Iterable, IterableMut};
macro_rules! test_iterator_impl(
($t: ty, $n: ty) => (