forked from M-Labs/nalgebra
Execute rustfmt.
This commit is contained in:
parent
a3d363f397
commit
b9ca074740
@ -1,9 +1,7 @@
|
||||
use na::{MatrixMN, VectorN,
|
||||
Matrix2, Matrix3, Matrix4,
|
||||
Matrix2x3, Matrix3x2, Matrix4x2,
|
||||
Matrix2x4, Matrix3x4, Matrix4x3,
|
||||
Quaternion,
|
||||
U1, U2, U3, U4};
|
||||
use na::{
|
||||
Matrix2, Matrix2x3, Matrix2x4, Matrix3, Matrix3x2, Matrix3x4, Matrix4, Matrix4x2, Matrix4x3,
|
||||
MatrixMN, Quaternion, VectorN, U1, U2, U3, U4,
|
||||
};
|
||||
|
||||
/// A matrix with components of type `N`. It has `R` rows, and `C` columns.
|
||||
///
|
||||
@ -194,13 +192,13 @@ pub type UVec3 = TVec3<u32>;
|
||||
/// A 4D vector with `u32` components.
|
||||
pub type UVec4 = TVec4<u32>;
|
||||
/// A 1D vector with `f32` components.
|
||||
pub type Vec1 = TVec1<f32>;
|
||||
pub type Vec1 = TVec1<f32>;
|
||||
/// A 2D vector with `f32` components.
|
||||
pub type Vec2 = TVec2<f32>;
|
||||
pub type Vec2 = TVec2<f32>;
|
||||
/// A 3D vector with `f32` components.
|
||||
pub type Vec3 = TVec3<f32>;
|
||||
pub type Vec3 = TVec3<f32>;
|
||||
/// A 4D vector with `f32` components.
|
||||
pub type Vec4 = TVec4<f32>;
|
||||
pub type Vec4 = TVec4<f32>;
|
||||
|
||||
/// A 1D vector with `u64` components.
|
||||
pub type U64Vec1 = TVec1<u64>;
|
||||
@ -270,7 +268,6 @@ pub type I8Vec3 = TVec3<i8>;
|
||||
/// A 4D vector with `i8` components.
|
||||
pub type I8Vec4 = TVec4<i8>;
|
||||
|
||||
|
||||
/// A 2x2 matrix with components of type `N`.
|
||||
pub type TMat2<N> = Matrix2<N>;
|
||||
/// A 2x2 matrix with components of type `N`.
|
||||
|
@ -1,5 +1,5 @@
|
||||
use na::{Real, DefaultAllocator};
|
||||
use aliases::TVec;
|
||||
use na::{DefaultAllocator, Real};
|
||||
use traits::{Alloc, Dimension};
|
||||
|
||||
/// Component-wise exponential.
|
||||
@ -8,7 +8,9 @@ use traits::{Alloc, Dimension};
|
||||
///
|
||||
/// * [`exp2`](fn.exp2.html)
|
||||
pub fn exp<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.exp())
|
||||
}
|
||||
|
||||
@ -18,7 +20,9 @@ pub fn exp<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
///
|
||||
/// * [`exp`](fn.exp.html)
|
||||
pub fn exp2<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.exp2())
|
||||
}
|
||||
|
||||
@ -28,9 +32,10 @@ pub fn exp2<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
///
|
||||
/// * [`sqrt`](fn.sqrt.html)
|
||||
pub fn inversesqrt<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| N::one() / x.sqrt())
|
||||
|
||||
}
|
||||
|
||||
/// Component-wise logarithm.
|
||||
@ -39,7 +44,9 @@ pub fn inversesqrt<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
///
|
||||
/// * [`log2`](fn.log2.html)
|
||||
pub fn log<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.ln())
|
||||
}
|
||||
|
||||
@ -49,13 +56,17 @@ pub fn log<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
///
|
||||
/// * [`log`](fn.log.html)
|
||||
pub fn log2<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.log2())
|
||||
}
|
||||
|
||||
/// Component-wise power.
|
||||
pub fn pow<N: Real, D: Dimension>(base: &TVec<N, D>, exponent: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
base.zip_map(exponent, |b, e| b.powf(e))
|
||||
}
|
||||
|
||||
@ -68,6 +79,8 @@ pub fn pow<N: Real, D: Dimension>(base: &TVec<N, D>, exponent: &TVec<N, D>) -> T
|
||||
/// * [`inversesqrt`](fn.inversesqrt.html)
|
||||
/// * [`pow`](fn.pow.html)
|
||||
pub fn sqrt<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.sqrt())
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
use na::{Real, Orthographic3, Perspective3};
|
||||
use aliases::TMat4;
|
||||
use na::{Orthographic3, Perspective3, Real};
|
||||
|
||||
//pub fn frustum<N: Real>(left: N, right: N, bottom: N, top: N, near: N, far: N) -> TMat4<N> {
|
||||
// unimplemented!()
|
||||
@ -90,7 +90,6 @@ pub fn ortho<N: Real>(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -
|
||||
// unimplemented!()
|
||||
//}
|
||||
|
||||
|
||||
/// Creates a matrix for a perspective-view frustum based on the right handedness and OpenGL near and far clip planes definition.
|
||||
///
|
||||
/// # Important note
|
||||
|
@ -1,6 +1,6 @@
|
||||
use na::{self, Real, U3};
|
||||
|
||||
use aliases::{TVec2, TVec3, TVec4, TMat4};
|
||||
use aliases::{TMat4, TVec2, TVec3, TVec4};
|
||||
|
||||
/// Define a picking region.
|
||||
///
|
||||
@ -13,11 +13,15 @@ pub fn pick_matrix<N: Real>(center: &TVec2<N>, delta: &TVec2<N>, viewport: &TVec
|
||||
let shift = TVec3::new(
|
||||
(viewport.z - (center.x - viewport.x) * na::convert(2.0)) / delta.x,
|
||||
(viewport.w - (center.y - viewport.y) * na::convert(2.0)) / delta.y,
|
||||
N::zero()
|
||||
N::zero(),
|
||||
);
|
||||
|
||||
let result = TMat4::new_translation(&shift);
|
||||
result.prepend_nonuniform_scaling(&TVec3::new(viewport.z / delta.x, viewport.w / delta.y, N::one()))
|
||||
result.prepend_nonuniform_scaling(&TVec3::new(
|
||||
viewport.z / delta.x,
|
||||
viewport.w / delta.y,
|
||||
N::one(),
|
||||
))
|
||||
}
|
||||
|
||||
/// Map the specified object coordinates `(obj.x, obj.y, obj.z)` into window coordinates using OpenGL near and far clip planes definition.
|
||||
@ -36,7 +40,12 @@ pub fn pick_matrix<N: Real>(center: &TVec2<N>, delta: &TVec2<N>, viewport: &TVec
|
||||
/// * [`unproject`](fn.unproject.html)
|
||||
/// * [`unproject_no`](fn.unproject_no.html)
|
||||
/// * [`unproject_zo`](fn.unproject_zo.html)
|
||||
pub fn project<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewport: TVec4<N>) -> TVec3<N> {
|
||||
pub fn project<N: Real>(
|
||||
obj: &TVec3<N>,
|
||||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N> {
|
||||
project_no(obj, model, proj, viewport)
|
||||
}
|
||||
|
||||
@ -58,7 +67,12 @@ pub fn project<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewp
|
||||
/// * [`unproject`](fn.unproject.html)
|
||||
/// * [`unproject_no`](fn.unproject_no.html)
|
||||
/// * [`unproject_zo`](fn.unproject_zo.html)
|
||||
pub fn project_no<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewport: TVec4<N>) -> TVec3<N> {
|
||||
pub fn project_no<N: Real>(
|
||||
obj: &TVec3<N>,
|
||||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N> {
|
||||
let proj = project_zo(obj, model, proj, viewport);
|
||||
TVec3::new(proj.x, proj.y, proj.z * na::convert(0.5) + na::convert(0.5))
|
||||
}
|
||||
@ -81,7 +95,12 @@ pub fn project_no<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, vi
|
||||
/// * [`unproject`](fn.unproject.html)
|
||||
/// * [`unproject_no`](fn.unproject_no.html)
|
||||
/// * [`unproject_zo`](fn.unproject_zo.html)
|
||||
pub fn project_zo<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewport: TVec4<N>) -> TVec3<N> {
|
||||
pub fn project_zo<N: Real>(
|
||||
obj: &TVec3<N>,
|
||||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N> {
|
||||
let normalized = proj * model * TVec4::new(obj.x, obj.y, obj.z, N::one());
|
||||
let scale = N::one() / normalized.w;
|
||||
|
||||
@ -108,7 +127,12 @@ pub fn project_zo<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, vi
|
||||
/// * [`project_zo`](fn.project_zo.html)
|
||||
/// * [`unproject_no`](fn.unproject_no.html)
|
||||
/// * [`unproject_zo`](fn.unproject_zo.html)
|
||||
pub fn unproject<N: Real>(win: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewport: TVec4<N>) -> TVec3<N> {
|
||||
pub fn unproject<N: Real>(
|
||||
win: &TVec3<N>,
|
||||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N> {
|
||||
unproject_no(win, model, proj, viewport)
|
||||
}
|
||||
|
||||
@ -130,7 +154,12 @@ pub fn unproject<N: Real>(win: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, vie
|
||||
/// * [`project_zo`](fn.project_zo.html)
|
||||
/// * [`unproject`](fn.unproject.html)
|
||||
/// * [`unproject_zo`](fn.unproject_zo.html)
|
||||
pub fn unproject_no<N: Real>(win: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewport: TVec4<N>) -> TVec3<N> {
|
||||
pub fn unproject_no<N: Real>(
|
||||
win: &TVec3<N>,
|
||||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N> {
|
||||
let _2: N = na::convert(2.0);
|
||||
let transform = (proj * model).try_inverse().unwrap_or_else(TMat4::zeros);
|
||||
let pt = TVec4::new(
|
||||
@ -162,7 +191,12 @@ pub fn unproject_no<N: Real>(win: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>,
|
||||
/// * [`project_zo`](fn.project_zo.html)
|
||||
/// * [`unproject`](fn.unproject.html)
|
||||
/// * [`unproject_no`](fn.unproject_no.html)
|
||||
pub fn unproject_zo<N: Real>(win: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewport: TVec4<N>) -> TVec3<N> {
|
||||
pub fn unproject_zo<N: Real>(
|
||||
win: &TVec3<N>,
|
||||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N> {
|
||||
let _2: N = na::convert(2.0);
|
||||
let transform = (proj * model).try_inverse().unwrap_or_else(TMat4::zeros);
|
||||
let pt = TVec4::new(
|
||||
|
@ -1,13 +1,18 @@
|
||||
use na::DefaultAllocator;
|
||||
|
||||
use aliases::{TVec, TMat};
|
||||
use traits::{Alloc, Number, Dimension};
|
||||
use aliases::{TMat, TVec};
|
||||
use traits::{Alloc, Dimension, Number};
|
||||
|
||||
/// Perform a component-wise equal-to comparison of two matrices.
|
||||
///
|
||||
/// Return a boolean vector which components value is True if this expression is satisfied per column of the matrices.
|
||||
pub fn equal_columns<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>) -> TVec<bool, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
pub fn equal_columns<N: Number, R: Dimension, C: Dimension>(
|
||||
x: &TMat<N, R, C>,
|
||||
y: &TMat<N, R, C>,
|
||||
) -> TVec<bool, C>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
let mut res = TVec::<_, C>::repeat(false);
|
||||
|
||||
for i in 0..C::dim() {
|
||||
@ -20,16 +25,28 @@ pub fn equal_columns<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y
|
||||
/// Returns the component-wise comparison of `|x - y| < epsilon`.
|
||||
///
|
||||
/// True if this expression is satisfied.
|
||||
pub fn equal_columns_eps<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>, epsilon: N) -> TVec<bool, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
pub fn equal_columns_eps<N: Number, R: Dimension, C: Dimension>(
|
||||
x: &TMat<N, R, C>,
|
||||
y: &TMat<N, R, C>,
|
||||
epsilon: N,
|
||||
) -> TVec<bool, C>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
equal_columns_eps_vec(x, y, &TVec::<_, C>::repeat(epsilon))
|
||||
}
|
||||
|
||||
/// Returns the component-wise comparison on each matrix column `|x - y| < epsilon`.
|
||||
///
|
||||
/// True if this expression is satisfied.
|
||||
pub fn equal_columns_eps_vec<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>, epsilon: &TVec<N, C>) -> TVec<bool, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
pub fn equal_columns_eps_vec<N: Number, R: Dimension, C: Dimension>(
|
||||
x: &TMat<N, R, C>,
|
||||
y: &TMat<N, R, C>,
|
||||
epsilon: &TVec<N, C>,
|
||||
) -> TVec<bool, C>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
let mut res = TVec::<_, C>::repeat(false);
|
||||
|
||||
for i in 0..C::dim() {
|
||||
@ -42,8 +59,13 @@ pub fn equal_columns_eps_vec<N: Number, R: Dimension, C: Dimension>(x: &TMat<N,
|
||||
/// Perform a component-wise not-equal-to comparison of two matrices.
|
||||
///
|
||||
/// Return a boolean vector which components value is True if this expression is satisfied per column of the matrices.
|
||||
pub fn not_equal_columns<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>) -> TVec<bool, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
pub fn not_equal_columns<N: Number, R: Dimension, C: Dimension>(
|
||||
x: &TMat<N, R, C>,
|
||||
y: &TMat<N, R, C>,
|
||||
) -> TVec<bool, C>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
let mut res = TVec::<_, C>::repeat(false);
|
||||
|
||||
for i in 0..C::dim() {
|
||||
@ -56,16 +78,28 @@ pub fn not_equal_columns<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C
|
||||
/// Returns the component-wise comparison of `|x - y| < epsilon`.
|
||||
///
|
||||
/// True if this expression is not satisfied.
|
||||
pub fn not_equal_columns_eps<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>, epsilon: N) -> TVec<bool, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
pub fn not_equal_columns_eps<N: Number, R: Dimension, C: Dimension>(
|
||||
x: &TMat<N, R, C>,
|
||||
y: &TMat<N, R, C>,
|
||||
epsilon: N,
|
||||
) -> TVec<bool, C>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
not_equal_columns_eps_vec(x, y, &TVec::<_, C>::repeat(epsilon))
|
||||
}
|
||||
|
||||
/// Returns the component-wise comparison of `|x - y| >= epsilon`.
|
||||
///
|
||||
/// True if this expression is not satisfied.
|
||||
pub fn not_equal_columns_eps_vec<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>, epsilon: &TVec<N, C>) -> TVec<bool, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
pub fn not_equal_columns_eps_vec<N: Number, R: Dimension, C: Dimension>(
|
||||
x: &TMat<N, R, C>,
|
||||
y: &TMat<N, R, C>,
|
||||
epsilon: &TVec<N, C>,
|
||||
) -> TVec<bool, C>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
let mut res = TVec::<_, C>::repeat(false);
|
||||
|
||||
for i in 0..C::dim() {
|
||||
|
@ -1,11 +1,13 @@
|
||||
use na::{DefaultAllocator, Real, Unit, Rotation3, Point3};
|
||||
use na::{DefaultAllocator, Point3, Real, Rotation3, Unit};
|
||||
|
||||
use traits::{Dimension, Number, Alloc};
|
||||
use aliases::{TMat, TVec, TVec3, TMat4};
|
||||
use aliases::{TMat, TMat4, TVec, TVec3};
|
||||
use traits::{Alloc, Dimension, Number};
|
||||
|
||||
/// The identity matrix.
|
||||
pub fn identity<N: Number, D: Dimension>() -> TMat<N, D, D>
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
TMat::<N, D, D>::identity()
|
||||
}
|
||||
|
||||
@ -38,7 +40,11 @@ pub fn look_at<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) -> TMa
|
||||
/// * [`look_at`](fn.look_at.html)
|
||||
/// * [`look_at_rh`](fn.look_at_rh.html)
|
||||
pub fn look_at_lh<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> {
|
||||
TMat::look_at_lh(&Point3::from_coordinates(*eye), &Point3::from_coordinates(*center), up)
|
||||
TMat::look_at_lh(
|
||||
&Point3::from_coordinates(*eye),
|
||||
&Point3::from_coordinates(*center),
|
||||
up,
|
||||
)
|
||||
}
|
||||
|
||||
/// Build a right handed look at view matrix.
|
||||
@ -54,7 +60,11 @@ pub fn look_at_lh<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) ->
|
||||
/// * [`look_at`](fn.look_at.html)
|
||||
/// * [`look_at_lh`](fn.look_at_lh.html)
|
||||
pub fn look_at_rh<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> {
|
||||
TMat::look_at_rh(&Point3::from_coordinates(*eye), &Point3::from_coordinates(*center), up)
|
||||
TMat::look_at_rh(
|
||||
&Point3::from_coordinates(*eye),
|
||||
&Point3::from_coordinates(*center),
|
||||
up,
|
||||
)
|
||||
}
|
||||
|
||||
/// Builds a rotation 4 * 4 matrix created from an axis vector and an angle and right-multiply it to `m`.
|
||||
|
@ -1,30 +1,41 @@
|
||||
//! (Reexported) Additional features not specified by GLSL specification
|
||||
|
||||
pub use self::matrix_clip_space::{ortho, perspective};
|
||||
pub use self::matrix_projection::{pick_matrix, project, project_no, project_zo, unproject, unproject_no, unproject_zo};
|
||||
pub use self::matrix_relationnal::{equal_columns, equal_columns_eps, equal_columns_eps_vec, not_equal_columns, not_equal_columns_eps, not_equal_columns_eps_vec};
|
||||
pub use self::matrix_transform::{identity, look_at, look_at_lh, rotate, scale, look_at_rh, translate, rotate_x, rotate_y, rotate_z};
|
||||
pub use self::matrix_projection::{
|
||||
pick_matrix, project, project_no, project_zo, unproject, unproject_no, unproject_zo,
|
||||
};
|
||||
pub use self::matrix_relationnal::{
|
||||
equal_columns, equal_columns_eps, equal_columns_eps_vec, not_equal_columns,
|
||||
not_equal_columns_eps, not_equal_columns_eps_vec,
|
||||
};
|
||||
pub use self::matrix_transform::{
|
||||
identity, look_at, look_at_lh, look_at_rh, rotate, rotate_x, rotate_y, rotate_z, scale,
|
||||
translate,
|
||||
};
|
||||
pub use self::quaternion_common::{quat_conjugate, quat_inverse, quat_lerp, quat_slerp};
|
||||
pub use self::quaternion_geometric::{
|
||||
quat_cross, quat_dot, quat_length, quat_magnitude, quat_normalize,
|
||||
};
|
||||
pub use self::quaternion_relational::{
|
||||
quat_equal, quat_equal_eps, quat_not_equal, quat_not_equal_eps,
|
||||
};
|
||||
pub use self::quaternion_transform::{quat_exp, quat_log, quat_pow, quat_rotate};
|
||||
pub use self::quaternion_trigonometric::{quat_angle, quat_angle_axis, quat_axis};
|
||||
pub use self::scalar_common::{max3_scalar, max4_scalar, min3_scalar, min4_scalar};
|
||||
pub use self::scalar_constants::{epsilon, pi};
|
||||
pub use self::vector_common::{max, max2, max3, max4, min, min2, min3, min4};
|
||||
pub use self::vector_relational::{equal_eps, equal_eps_vec, not_equal_eps, not_equal_eps_vec};
|
||||
pub use self::quaternion_common::{quat_conjugate, quat_inverse, quat_lerp, quat_slerp};
|
||||
pub use self::quaternion_geometric::{quat_cross, quat_dot, quat_length, quat_magnitude, quat_normalize};
|
||||
pub use self::quaternion_relational::{quat_equal, quat_equal_eps, quat_not_equal, quat_not_equal_eps};
|
||||
pub use self::quaternion_transform::{quat_exp, quat_log, quat_pow, quat_rotate};
|
||||
pub use self::quaternion_trigonometric::{quat_angle, quat_angle_axis, quat_axis};
|
||||
|
||||
|
||||
mod matrix_clip_space;
|
||||
mod matrix_projection;
|
||||
mod matrix_relationnal;
|
||||
mod matrix_transform;
|
||||
mod scalar_common;
|
||||
mod scalar_constants;
|
||||
mod vector_common;
|
||||
mod vector_relational;
|
||||
mod quaternion_common;
|
||||
mod quaternion_geometric;
|
||||
mod quaternion_relational;
|
||||
mod quaternion_transform;
|
||||
mod quaternion_trigonometric;
|
||||
mod scalar_common;
|
||||
mod scalar_constants;
|
||||
mod vector_common;
|
||||
mod vector_relational;
|
||||
|
@ -31,5 +31,7 @@ pub fn quat_lerp<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> {
|
||||
|
||||
/// Interpolate spherically between `x` and `y`.
|
||||
pub fn quat_slerp<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> {
|
||||
Unit::new_normalize(*x).slerp(&Unit::new_normalize(*y), a).unwrap()
|
||||
Unit::new_normalize(*x)
|
||||
.slerp(&Unit::new_normalize(*y), a)
|
||||
.unwrap()
|
||||
}
|
||||
|
@ -1,6 +1,5 @@
|
||||
use na::{Real, U4};
|
||||
|
||||
|
||||
use aliases::{Qua, TVec};
|
||||
|
||||
/// Component-wise equality comparison between two quaternions.
|
||||
|
@ -1,4 +1,4 @@
|
||||
use na::{Real, UnitQuaternion, Unit};
|
||||
use na::{Real, Unit, UnitQuaternion};
|
||||
|
||||
use aliases::{Qua, TVec3};
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{self, DefaultAllocator};
|
||||
|
||||
use traits::{Alloc, Number, Dimension};
|
||||
use aliases::TVec;
|
||||
use traits::{Alloc, Dimension, Number};
|
||||
|
||||
/// Component-wise maximum between a vector and a scalar.
|
||||
///
|
||||
@ -17,7 +17,9 @@ use aliases::TVec;
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn max<N: Number, D: Dimension>(a: &TVec<N, D>, b: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
a.map(|a| na::sup(&a, &b))
|
||||
}
|
||||
|
||||
@ -35,7 +37,9 @@ pub fn max<N: Number, D: Dimension>(a: &TVec<N, D>, b: N) -> TVec<N, D>
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn max2<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
na::sup(a, b)
|
||||
}
|
||||
|
||||
@ -53,7 +57,9 @@ pub fn max2<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>) -> TVec<N,
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn max3<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
max2(&max2(a, b), c)
|
||||
}
|
||||
|
||||
@ -70,8 +76,15 @@ pub fn max3<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N,
|
||||
/// * [`min2`](fn.min2.html)
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn max4<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N, D>, d: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
pub fn max4<N: Number, D: Dimension>(
|
||||
a: &TVec<N, D>,
|
||||
b: &TVec<N, D>,
|
||||
c: &TVec<N, D>,
|
||||
d: &TVec<N, D>,
|
||||
) -> TVec<N, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
max2(&max2(a, b), &max2(c, d))
|
||||
}
|
||||
|
||||
@ -89,7 +102,9 @@ pub fn max4<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N,
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn min<N: Number, D: Dimension>(x: &TVec<N, D>, y: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| na::inf(&x, &y))
|
||||
}
|
||||
|
||||
@ -107,7 +122,9 @@ pub fn min<N: Number, D: Dimension>(x: &TVec<N, D>, y: N) -> TVec<N, D>
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn min2<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
na::inf(x, y)
|
||||
}
|
||||
|
||||
@ -125,7 +142,9 @@ pub fn min2<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<N,
|
||||
/// * [`min2`](fn.min2.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn min3<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
min2(&min2(a, b), c)
|
||||
}
|
||||
|
||||
@ -142,7 +161,14 @@ pub fn min3<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N,
|
||||
/// * [`min`](fn.min.html)
|
||||
/// * [`min2`](fn.min2.html)
|
||||
/// * [`min3`](fn.min3.html)
|
||||
pub fn min4<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N, D>, d: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
pub fn min4<N: Number, D: Dimension>(
|
||||
a: &TVec<N, D>,
|
||||
b: &TVec<N, D>,
|
||||
c: &TVec<N, D>,
|
||||
d: &TVec<N, D>,
|
||||
) -> TVec<N, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
min2(&min2(a, b), &min2(c, d))
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{DefaultAllocator};
|
||||
use na::DefaultAllocator;
|
||||
|
||||
use traits::{Alloc, Number, Dimension};
|
||||
use aliases::TVec;
|
||||
use traits::{Alloc, Dimension, Number};
|
||||
|
||||
/// Component-wise approximate equality of two vectors, using a scalar epsilon.
|
||||
///
|
||||
@ -10,8 +10,14 @@ use aliases::TVec;
|
||||
/// * [`equal_eps_vec`](fn.equal_eps_vec.html)
|
||||
/// * [`not_equal_eps`](fn.not_equal_eps.html)
|
||||
/// * [`not_equal_eps_vec`](fn.not_equal_eps_vec.html)
|
||||
pub fn equal_eps<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, epsilon: N) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
pub fn equal_eps<N: Number, D: Dimension>(
|
||||
x: &TVec<N, D>,
|
||||
y: &TVec<N, D>,
|
||||
epsilon: N,
|
||||
) -> TVec<bool, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| abs_diff_eq!(x, y, epsilon = epsilon))
|
||||
}
|
||||
|
||||
@ -22,8 +28,14 @@ pub fn equal_eps<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, epsilo
|
||||
/// * [`equal_eps`](fn.equal_eps.html)
|
||||
/// * [`not_equal_eps`](fn.not_equal_eps.html)
|
||||
/// * [`not_equal_eps_vec`](fn.not_equal_eps_vec.html)
|
||||
pub fn equal_eps_vec<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, epsilon: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
pub fn equal_eps_vec<N: Number, D: Dimension>(
|
||||
x: &TVec<N, D>,
|
||||
y: &TVec<N, D>,
|
||||
epsilon: &TVec<N, D>,
|
||||
) -> TVec<bool, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_zip_map(y, epsilon, |x, y, eps| abs_diff_eq!(x, y, epsilon = eps))
|
||||
}
|
||||
|
||||
@ -34,8 +46,14 @@ pub fn equal_eps_vec<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, ep
|
||||
/// * [`equal_eps`](fn.equal_eps.html)
|
||||
/// * [`equal_eps_vec`](fn.equal_eps_vec.html)
|
||||
/// * [`not_equal_eps_vec`](fn.not_equal_eps_vec.html)
|
||||
pub fn not_equal_eps<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, epsilon: N) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
pub fn not_equal_eps<N: Number, D: Dimension>(
|
||||
x: &TVec<N, D>,
|
||||
y: &TVec<N, D>,
|
||||
epsilon: N,
|
||||
) -> TVec<bool, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| abs_diff_ne!(x, y, epsilon = epsilon))
|
||||
}
|
||||
|
||||
@ -46,7 +64,13 @@ pub fn not_equal_eps<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, ep
|
||||
/// * [`equal_eps`](fn.equal_eps.html)
|
||||
/// * [`equal_eps_vec`](fn.equal_eps_vec.html)
|
||||
/// * [`not_equal_eps`](fn.not_equal_eps.html)
|
||||
pub fn not_equal_eps_vec<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, epsilon: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
pub fn not_equal_eps_vec<N: Number, D: Dimension>(
|
||||
x: &TVec<N, D>,
|
||||
y: &TVec<N, D>,
|
||||
epsilon: &TVec<N, D>,
|
||||
) -> TVec<bool, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_zip_map(y, epsilon, |x, y, eps| abs_diff_ne!(x, y, epsilon = eps))
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{Real, DefaultAllocator};
|
||||
use na::{DefaultAllocator, Real};
|
||||
|
||||
use traits::{Number, Alloc, Dimension};
|
||||
use aliases::{TVec, TVec3};
|
||||
use traits::{Alloc, Dimension, Number};
|
||||
|
||||
/// The cross product of two vectors.
|
||||
pub fn cross<N: Number, D: Dimension>(x: &TVec3<N>, y: &TVec3<N>) -> TVec3<N> {
|
||||
@ -14,19 +14,29 @@ pub fn cross<N: Number, D: Dimension>(x: &TVec3<N>, y: &TVec3<N>) -> TVec3<N> {
|
||||
///
|
||||
/// * [`distance2`](fn.distance2.html)
|
||||
pub fn distance<N: Real, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
(p1 - p0).norm()
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
(p1 - p0).norm()
|
||||
}
|
||||
|
||||
/// The dot product of two vectors.
|
||||
pub fn dot<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.dot(y)
|
||||
}
|
||||
|
||||
/// If `dot(nref, i) < 0.0`, return `n`, otherwise, return `-n`.
|
||||
pub fn faceforward<N: Number, D: Dimension>(n: &TVec<N, D>, i: &TVec<N, D>, nref: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
pub fn faceforward<N: Number, D: Dimension>(
|
||||
n: &TVec<N, D>,
|
||||
i: &TVec<N, D>,
|
||||
nref: &TVec<N, D>,
|
||||
) -> TVec<N, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
if nref.dot(i) < N::zero() {
|
||||
n.clone()
|
||||
} else {
|
||||
@ -44,7 +54,9 @@ pub fn faceforward<N: Number, D: Dimension>(n: &TVec<N, D>, i: &TVec<N, D>, nref
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn length<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm()
|
||||
}
|
||||
|
||||
@ -58,34 +70,40 @@ pub fn length<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
/// * [`nalgebra::norm`](../nalgebra/fn.norm.html)
|
||||
pub fn magnitude<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm()
|
||||
}
|
||||
|
||||
/// Normalizes a vector.
|
||||
pub fn normalize<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.normalize()
|
||||
}
|
||||
|
||||
/// For the incident vector `i` and surface orientation `n`, returns the reflection direction : `result = i - 2.0 * dot(n, i) * n`.
|
||||
pub fn reflect_vec<N: Number, D: Dimension>(i: &TVec<N, D>, n: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
let _2 = N::one() + N::one();
|
||||
i - n * (n.dot(i) * _2)
|
||||
}
|
||||
|
||||
/// For the incident vector `i` and surface normal `n`, and the ratio of indices of refraction `eta`, return the refraction vector.
|
||||
pub fn refract_vec<N: Real, D: Dimension>(i: &TVec<N, D>, n: &TVec<N, D>, eta: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
let ni = n.dot(i);
|
||||
let k = N::one() - eta * eta * (N::one() - ni * ni);
|
||||
|
||||
if k < N::zero() {
|
||||
TVec::<_, D>::zeros()
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
i * eta - n * (eta * dot(n, i) + k.sqrt())
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{Scalar, DefaultAllocator};
|
||||
use na::{DefaultAllocator, Scalar};
|
||||
|
||||
use aliases::{TMat, TVec};
|
||||
use traits::{Alloc, Dimension};
|
||||
use aliases::{TVec, TMat};
|
||||
|
||||
/// The `index`-th column of the matrix `m`.
|
||||
///
|
||||
@ -11,7 +11,9 @@ use aliases::{TVec, TMat};
|
||||
/// * [`set_column`](fn.set_column.html)
|
||||
/// * [`set_row`](fn.set_row.html)
|
||||
pub fn column<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize) -> TVec<N, R>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
m.column(index).into_owned()
|
||||
}
|
||||
|
||||
@ -22,8 +24,14 @@ pub fn column<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: u
|
||||
/// * [`column`](fn.column.html)
|
||||
/// * [`row`](fn.row.html)
|
||||
/// * [`set_row`](fn.set_row.html)
|
||||
pub fn set_column<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize, x: &TVec<N, R>) -> TMat<N, R, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
pub fn set_column<N: Scalar, R: Dimension, C: Dimension>(
|
||||
m: &TMat<N, R, C>,
|
||||
index: usize,
|
||||
x: &TVec<N, R>,
|
||||
) -> TMat<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
let mut res = m.clone();
|
||||
res.set_column(index, x);
|
||||
res
|
||||
@ -37,7 +45,9 @@ pub fn set_column<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, inde
|
||||
/// * [`set_column`](fn.set_column.html)
|
||||
/// * [`set_row`](fn.set_row.html)
|
||||
pub fn row<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize) -> TVec<N, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
m.row(index).into_owned().transpose()
|
||||
}
|
||||
|
||||
@ -48,8 +58,14 @@ pub fn row<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usiz
|
||||
/// * [`column`](fn.column.html)
|
||||
/// * [`row`](fn.row.html)
|
||||
/// * [`set_column`](fn.set_column.html)
|
||||
pub fn set_row<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize, x: &TVec<N, C>) -> TMat<N, R, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
pub fn set_row<N: Scalar, R: Dimension, C: Dimension>(
|
||||
m: &TMat<N, R, C>,
|
||||
index: usize,
|
||||
x: &TVec<N, C>,
|
||||
) -> TMat<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
let mut res = m.clone();
|
||||
res.set_row(index, &x.transpose());
|
||||
res
|
||||
|
@ -1,17 +1,23 @@
|
||||
use na::{Real, DefaultAllocator};
|
||||
use na::{DefaultAllocator, Real};
|
||||
|
||||
use traits::{Alloc, Dimension};
|
||||
use aliases::TMat;
|
||||
use traits::{Alloc, Dimension};
|
||||
|
||||
/// Fast matrix inverse for affine matrix.
|
||||
pub fn affine_inverse<N: Real, D: Dimension>(m: TMat<N, D, D>) -> TMat<N, D, D>
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
// FIXME: this should be optimized.
|
||||
m.try_inverse().unwrap_or_else(TMat::<_, D, D>::zeros)
|
||||
}
|
||||
|
||||
/// Compute the transpose of the inverse of a matrix.
|
||||
pub fn inverse_transpose<N: Real, D: Dimension>(m: TMat<N, D, D>) -> TMat<N, D, D>
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
m.try_inverse().unwrap_or_else(TMat::<_, D, D>::zeros).transpose()
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
m.try_inverse()
|
||||
.unwrap_or_else(TMat::<_, D, D>::zeros)
|
||||
.transpose()
|
||||
}
|
||||
|
@ -1,17 +1,32 @@
|
||||
//! (Reexported) Recommended features not specified by GLSL specification
|
||||
|
||||
//pub use self::bitfield::*;
|
||||
pub use self::constants::{e, two_pi, euler, four_over_pi, golden_ratio, half_pi, ln_ln_two, ln_ten, ln_two, one, one_over_pi, one_over_root_two, one_over_two_pi, quarter_pi, root_five, root_half_pi, root_ln_four, root_pi, root_three, root_two, root_two_pi, third, three_over_two_pi, two_over_pi, two_over_root_pi, two_thirds, zero};
|
||||
pub use self::constants::{
|
||||
e, euler, four_over_pi, golden_ratio, half_pi, ln_ln_two, ln_ten, ln_two, one, one_over_pi,
|
||||
one_over_root_two, one_over_two_pi, quarter_pi, root_five, root_half_pi, root_ln_four, root_pi,
|
||||
root_three, root_two, root_two_pi, third, three_over_two_pi, two_over_pi, two_over_root_pi,
|
||||
two_pi, two_thirds, zero,
|
||||
};
|
||||
//pub use self::integer::*;
|
||||
pub use self::matrix_access::{column, row, set_column, set_row};
|
||||
pub use self::matrix_inverse::{affine_inverse, inverse_transpose};
|
||||
//pub use self::packing::*;
|
||||
//pub use self::reciprocal::*;
|
||||
//pub use self::round::*;
|
||||
pub use self::type_ptr::{make_mat2, make_mat2x2, make_mat2x3, make_mat2x4, make_mat3, make_mat3x2, make_mat3x3, make_mat3x4, make_mat4, make_mat4x2, make_mat4x3, make_mat4x4, make_quat, make_vec1, make_vec2, make_vec3, make_vec4, value_ptr, value_ptr_mut, vec1_to_vec2, vec1_to_vec3, vec1_to_vec4, vec2_to_vec1, vec2_to_vec2, vec2_to_vec3, vec2_to_vec4, vec3_to_vec1, vec3_to_vec2, vec3_to_vec3, vec3_to_vec4, vec4_to_vec1, vec4_to_vec2, vec4_to_vec3, vec4_to_vec4, mat2_to_mat3, mat2_to_mat4, mat3_to_mat2, mat3_to_mat4, mat4_to_mat2, mat4_to_mat3};
|
||||
pub use self::type_ptr::{
|
||||
make_mat2, make_mat2x2, make_mat2x3, make_mat2x4, make_mat3, make_mat3x2, make_mat3x3,
|
||||
make_mat3x4, make_mat4, make_mat4x2, make_mat4x3, make_mat4x4, make_quat, make_vec1, make_vec2,
|
||||
make_vec3, make_vec4, mat2_to_mat3, mat2_to_mat4, mat3_to_mat2, mat3_to_mat4, mat4_to_mat2,
|
||||
mat4_to_mat3, value_ptr, value_ptr_mut, vec1_to_vec2, vec1_to_vec3, vec1_to_vec4, vec2_to_vec1,
|
||||
vec2_to_vec2, vec2_to_vec3, vec2_to_vec4, vec3_to_vec1, vec3_to_vec2, vec3_to_vec3,
|
||||
vec3_to_vec4, vec4_to_vec1, vec4_to_vec2, vec4_to_vec3, vec4_to_vec4,
|
||||
};
|
||||
//pub use self::ulp::*;
|
||||
pub use self::quaternion::{quat_cast, quat_euler_angles, quat_greater_than, quat_greater_than_equal, quat_less_than, quat_less_than_equal, quat_look_at, quat_look_at_lh, quat_look_at_rh, quat_pitch, quat_roll, quat_yaw};
|
||||
|
||||
pub use self::quaternion::{
|
||||
quat_cast, quat_euler_angles, quat_greater_than, quat_greater_than_equal, quat_less_than,
|
||||
quat_less_than_equal, quat_look_at, quat_look_at_lh, quat_look_at_rh, quat_pitch, quat_roll,
|
||||
quat_yaw,
|
||||
};
|
||||
|
||||
//mod bitfield;
|
||||
mod constants;
|
||||
|
@ -1,7 +1,6 @@
|
||||
use na::{Real, U4, UnitQuaternion};
|
||||
|
||||
use aliases::{Qua, TVec, TVec3, TMat4};
|
||||
use na::{Real, UnitQuaternion, U4};
|
||||
|
||||
use aliases::{Qua, TMat4, TVec, TVec3};
|
||||
|
||||
/// Euler angles of the quaternion `q` as (pitch, yaw, roll).
|
||||
pub fn quat_euler_angles<N: Real>(x: &Qua<N>) -> TVec3<N> {
|
||||
|
@ -1,8 +1,10 @@
|
||||
use na::{Scalar, Real, DefaultAllocator, Quaternion};
|
||||
use na::{DefaultAllocator, Quaternion, Real, Scalar};
|
||||
|
||||
use traits::{Number, Alloc, Dimension};
|
||||
use aliases::{Qua, TMat, TMat2, TMat3, TMat4, TVec1, TVec2, TVec3, TVec4,
|
||||
TMat2x3, TMat2x4, TMat3x2, TMat3x4, TMat4x2, TMat4x3};
|
||||
use aliases::{
|
||||
Qua, TMat, TMat2, TMat2x3, TMat2x4, TMat3, TMat3x2, TMat3x4, TMat4, TMat4x2, TMat4x3, TVec1,
|
||||
TVec2, TVec3, TVec4,
|
||||
};
|
||||
use traits::{Alloc, Dimension, Number};
|
||||
|
||||
/// Creates a 2x2 matrix from a slice arranged in column-major order.
|
||||
pub fn make_mat2<N: Scalar>(ptr: &[N]) -> TMat2<N> {
|
||||
@ -69,19 +71,12 @@ pub fn mat2_to_mat3<N: Number>(m: &TMat2<N>) -> TMat3<N> {
|
||||
let _0 = N::zero();
|
||||
let _1 = N::one();
|
||||
|
||||
TMat3::new(
|
||||
m.m11, m.m12, _0,
|
||||
m.m21, m.m22, _0,
|
||||
_0, _0, _1
|
||||
)
|
||||
TMat3::new(m.m11, m.m12, _0, m.m21, m.m22, _0, _0, _0, _1)
|
||||
}
|
||||
|
||||
/// Converts a 3x3 matrix to a 2x2 matrix.
|
||||
pub fn mat3_to_mat2<N: Scalar>(m: &TMat3<N>) -> TMat2<N> {
|
||||
TMat2::new(
|
||||
m.m11, m.m12,
|
||||
m.m21, m.m22
|
||||
)
|
||||
TMat2::new(m.m11, m.m12, m.m21, m.m22)
|
||||
}
|
||||
|
||||
/// Converts a 3x3 matrix to a 4x4 matrix.
|
||||
@ -90,19 +85,14 @@ pub fn mat3_to_mat4<N: Number>(m: &TMat3<N>) -> TMat4<N> {
|
||||
let _1 = N::one();
|
||||
|
||||
TMat4::new(
|
||||
m.m11, m.m12, m.m13, _0,
|
||||
m.m21, m.m22, m.m23, _0,
|
||||
m.m31, m.m32, m.m33, _0,
|
||||
_0, _0, _0, _1,
|
||||
m.m11, m.m12, m.m13, _0, m.m21, m.m22, m.m23, _0, m.m31, m.m32, m.m33, _0, _0, _0, _0, _1,
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts a 4x4 matrix to a 3x3 matrix.
|
||||
pub fn mat4_to_mat3<N: Scalar>(m: &TMat4<N>) -> TMat3<N> {
|
||||
TMat3::new(
|
||||
m.m11, m.m12, m.m13,
|
||||
m.m21, m.m22, m.m23,
|
||||
m.m31, m.m32, m.m33,
|
||||
m.m11, m.m12, m.m13, m.m21, m.m22, m.m23, m.m31, m.m32, m.m33,
|
||||
)
|
||||
}
|
||||
|
||||
@ -112,19 +102,13 @@ pub fn mat2_to_mat4<N: Number>(m: &TMat2<N>) -> TMat4<N> {
|
||||
let _1 = N::one();
|
||||
|
||||
TMat4::new(
|
||||
m.m11, m.m12, _0, _0,
|
||||
m.m21, m.m22, _0, _0,
|
||||
_0, _0, _1, _0,
|
||||
_0, _0, _0, _1,
|
||||
m.m11, m.m12, _0, _0, m.m21, m.m22, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1,
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts a 4x4 matrix to a 2x2 matrix.
|
||||
pub fn mat4_to_mat2<N: Scalar>(m: &TMat4<N>) -> TMat2<N> {
|
||||
TMat2::new(
|
||||
m.m11, m.m12,
|
||||
m.m21, m.m22,
|
||||
)
|
||||
TMat2::new(m.m11, m.m12, m.m21, m.m22)
|
||||
}
|
||||
|
||||
/// Creates a quaternion from a slice arranged as `[x, y, z, w]`.
|
||||
@ -400,13 +384,16 @@ pub fn make_vec4<N: Scalar>(ptr: &[N]) -> TVec4<N> {
|
||||
|
||||
/// Converts a matrix or vector to a slice arranged in column-major order.
|
||||
pub fn value_ptr<N: Scalar, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> &[N]
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
x.as_slice()
|
||||
}
|
||||
|
||||
/// Converts a matrix or vector to a mutable slice arranged in column-major order.
|
||||
pub fn value_ptr_mut<N: Scalar, R: Dimension, C: Dimension>(x: &mut TMat<N, R, C>) -> &mut [N]
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
x.as_mut_slice()
|
||||
}
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{self, DefaultAllocator};
|
||||
|
||||
use traits::{Number, Alloc, Dimension};
|
||||
use aliases::TMat;
|
||||
use traits::{Alloc, Dimension, Number};
|
||||
|
||||
/// The sum of every component of the given matrix or vector.
|
||||
///
|
||||
@ -22,7 +22,9 @@ use aliases::TMat;
|
||||
/// * [`comp_min`](fn.comp_min.html)
|
||||
/// * [`comp_mul`](fn.comp_mul.html)
|
||||
pub fn comp_add<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
m.iter().fold(N::zero(), |x, y| x + *y)
|
||||
}
|
||||
|
||||
@ -49,7 +51,9 @@ pub fn comp_add<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
|
||||
/// * [`max3`](fn.max3.html)
|
||||
/// * [`max4`](fn.max4.html)
|
||||
pub fn comp_max<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
m.iter().fold(N::min_value(), |x, y| na::sup(&x, y))
|
||||
}
|
||||
|
||||
@ -76,7 +80,9 @@ pub fn comp_max<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn comp_min<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
m.iter().fold(N::max_value(), |x, y| na::inf(&x, y))
|
||||
}
|
||||
|
||||
@ -99,7 +105,9 @@ pub fn comp_min<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
|
||||
/// * [`comp_max`](fn.comp_max.html)
|
||||
/// * [`comp_min`](fn.comp_min.html)
|
||||
pub fn comp_mul<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
m.iter().fold(N::one(), |x, y| x * *y)
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
use traits::Number;
|
||||
use aliases::TVec2;
|
||||
use traits::Number;
|
||||
|
||||
/// The 2D perpendicular product between two vectors.
|
||||
pub fn cross2d<N: Number>(v: &TVec2<N>, u: &TVec2<N>) -> N {
|
||||
|
@ -1,5 +1,5 @@
|
||||
use traits::Number;
|
||||
use aliases::TVec3;
|
||||
use traits::Number;
|
||||
|
||||
/// Returns `true` if `{a, b, c}` forms a left-handed trihedron.
|
||||
///
|
||||
|
@ -1,5 +1,7 @@
|
||||
use aliases::{
|
||||
TMat2, TMat2x3, TMat2x4, TMat3, TMat3x2, TMat3x4, TMat4, TMat4x2, TMat4x3, TVec2, TVec3, TVec4,
|
||||
};
|
||||
use traits::Number;
|
||||
use aliases::{TVec2, TVec3, TVec4, TMat2, TMat2x3, TMat2x4, TMat3, TMat3x2, TMat3x4, TMat4, TMat4x2, TMat4x3};
|
||||
|
||||
/// Builds a 2x2 diagonal matrix.
|
||||
///
|
||||
|
@ -1,25 +1,37 @@
|
||||
//! (Reexported) Experimental features not specified by GLSL specification.
|
||||
|
||||
|
||||
pub use self::component_wise::{comp_add, comp_max, comp_min, comp_mul};
|
||||
//pub use self::euler_angles::*;
|
||||
pub use self::exterior_product::{cross2d};
|
||||
pub use self::exterior_product::cross2d;
|
||||
pub use self::handed_coordinate_space::{left_handed, right_handed};
|
||||
pub use self::matrix_cross_product::{matrix_cross, matrix_cross3};
|
||||
pub use self::matrix_operation::{diagonal2x2, diagonal2x3, diagonal2x4, diagonal3x2, diagonal3x3, diagonal3x4, diagonal4x2, diagonal4x3, diagonal4x4};
|
||||
pub use self::matrix_operation::{
|
||||
diagonal2x2, diagonal2x3, diagonal2x4, diagonal3x2, diagonal3x3, diagonal3x4, diagonal4x2,
|
||||
diagonal4x3, diagonal4x4,
|
||||
};
|
||||
pub use self::norm::{distance2, l1_distance, l1_norm, l2_distance, l2_norm, length2, magnitude2};
|
||||
pub use self::normal::{triangle_normal};
|
||||
pub use self::normal::triangle_normal;
|
||||
pub use self::normalize_dot::{fast_normalize_dot, normalize_dot};
|
||||
pub use self::quaternion::{
|
||||
mat3_to_quat, quat_cross_vec, quat_extract_real_component, quat_fast_mix, quat_identity,
|
||||
quat_inv_cross_vec, quat_length2, quat_magnitude2, quat_rotate_vec, quat_rotate_vec3,
|
||||
quat_rotation, quat_short_mix, quat_to_mat3, quat_to_mat4, to_quat,
|
||||
};
|
||||
pub use self::rotate_normalized_axis::{quat_rotate_normalized_axis, rotate_normalized_axis};
|
||||
pub use self::rotate_vector::{orientation, rotate_vec2, rotate_vec3, rotate_vec4, rotate_x_vec4, rotate_x_vec3, rotate_y_vec4, rotate_y_vec3, rotate_z_vec4, rotate_z_vec3, slerp};
|
||||
pub use self::transform::{rotation, scaling, translation, rotation2d, scaling2d, translation2d};
|
||||
pub use self::transform2::{proj, proj2d, reflect, reflect2d, scale_bias, scale_bias_matrix, shear2d_x, shear_x, shear_y, shear2d_y, shear_z};
|
||||
pub use self::rotate_vector::{
|
||||
orientation, rotate_vec2, rotate_vec3, rotate_vec4, rotate_x_vec3, rotate_x_vec4,
|
||||
rotate_y_vec3, rotate_y_vec4, rotate_z_vec3, rotate_z_vec4, slerp,
|
||||
};
|
||||
pub use self::transform::{rotation, rotation2d, scaling, scaling2d, translation, translation2d};
|
||||
pub use self::transform2::{
|
||||
proj, proj2d, reflect, reflect2d, scale_bias, scale_bias_matrix, shear2d_x, shear2d_y, shear_x,
|
||||
shear_y, shear_z,
|
||||
};
|
||||
pub use self::transform2d::{rotate2d, scale2d, translate2d};
|
||||
pub use self::vector_angle::{angle};
|
||||
pub use self::vector_query::{are_collinear, are_collinear2d, are_orthogonal, is_comp_null, is_normalized, is_null};
|
||||
pub use self::quaternion::{quat_to_mat3, quat_rotate_vec, quat_cross_vec, mat3_to_quat, quat_extract_real_component, quat_fast_mix, quat_inv_cross_vec, quat_length2, quat_magnitude2, quat_identity, quat_rotate_vec3, quat_rotation, quat_short_mix, quat_to_mat4, to_quat};
|
||||
|
||||
|
||||
pub use self::vector_angle::angle;
|
||||
pub use self::vector_query::{
|
||||
are_collinear, are_collinear2d, are_orthogonal, is_comp_null, is_normalized, is_null,
|
||||
};
|
||||
|
||||
mod component_wise;
|
||||
//mod euler_angles;
|
||||
@ -30,6 +42,7 @@ mod matrix_operation;
|
||||
mod norm;
|
||||
mod normal;
|
||||
mod normalize_dot;
|
||||
mod quaternion;
|
||||
mod rotate_normalized_axis;
|
||||
mod rotate_vector;
|
||||
mod transform;
|
||||
@ -37,4 +50,3 @@ mod transform2;
|
||||
mod transform2d;
|
||||
mod vector_angle;
|
||||
mod vector_query;
|
||||
mod quaternion;
|
@ -1,7 +1,7 @@
|
||||
use na::{Real, DefaultAllocator};
|
||||
use na::{DefaultAllocator, Real};
|
||||
|
||||
use traits::{Alloc, Dimension};
|
||||
use aliases::TVec;
|
||||
use traits::{Alloc, Dimension};
|
||||
|
||||
/// The squared distance between two points.
|
||||
///
|
||||
@ -9,7 +9,9 @@ use aliases::TVec;
|
||||
///
|
||||
/// * [`distance`](fn.distance.html)
|
||||
pub fn distance2<N: Real, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
(p1 - p0).norm_squared()
|
||||
}
|
||||
|
||||
@ -21,7 +23,9 @@ pub fn distance2<N: Real, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N
|
||||
/// * [`l2_distance`](fn.l2_distance.html)
|
||||
/// * [`l2_norm`](fn.l2_norm.html)
|
||||
pub fn l1_distance<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
l1_norm(&(y - x))
|
||||
}
|
||||
|
||||
@ -36,7 +40,9 @@ pub fn l1_distance<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
/// * [`l2_distance`](fn.l2_distance.html)
|
||||
/// * [`l2_norm`](fn.l2_norm.html)
|
||||
pub fn l1_norm<N: Real, D: Dimension>(v: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
::comp_add(&v.abs())
|
||||
}
|
||||
|
||||
@ -55,7 +61,9 @@ pub fn l1_norm<N: Real, D: Dimension>(v: &TVec<N, D>) -> N
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn l2_distance<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
l2_norm(&(y - x))
|
||||
}
|
||||
|
||||
@ -76,7 +84,9 @@ pub fn l2_distance<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn l2_norm<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm()
|
||||
}
|
||||
|
||||
@ -92,7 +102,9 @@ pub fn l2_norm<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn length2<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm_squared()
|
||||
}
|
||||
|
||||
@ -108,7 +120,9 @@ pub fn length2<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`nalgebra::norm_squared`](../nalgebra/fn.norm_squared.html)
|
||||
pub fn magnitude2<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm_squared()
|
||||
}
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{Real, DefaultAllocator};
|
||||
use na::{DefaultAllocator, Real};
|
||||
|
||||
use traits::{Dimension, Alloc};
|
||||
use aliases::TVec;
|
||||
use traits::{Alloc, Dimension};
|
||||
|
||||
/// The dot product of the normalized version of `x` and `y`.
|
||||
///
|
||||
@ -11,7 +11,9 @@ use aliases::TVec;
|
||||
///
|
||||
/// * [`normalize_dot`](fn.normalize_dot.html`)
|
||||
pub fn fast_normalize_dot<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
// XXX: improve those.
|
||||
x.normalize().dot(&y.normalize())
|
||||
}
|
||||
@ -22,7 +24,9 @@ pub fn fast_normalize_dot<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>)
|
||||
///
|
||||
/// * [`fast_normalize_dot`](fn.fast_normalize_dot.html`)
|
||||
pub fn normalize_dot<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
// XXX: improve those.
|
||||
x.normalize().dot(&y.normalize())
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
use na::{Real, Unit, Rotation3, UnitQuaternion, U3};
|
||||
use na::{Real, Rotation3, Unit, UnitQuaternion, U3};
|
||||
|
||||
use aliases::{Qua, TMat3, TMat4, TVec3, TVec4};
|
||||
|
||||
@ -19,7 +19,9 @@ pub fn quat_extract_real_component<N: Real>(q: &Qua<N>) -> N {
|
||||
|
||||
/// Normalized linear interpolation between two quaternions.
|
||||
pub fn quat_fast_mix<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> {
|
||||
Unit::new_unchecked(*x).nlerp(&Unit::new_unchecked(*y), a).unwrap()
|
||||
Unit::new_unchecked(*x)
|
||||
.nlerp(&Unit::new_unchecked(*y), a)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
//pub fn quat_intermediate<N: Real>(prev: &Qua<N>, curr: &Qua<N>, next: &Qua<N>) -> Qua<N> {
|
||||
@ -54,12 +56,16 @@ pub fn quat_rotate_vec<N: Real>(q: &Qua<N>, v: &TVec4<N>) -> TVec4<N> {
|
||||
|
||||
/// The rotation required to align `orig` to `dest`.
|
||||
pub fn quat_rotation<N: Real>(orig: &TVec3<N>, dest: &TVec3<N>) -> Qua<N> {
|
||||
UnitQuaternion::rotation_between(orig, dest).unwrap_or_else(UnitQuaternion::identity).unwrap()
|
||||
UnitQuaternion::rotation_between(orig, dest)
|
||||
.unwrap_or_else(UnitQuaternion::identity)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// The spherical linear interpolation between two quaternions.
|
||||
pub fn quat_short_mix<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> {
|
||||
Unit::new_normalize(*x).slerp(&Unit::new_normalize(*y), a).unwrap()
|
||||
Unit::new_normalize(*x)
|
||||
.slerp(&Unit::new_normalize(*y), a)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
//pub fn quat_squad<N: Real>(q1: &Qua<N>, q2: &Qua<N>, s1: &Qua<N>, s2: &Qua<N>, h: N) -> Qua<N> {
|
||||
@ -68,7 +74,9 @@ pub fn quat_short_mix<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> {
|
||||
|
||||
/// Converts a quaternion to a rotation matrix.
|
||||
pub fn quat_to_mat3<N: Real>(x: &Qua<N>) -> TMat3<N> {
|
||||
UnitQuaternion::new_unchecked(*x).to_rotation_matrix().unwrap()
|
||||
UnitQuaternion::new_unchecked(*x)
|
||||
.to_rotation_matrix()
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Converts a quaternion to a rotation matrix in homogenous coordinates.
|
||||
@ -87,4 +95,3 @@ pub fn to_quat<N: Real>(x: &TMat4<N>) -> Qua<N> {
|
||||
let rot = x.fixed_slice::<U3, U3>(0, 0).into_owned();
|
||||
mat3_to_quat(&rot)
|
||||
}
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
use na::{Real, Rotation3, Unit, UnitComplex};
|
||||
|
||||
use aliases::{TVec2, TVec3, TVec4, TMat4};
|
||||
use aliases::{TMat4, TVec2, TVec3, TVec4};
|
||||
|
||||
/// Build the rotation matrix needed to align `normal` and `up`.
|
||||
pub fn orientation<N: Real>(normal: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> {
|
||||
@ -58,5 +58,7 @@ pub fn rotate_z_vec4<N: Real>(v: &TVec4<N>, angle: N) -> TVec4<N> {
|
||||
|
||||
/// Computes a spherical linear interpolation between the vectors `x` and `y` assumed to be normalized.
|
||||
pub fn slerp<N: Real>(x: &TVec3<N>, y: &TVec3<N>, a: N) -> TVec3<N> {
|
||||
Unit::new_unchecked(*x).slerp(&Unit::new_unchecked(*y), a).unwrap()
|
||||
Unit::new_unchecked(*x)
|
||||
.slerp(&Unit::new_unchecked(*y), a)
|
||||
.unwrap()
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{Real, Unit, Rotation2, Rotation3};
|
||||
use na::{Real, Rotation2, Rotation3, Unit};
|
||||
|
||||
use aliases::{TMat3, TMat4, TVec2, TVec3};
|
||||
use traits::Number;
|
||||
use aliases::{TVec3, TVec2, TMat3, TMat4};
|
||||
|
||||
/// A rotation 4 * 4 matrix created from an axis of 3 scalars and an angle expressed in radians.
|
||||
///
|
||||
@ -42,7 +42,6 @@ pub fn translation<N: Number>(v: &TVec3<N>) -> TMat4<N> {
|
||||
TMat4::new_translation(v)
|
||||
}
|
||||
|
||||
|
||||
/// A rotation 3 * 3 matrix created from an angle expressed in radians.
|
||||
///
|
||||
/// # See also:
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{U2, U3};
|
||||
|
||||
use aliases::{TMat3, TMat4, TVec2, TVec3};
|
||||
use traits::Number;
|
||||
use aliases::{TVec2, TVec3, TMat3, TMat4};
|
||||
|
||||
/// Build planar projection matrix along normal axis and right-multiply it to `m`.
|
||||
pub fn proj2d<N: Number>(m: &TMat3<N>, normal: &TVec2<N>) -> TMat3<N> {
|
||||
@ -57,10 +57,7 @@ pub fn scale_bias_matrix<N: Number>(scale: N, bias: N) -> TMat4<N> {
|
||||
let _1 = N::one();
|
||||
|
||||
TMat4::new(
|
||||
scale, _0, _0, bias,
|
||||
_0, scale, _0, bias,
|
||||
_0, _0, scale, bias,
|
||||
_0, _0, _0, _1,
|
||||
scale, _0, _0, bias, _0, scale, _0, bias, _0, _0, scale, bias, _0, _0, _0, _1,
|
||||
)
|
||||
}
|
||||
|
||||
@ -74,11 +71,7 @@ pub fn shear2d_x<N: Number>(m: &TMat3<N>, y: N) -> TMat3<N> {
|
||||
let _0 = N::zero();
|
||||
let _1 = N::one();
|
||||
|
||||
let shear = TMat3::new(
|
||||
_1, y, _0,
|
||||
_0, _1, _0,
|
||||
_0, _0, _1
|
||||
);
|
||||
let shear = TMat3::new(_1, y, _0, _0, _1, _0, _0, _0, _1);
|
||||
m * shear
|
||||
}
|
||||
|
||||
@ -86,12 +79,7 @@ pub fn shear2d_x<N: Number>(m: &TMat3<N>, y: N) -> TMat3<N> {
|
||||
pub fn shear_x<N: Number>(m: &TMat4<N>, y: N, z: N) -> TMat4<N> {
|
||||
let _0 = N::zero();
|
||||
let _1 = N::one();
|
||||
let shear = TMat4::new(
|
||||
_1, _0, _0, _0,
|
||||
y, _1, _0, _0,
|
||||
z, _0, _1, _0,
|
||||
_0, _0, _0, _1,
|
||||
);
|
||||
let shear = TMat4::new(_1, _0, _0, _0, y, _1, _0, _0, z, _0, _1, _0, _0, _0, _0, _1);
|
||||
|
||||
m * shear
|
||||
}
|
||||
@ -101,11 +89,7 @@ pub fn shear2d_y<N: Number>(m: &TMat3<N>, x: N) -> TMat3<N> {
|
||||
let _0 = N::zero();
|
||||
let _1 = N::one();
|
||||
|
||||
let shear = TMat3::new(
|
||||
_1, _0, _0,
|
||||
x, _1, _0,
|
||||
_0, _0, _1
|
||||
);
|
||||
let shear = TMat3::new(_1, _0, _0, x, _1, _0, _0, _0, _1);
|
||||
m * shear
|
||||
}
|
||||
|
||||
@ -113,12 +97,7 @@ pub fn shear2d_y<N: Number>(m: &TMat3<N>, x: N) -> TMat3<N> {
|
||||
pub fn shear_y<N: Number>(m: &TMat4<N>, x: N, z: N) -> TMat4<N> {
|
||||
let _0 = N::zero();
|
||||
let _1 = N::one();
|
||||
let shear = TMat4::new(
|
||||
_1, x, _0, _0,
|
||||
_0, _1, _0, _0,
|
||||
_0, z, _1, _0,
|
||||
_0, _0, _0, _1,
|
||||
);
|
||||
let shear = TMat4::new(_1, x, _0, _0, _0, _1, _0, _0, _0, z, _1, _0, _0, _0, _0, _1);
|
||||
|
||||
m * shear
|
||||
}
|
||||
@ -127,12 +106,7 @@ pub fn shear_y<N: Number>(m: &TMat4<N>, x: N, z: N) -> TMat4<N> {
|
||||
pub fn shear_z<N: Number>(m: &TMat4<N>, x: N, y: N) -> TMat4<N> {
|
||||
let _0 = N::zero();
|
||||
let _1 = N::one();
|
||||
let shear = TMat4::new(
|
||||
_1, _0, x, _0,
|
||||
_0, _1, y, _0,
|
||||
_0, _0, _1, _0,
|
||||
_0, _0, _0, _1,
|
||||
);
|
||||
let shear = TMat4::new(_1, _0, x, _0, _0, _1, y, _0, _0, _0, _1, _0, _0, _0, _0, _1);
|
||||
|
||||
m * shear
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{Real, UnitComplex};
|
||||
|
||||
use traits::Number;
|
||||
use aliases::{TMat3, TVec2};
|
||||
use traits::Number;
|
||||
|
||||
/// Builds a 2D rotation matrix from an angle and right-multiply it to `m`.
|
||||
///
|
||||
|
@ -1,12 +1,13 @@
|
||||
use na::{DefaultAllocator, Real};
|
||||
|
||||
use traits::{Dimension, Alloc};
|
||||
use aliases::TVec;
|
||||
|
||||
use traits::{Alloc, Dimension};
|
||||
|
||||
/// The angle between two vectors.
|
||||
pub fn angle<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.angle(y)
|
||||
}
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{Real, DefaultAllocator};
|
||||
use na::{DefaultAllocator, Real};
|
||||
|
||||
use traits::{Number, Dimension, Alloc};
|
||||
use aliases::{TVec, TVec2, TVec3};
|
||||
use traits::{Alloc, Dimension, Number};
|
||||
|
||||
/// Returns `true` if two vectors are collinear (up to an epsilon).
|
||||
///
|
||||
@ -23,7 +23,9 @@ pub fn are_collinear2d<N: Number>(v0: &TVec2<N>, v1: &TVec2<N>, epsilon: N) -> b
|
||||
|
||||
/// Returns `true` if two vectors are orthogonal (up to an epsilon).
|
||||
pub fn are_orthogonal<N: Number, D: Dimension>(v0: &TVec<N, D>, v1: &TVec<N, D>, epsilon: N) -> bool
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
abs_diff_eq!(v0.dot(v1), N::zero(), epsilon = epsilon)
|
||||
}
|
||||
|
||||
@ -34,18 +36,24 @@ pub fn are_orthogonal<N: Number, D: Dimension>(v0: &TVec<N, D>, v1: &TVec<N, D>,
|
||||
|
||||
/// Returns `true` if all the components of `v` are zero (up to an epsilon).
|
||||
pub fn is_comp_null<N: Number, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| abs_diff_eq!(x, N::zero(), epsilon = epsilon))
|
||||
}
|
||||
|
||||
/// Returns `true` if `v` has a magnitude of 1 (up to an epsilon).
|
||||
pub fn is_normalized<N: Real, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> bool
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
abs_diff_eq!(v.norm_squared(), N::one(), epsilon = epsilon * epsilon)
|
||||
}
|
||||
|
||||
/// Returns `true` if `v` is zero (up to an epsilon).
|
||||
pub fn is_null<N: Number, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> bool
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
abs_diff_eq!(*v, TVec::<N, D>::zeros(), epsilon = epsilon)
|
||||
}
|
||||
|
@ -1,114 +1,114 @@
|
||||
/*! # nalgebra-glm − nalgebra in _easy mode_
|
||||
**nalgebra-glm** is a GLM-like interface for the **nalgebra** general-purpose linear algebra library.
|
||||
[GLM](https://glm.g-truc.net) itself is a popular C++ linear algebra library essentially targeting computer graphics. Therefore
|
||||
**nalgebra-glm** draws inspiration from GLM to define a nice and easy-to-use API for simple graphics application.
|
||||
**nalgebra-glm** is a GLM-like interface for the **nalgebra** general-purpose linear algebra library.
|
||||
[GLM](https://glm.g-truc.net) itself is a popular C++ linear algebra library essentially targeting computer graphics. Therefore
|
||||
**nalgebra-glm** draws inspiration from GLM to define a nice and easy-to-use API for simple graphics application.
|
||||
|
||||
All the types of **nalgebra-glm** are aliases of types from **nalgebra**. Therefore there is a complete and
|
||||
seamless inter-operability between both.
|
||||
All the types of **nalgebra-glm** are aliases of types from **nalgebra**. Therefore there is a complete and
|
||||
seamless inter-operability between both.
|
||||
|
||||
## Getting started
|
||||
First of all, you should start by taking a look at the official [GLM API documentation](http://glm.g-truc.net/0.9.9/api/index.html)
|
||||
since **nalgebra-glm** implements a large subset of it. To use **nalgebra-glm** to your project, you
|
||||
should add it as a dependency to your `Crates.toml`:
|
||||
## Getting started
|
||||
First of all, you should start by taking a look at the official [GLM API documentation](http://glm.g-truc.net/0.9.9/api/index.html)
|
||||
since **nalgebra-glm** implements a large subset of it. To use **nalgebra-glm** to your project, you
|
||||
should add it as a dependency to your `Crates.toml`:
|
||||
|
||||
```toml
|
||||
[dependencies]
|
||||
nalgebra-glm = "0.1"
|
||||
```
|
||||
```toml
|
||||
[dependencies]
|
||||
nalgebra-glm = "0.1"
|
||||
```
|
||||
|
||||
Then, you should add an `extern crate` statement to your `lib.rs` or `main.rs` file. It is **strongly
|
||||
recommended** to add a crate alias to `glm` as well so that you will be able to call functions of
|
||||
**nalgebra-glm** using the module prefix `glm::`. For example you will write `glm::rotate(...)` instead
|
||||
of the more verbose `nalgebra_glm::rotate(...)`:
|
||||
Then, you should add an `extern crate` statement to your `lib.rs` or `main.rs` file. It is **strongly
|
||||
recommended** to add a crate alias to `glm` as well so that you will be able to call functions of
|
||||
**nalgebra-glm** using the module prefix `glm::`. For example you will write `glm::rotate(...)` instead
|
||||
of the more verbose `nalgebra_glm::rotate(...)`:
|
||||
|
||||
```rust
|
||||
extern crate nalgebra_glm as glm;
|
||||
```
|
||||
```rust
|
||||
extern crate nalgebra_glm as glm;
|
||||
```
|
||||
|
||||
## Features overview
|
||||
**nalgebra-glm** supports most linear-algebra related features of the C++ GLM library. Mathematically
|
||||
speaking, it supports all the common transformations like rotations, translations, scaling, shearing,
|
||||
and projections but operating in homogeneous coordinates. This means all the 2D transformations are
|
||||
expressed as 3x3 matrices, and all the 3D transformations as 4x4 matrices. This is less computationally-efficient
|
||||
and memory-efficient than nalgebra's [transformation types](https://www.nalgebra.org/points_and_transformations/#transformations),
|
||||
but this has the benefit of being simpler to use.
|
||||
### Main differences compared to GLM
|
||||
While **nalgebra-glm** follows the feature line of the C++ GLM library, quite a few differences
|
||||
remain and they are mostly syntactic. The main ones are:
|
||||
* All function names use `snake_case`, which is the Rust convention.
|
||||
* All type names use `CamelCase`, which is the Rust convention.
|
||||
* All function arguments, except for scalars, are all passed by-reference.
|
||||
* The most generic vector and matrix types are [`TMat`](type.TMat.html) and [`TVec`](type.TVec.html) instead of `mat` and `vec`.
|
||||
* Some feature are not yet implemented and should be added in the future. In particular, no packing
|
||||
functions are available.
|
||||
* A few features are not implemented and will never be. This includes functions related to color
|
||||
spaces, and closest points computations. Other crates should be used for those. For example, closest
|
||||
points computation can be handled by the [ncollide](https://ncollide.org) project.
|
||||
## Features overview
|
||||
**nalgebra-glm** supports most linear-algebra related features of the C++ GLM library. Mathematically
|
||||
speaking, it supports all the common transformations like rotations, translations, scaling, shearing,
|
||||
and projections but operating in homogeneous coordinates. This means all the 2D transformations are
|
||||
expressed as 3x3 matrices, and all the 3D transformations as 4x4 matrices. This is less computationally-efficient
|
||||
and memory-efficient than nalgebra's [transformation types](https://www.nalgebra.org/points_and_transformations/#transformations),
|
||||
but this has the benefit of being simpler to use.
|
||||
### Main differences compared to GLM
|
||||
While **nalgebra-glm** follows the feature line of the C++ GLM library, quite a few differences
|
||||
remain and they are mostly syntactic. The main ones are:
|
||||
* All function names use `snake_case`, which is the Rust convention.
|
||||
* All type names use `CamelCase`, which is the Rust convention.
|
||||
* All function arguments, except for scalars, are all passed by-reference.
|
||||
* The most generic vector and matrix types are [`TMat`](type.TMat.html) and [`TVec`](type.TVec.html) instead of `mat` and `vec`.
|
||||
* Some feature are not yet implemented and should be added in the future. In particular, no packing
|
||||
functions are available.
|
||||
* A few features are not implemented and will never be. This includes functions related to color
|
||||
spaces, and closest points computations. Other crates should be used for those. For example, closest
|
||||
points computation can be handled by the [ncollide](https://ncollide.org) project.
|
||||
|
||||
In addition, because Rust does not allows function overloading, all functions must be given a unique name.
|
||||
Here are a few rules chosen arbitrarily for **nalgebra-glm**:
|
||||
* Functions operating in 2d will usually end with the `2d` suffix, e.g., [`glm::rotate2d`](fn.rotate2d.html) is for 2D while [`glm::rotate`](fn.rotate.html) is for 3D.
|
||||
* Functions operating on vectors will often end with the `_vec` suffix, possibly followed by the dimension of vector, e.g., [`glm::rotate_vec2`](fn.rotate_vec2.html).
|
||||
* Every function related to quaternions start with the `quat_` prefix, e.g., [`glm::quat_dot(q1, q2)`](fn.quat_dot.html).
|
||||
* All the conversion functions have unique names as described [below](#conversions).
|
||||
### Vector and matrix construction
|
||||
Vectors, matrices, and quaternions can be constructed using several approaches:
|
||||
* Using functions with the same name as their type in lower-case. For example [`glm::vec3(x, y, z)`](fn.vec3.html) will create a 3D vector.
|
||||
* Using the `::new` constructor. For example [`Vec3::new(x, y, z)`](../nalgebra/base/type.MatrixMN.html#method.new-27) will create a 3D vector.
|
||||
* Using the functions prefixed by `make_` to build a vector a matrix from a slice. For example [`glm::make_vec3(&[x, y, z])`](fn.make_vec3.html) will create a 3D vector.
|
||||
Keep in mind that constructing a matrix using this type of functions require its components to be arranged in column-major order on the slice.
|
||||
* Using a geometric construction function. For example [`glm::rotation(angle, axis)`](fn.rotation.html) will build a 4x4 homogeneous rotation matrix from an angle (in radians) and an axis.
|
||||
* Using swizzling and conversions as described in the next sections.
|
||||
### Swizzling
|
||||
Vector swizzling is a native feature of **nalgebra** itself. Therefore, you can use it with all
|
||||
the vectors of **nalgebra-glm** as well. Swizzling is supported as methods and works only up to
|
||||
dimension 3, i.e., you can only refer to the components `x`, `y` and `z` and can only create a
|
||||
2D or 3D vector using this technique. Here is some examples, assuming `v` is a vector with float
|
||||
components here:
|
||||
* `v.xx()` is equivalent to `glm::vec2(v.x, v.x)` and to `Vec2::new(v.x, v.x)`.
|
||||
* `v.zx()` is equivalent to `glm::vec2(v.z, v.x)` and to `Vec2::new(v.z, v.x)`.
|
||||
* `v.yxz()` is equivalent to `glm::vec3(v.y, v.x, v.z)` and to `Vec3::new(v.y, v.x, v.z)`.
|
||||
* `v.zzy()` is equivalent to `glm::vec3(v.z, v.z, v.y)` and to `Vec3::new(v.z, v.z, v.y)`.
|
||||
In addition, because Rust does not allows function overloading, all functions must be given a unique name.
|
||||
Here are a few rules chosen arbitrarily for **nalgebra-glm**:
|
||||
* Functions operating in 2d will usually end with the `2d` suffix, e.g., [`glm::rotate2d`](fn.rotate2d.html) is for 2D while [`glm::rotate`](fn.rotate.html) is for 3D.
|
||||
* Functions operating on vectors will often end with the `_vec` suffix, possibly followed by the dimension of vector, e.g., [`glm::rotate_vec2`](fn.rotate_vec2.html).
|
||||
* Every function related to quaternions start with the `quat_` prefix, e.g., [`glm::quat_dot(q1, q2)`](fn.quat_dot.html).
|
||||
* All the conversion functions have unique names as described [below](#conversions).
|
||||
### Vector and matrix construction
|
||||
Vectors, matrices, and quaternions can be constructed using several approaches:
|
||||
* Using functions with the same name as their type in lower-case. For example [`glm::vec3(x, y, z)`](fn.vec3.html) will create a 3D vector.
|
||||
* Using the `::new` constructor. For example [`Vec3::new(x, y, z)`](../nalgebra/base/type.MatrixMN.html#method.new-27) will create a 3D vector.
|
||||
* Using the functions prefixed by `make_` to build a vector a matrix from a slice. For example [`glm::make_vec3(&[x, y, z])`](fn.make_vec3.html) will create a 3D vector.
|
||||
Keep in mind that constructing a matrix using this type of functions require its components to be arranged in column-major order on the slice.
|
||||
* Using a geometric construction function. For example [`glm::rotation(angle, axis)`](fn.rotation.html) will build a 4x4 homogeneous rotation matrix from an angle (in radians) and an axis.
|
||||
* Using swizzling and conversions as described in the next sections.
|
||||
### Swizzling
|
||||
Vector swizzling is a native feature of **nalgebra** itself. Therefore, you can use it with all
|
||||
the vectors of **nalgebra-glm** as well. Swizzling is supported as methods and works only up to
|
||||
dimension 3, i.e., you can only refer to the components `x`, `y` and `z` and can only create a
|
||||
2D or 3D vector using this technique. Here is some examples, assuming `v` is a vector with float
|
||||
components here:
|
||||
* `v.xx()` is equivalent to `glm::vec2(v.x, v.x)` and to `Vec2::new(v.x, v.x)`.
|
||||
* `v.zx()` is equivalent to `glm::vec2(v.z, v.x)` and to `Vec2::new(v.z, v.x)`.
|
||||
* `v.yxz()` is equivalent to `glm::vec3(v.y, v.x, v.z)` and to `Vec3::new(v.y, v.x, v.z)`.
|
||||
* `v.zzy()` is equivalent to `glm::vec3(v.z, v.z, v.y)` and to `Vec3::new(v.z, v.z, v.y)`.
|
||||
|
||||
Any combination of two or three components picked among `x`, `y`, and `z` will work.
|
||||
### Conversions
|
||||
It is often useful to convert one algebraic type to another. There are two main approaches for converting
|
||||
between types in `nalgebra-glm`:
|
||||
* Using function with the form `type1_to_type2` in order to convert an instance of `type1` into an instance of `type2`.
|
||||
For example [`glm::mat3_to_mat4(m)`](fn.mat3_to_mat4.html) will convert the 3x3 matrix `m` to a 4x4 matrix by appending one column on the right
|
||||
and one row on the left. Those now row and columns are filled with 0 except for the diagonal element which is set to 1.
|
||||
* Using one of the [`convert`](fn.convert.html), [`try_convert`](fn.try_convert.html), or [`convert_unchecked`](fn.convert_unchecked.html) functions.
|
||||
These functions are directly re-exported from nalgebra and are extremely versatile:
|
||||
1. The `convert` function can convert any type (especially geometric types from nalgebra like `Isometry3`) into another algebraic type which is equivalent but more general. For example,
|
||||
`let sim: Similarity3<_> = na::convert(isometry)` will convert an `Isometry3` into a `Similarity3`.
|
||||
In addition, `let mat: Mat4 = glm::convert(isometry)` will convert an `Isometry3` to a 4x4 matrix. This will also convert the scalar types,
|
||||
therefore: `let mat: DMat4 = glm::convert(m)` where `m: Mat4` will work. However, conversion will not work the other way round: you
|
||||
can't convert a `Matrix4` to an `Isometry3` using `glm::convert` because that could cause unexpected results if the matrix does
|
||||
not complies to the requirements of the isometry.
|
||||
2. If you need this kind of conversions anyway, you can use `try_convert` which will test if the object being converted complies with the algebraic requirements of the target type.
|
||||
This will return `None` if the requirements are not satisfied.
|
||||
3. The `convert_unchecked` will ignore those tests and always perform the conversion, even if that breaks the invariants of the target type.
|
||||
This must be used with care! This is actually the recommended method to convert between homogeneous transformations generated by `nalgebra-glm` and
|
||||
specific transformation types from **nalgebra** like `Isometry3`. Just be careful you know your conversions make sense.
|
||||
Any combination of two or three components picked among `x`, `y`, and `z` will work.
|
||||
### Conversions
|
||||
It is often useful to convert one algebraic type to another. There are two main approaches for converting
|
||||
between types in `nalgebra-glm`:
|
||||
* Using function with the form `type1_to_type2` in order to convert an instance of `type1` into an instance of `type2`.
|
||||
For example [`glm::mat3_to_mat4(m)`](fn.mat3_to_mat4.html) will convert the 3x3 matrix `m` to a 4x4 matrix by appending one column on the right
|
||||
and one row on the left. Those now row and columns are filled with 0 except for the diagonal element which is set to 1.
|
||||
* Using one of the [`convert`](fn.convert.html), [`try_convert`](fn.try_convert.html), or [`convert_unchecked`](fn.convert_unchecked.html) functions.
|
||||
These functions are directly re-exported from nalgebra and are extremely versatile:
|
||||
1. The `convert` function can convert any type (especially geometric types from nalgebra like `Isometry3`) into another algebraic type which is equivalent but more general. For example,
|
||||
`let sim: Similarity3<_> = na::convert(isometry)` will convert an `Isometry3` into a `Similarity3`.
|
||||
In addition, `let mat: Mat4 = glm::convert(isometry)` will convert an `Isometry3` to a 4x4 matrix. This will also convert the scalar types,
|
||||
therefore: `let mat: DMat4 = glm::convert(m)` where `m: Mat4` will work. However, conversion will not work the other way round: you
|
||||
can't convert a `Matrix4` to an `Isometry3` using `glm::convert` because that could cause unexpected results if the matrix does
|
||||
not complies to the requirements of the isometry.
|
||||
2. If you need this kind of conversions anyway, you can use `try_convert` which will test if the object being converted complies with the algebraic requirements of the target type.
|
||||
This will return `None` if the requirements are not satisfied.
|
||||
3. The `convert_unchecked` will ignore those tests and always perform the conversion, even if that breaks the invariants of the target type.
|
||||
This must be used with care! This is actually the recommended method to convert between homogeneous transformations generated by `nalgebra-glm` and
|
||||
specific transformation types from **nalgebra** like `Isometry3`. Just be careful you know your conversions make sense.
|
||||
|
||||
### Should I use nalgebra or nalgebra-glm?
|
||||
Well that depends on your tastes and your background. **nalgebra** is more powerful overall since it allows stronger typing,
|
||||
and goes much further than simple computer graphics math. However, has a bit of a learning curve for
|
||||
those not used to the abstract mathematical concepts for transformations. **nalgebra-glm** however
|
||||
have more straightforward functions and benefit from the various tutorials existing on the internet
|
||||
for the original C++ GLM library.
|
||||
### Should I use nalgebra or nalgebra-glm?
|
||||
Well that depends on your tastes and your background. **nalgebra** is more powerful overall since it allows stronger typing,
|
||||
and goes much further than simple computer graphics math. However, has a bit of a learning curve for
|
||||
those not used to the abstract mathematical concepts for transformations. **nalgebra-glm** however
|
||||
have more straightforward functions and benefit from the various tutorials existing on the internet
|
||||
for the original C++ GLM library.
|
||||
|
||||
Overall, if you are already used to the C++ GLM library, or to working with homogeneous coordinates (like 4D
|
||||
matrices for 3D transformations), then you will have more success with **nalgebra-glm**. If on the other
|
||||
hand you prefer more rigorous treatments of transformations, with type-level restrictions, then go for **nalgebra**.
|
||||
If you need dynamically-sized matrices, you should go for **nalgebra** as well.
|
||||
Overall, if you are already used to the C++ GLM library, or to working with homogeneous coordinates (like 4D
|
||||
matrices for 3D transformations), then you will have more success with **nalgebra-glm**. If on the other
|
||||
hand you prefer more rigorous treatments of transformations, with type-level restrictions, then go for **nalgebra**.
|
||||
If you need dynamically-sized matrices, you should go for **nalgebra** as well.
|
||||
|
||||
Keep in mind that **nalgebra-glm** is just a different API for **nalgebra**. So you can very well use both
|
||||
and benefit from both their advantages: use **nalgebra-glm** when mathematical rigor is not that important,
|
||||
and **nalgebra** itself when you need more expressive types, and more powerful linear algebra operations like
|
||||
matrix factorizations and slicing. Just remember that all the **nalgebra-glm** types are just aliases to **nalgebra** types,
|
||||
and keep in mind it is possible to convert, e.g., an `Isometry3` to a `Mat4` and vice-versa (see the [conversions section](#conversions)).
|
||||
*/
|
||||
Keep in mind that **nalgebra-glm** is just a different API for **nalgebra**. So you can very well use both
|
||||
and benefit from both their advantages: use **nalgebra-glm** when mathematical rigor is not that important,
|
||||
and **nalgebra** itself when you need more expressive types, and more powerful linear algebra operations like
|
||||
matrix factorizations and slicing. Just remember that all the **nalgebra-glm** types are just aliases to **nalgebra** types,
|
||||
and keep in mind it is possible to convert, e.g., an `Isometry3` to a `Mat4` and vice-versa (see the [conversions section](#conversions)).
|
||||
*/
|
||||
|
||||
#![doc(html_favicon_url = "http://nalgebra.org/img/favicon.ico")]
|
||||
|
||||
@ -119,68 +119,83 @@ extern crate alga;
|
||||
extern crate nalgebra as na;
|
||||
|
||||
pub use aliases::*;
|
||||
pub use common::{
|
||||
abs, ceil, clamp, clamp_scalar, clamp_vec, float_bits_to_int, float_bits_to_int_vec,
|
||||
float_bits_to_uint, float_bits_to_uint_vec, floor, fract, int_bits_to_float,
|
||||
int_bits_to_float_vec, lerp, lerp_scalar, lerp_vec, mix, mix_scalar, mix_vec, modf, modf_vec,
|
||||
round, sign, smoothstep, step, step_scalar, step_vec, trunc, uint_bits_to_float,
|
||||
uint_bits_to_float_scalar,
|
||||
};
|
||||
pub use constructors::*;
|
||||
pub use common::{abs, ceil, clamp, clamp_scalar, clamp_vec, float_bits_to_int, float_bits_to_int_vec, float_bits_to_uint, float_bits_to_uint_vec, floor, fract, int_bits_to_float, int_bits_to_float_vec, mix, modf, modf_vec, round, sign, smoothstep, step, step_scalar, step_vec, trunc, uint_bits_to_float, uint_bits_to_float_scalar};
|
||||
pub use geometric::{reflect_vec, cross, distance, dot, faceforward, length, magnitude, normalize, refract_vec};
|
||||
pub use matrix::{transpose, determinant, inverse, matrix_comp_mult, outer_product};
|
||||
pub use traits::{Dimension, Number, Alloc};
|
||||
pub use trigonometric::{acos, acosh, asin, asinh, atan, atan2, atanh, cos, cosh, degrees, radians, sin, sinh, tan, tanh};
|
||||
pub use vector_relational::{all, any, equal, greater_than, greater_than_equal, less_than, less_than_equal, not, not_equal};
|
||||
pub use exponential::{exp, exp2, inversesqrt, log, log2, pow, sqrt};
|
||||
pub use geometric::{
|
||||
cross, distance, dot, faceforward, length, magnitude, normalize, reflect_vec, refract_vec,
|
||||
};
|
||||
pub use matrix::{determinant, inverse, matrix_comp_mult, outer_product, transpose};
|
||||
pub use traits::{Alloc, Dimension, Number};
|
||||
pub use trigonometric::{
|
||||
acos, acosh, asin, asinh, atan, atan2, atanh, cos, cosh, degrees, radians, sin, sinh, tan, tanh,
|
||||
};
|
||||
pub use vector_relational::{
|
||||
all, any, equal, greater_than, greater_than_equal, less_than, less_than_equal, not, not_equal,
|
||||
};
|
||||
|
||||
pub use gtx::{
|
||||
comp_add, comp_max, comp_min, comp_mul,
|
||||
cross2d,
|
||||
left_handed, right_handed,
|
||||
matrix_cross, matrix_cross3,
|
||||
diagonal2x2, diagonal2x3, diagonal2x4, diagonal3x2, diagonal3x3, diagonal3x4, diagonal4x2, diagonal4x3, diagonal4x4,
|
||||
distance2, l1_distance, l1_norm, l2_distance, l2_norm, length2, magnitude2,
|
||||
triangle_normal,
|
||||
fast_normalize_dot, normalize_dot,
|
||||
quat_rotate_normalized_axis, rotate_normalized_axis,
|
||||
orientation, rotate_vec2, rotate_vec3, rotate_vec4, rotate_x_vec4, rotate_x_vec3, rotate_y_vec4, rotate_y_vec3, rotate_z_vec4, rotate_z_vec3, slerp,
|
||||
rotation, scaling, translation, rotation2d, scaling2d, translation2d,
|
||||
proj, proj2d, reflect, reflect2d, scale_bias, scale_bias_matrix, shear2d_x, shear_x, shear_y, shear2d_y, shear_z,
|
||||
rotate2d, scale2d, translate2d,
|
||||
angle,
|
||||
are_collinear, are_collinear2d, are_orthogonal, is_comp_null, is_normalized, is_null,
|
||||
quat_to_mat3, quat_rotate_vec, quat_cross_vec, mat3_to_quat, quat_extract_real_component, quat_fast_mix, quat_inv_cross_vec, quat_length2, quat_magnitude2, quat_identity, quat_rotate_vec3, quat_rotation, quat_short_mix, quat_to_mat4, to_quat
|
||||
pub use ext::{
|
||||
epsilon, equal_columns, equal_columns_eps, equal_columns_eps_vec, equal_eps, equal_eps_vec,
|
||||
identity, look_at, look_at_lh, look_at_rh, max, max2, max3, max3_scalar, max4, max4_scalar,
|
||||
min, min2, min3, min3_scalar, min4, min4_scalar, not_equal_columns, not_equal_columns_eps,
|
||||
not_equal_columns_eps_vec, not_equal_eps, not_equal_eps_vec, ortho, perspective, pi,
|
||||
pick_matrix, project, project_no, project_zo, quat_angle, quat_angle_axis, quat_axis,
|
||||
quat_conjugate, quat_cross, quat_dot, quat_equal, quat_equal_eps, quat_exp, quat_inverse,
|
||||
quat_length, quat_lerp, quat_log, quat_magnitude, quat_normalize, quat_not_equal,
|
||||
quat_not_equal_eps, quat_pow, quat_rotate, quat_slerp, rotate, rotate_x, rotate_y, rotate_z,
|
||||
scale, translate, unproject, unproject_no, unproject_zo,
|
||||
};
|
||||
pub use gtc::{
|
||||
e, two_pi, euler, four_over_pi, golden_ratio, half_pi, ln_ln_two, ln_ten, ln_two, one, one_over_pi, one_over_root_two, one_over_two_pi, quarter_pi, root_five, root_half_pi, root_ln_four, root_pi, root_three, root_two, root_two_pi, third, three_over_two_pi, two_over_pi, two_over_root_pi, two_thirds, zero,
|
||||
column, row, set_column, set_row,
|
||||
affine_inverse, inverse_transpose,
|
||||
make_mat2, make_mat2x2, make_mat2x3, make_mat2x4, make_mat3, make_mat3x2, make_mat3x3, make_mat3x4, make_mat4, make_mat4x2, make_mat4x3, make_mat4x4, make_quat, make_vec1, make_vec2, make_vec3, make_vec4, value_ptr, value_ptr_mut, vec1_to_vec2, vec1_to_vec3, vec1_to_vec4, vec2_to_vec1, vec2_to_vec2, vec2_to_vec3, vec2_to_vec4, vec3_to_vec1, vec3_to_vec2, vec3_to_vec3, vec3_to_vec4, vec4_to_vec1, vec4_to_vec2, vec4_to_vec3, vec4_to_vec4, mat2_to_mat3, mat2_to_mat4, mat3_to_mat2, mat3_to_mat4, mat4_to_mat2, mat4_to_mat3,
|
||||
quat_cast, quat_euler_angles, quat_greater_than, quat_greater_than_equal, quat_less_than, quat_less_than_equal, quat_look_at, quat_look_at_lh, quat_look_at_rh, quat_pitch, quat_roll, quat_yaw
|
||||
affine_inverse, column, e, euler, four_over_pi, golden_ratio, half_pi, inverse_transpose,
|
||||
ln_ln_two, ln_ten, ln_two, make_mat2, make_mat2x2, make_mat2x3, make_mat2x4, make_mat3,
|
||||
make_mat3x2, make_mat3x3, make_mat3x4, make_mat4, make_mat4x2, make_mat4x3, make_mat4x4,
|
||||
make_quat, make_vec1, make_vec2, make_vec3, make_vec4, mat2_to_mat3, mat2_to_mat4,
|
||||
mat3_to_mat2, mat3_to_mat4, mat4_to_mat2, mat4_to_mat3, one, one_over_pi, one_over_root_two,
|
||||
one_over_two_pi, quarter_pi, quat_cast, quat_euler_angles, quat_greater_than,
|
||||
quat_greater_than_equal, quat_less_than, quat_less_than_equal, quat_look_at, quat_look_at_lh,
|
||||
quat_look_at_rh, quat_pitch, quat_roll, quat_yaw, root_five, root_half_pi, root_ln_four,
|
||||
root_pi, root_three, root_two, root_two_pi, row, set_column, set_row, third, three_over_two_pi,
|
||||
two_over_pi, two_over_root_pi, two_pi, two_thirds, value_ptr, value_ptr_mut, vec1_to_vec2,
|
||||
vec1_to_vec3, vec1_to_vec4, vec2_to_vec1, vec2_to_vec2, vec2_to_vec3, vec2_to_vec4,
|
||||
vec3_to_vec1, vec3_to_vec2, vec3_to_vec3, vec3_to_vec4, vec4_to_vec1, vec4_to_vec2,
|
||||
vec4_to_vec3, vec4_to_vec4, zero,
|
||||
};
|
||||
pub use ext::{
|
||||
ortho, perspective,
|
||||
pick_matrix, project, project_no, project_zo, unproject, unproject_no, unproject_zo,
|
||||
equal_columns, equal_columns_eps, equal_columns_eps_vec, not_equal_columns, not_equal_columns_eps, not_equal_columns_eps_vec,
|
||||
identity, look_at, look_at_lh, rotate, scale, look_at_rh, translate, rotate_x, rotate_y, rotate_z,
|
||||
max3_scalar, max4_scalar, min3_scalar, min4_scalar,
|
||||
epsilon, pi,
|
||||
max, max2, max3, max4, min, min2, min3, min4,
|
||||
equal_eps, equal_eps_vec, not_equal_eps, not_equal_eps_vec,
|
||||
quat_conjugate, quat_inverse, quat_lerp, quat_slerp,
|
||||
quat_cross, quat_dot, quat_length, quat_magnitude, quat_normalize,
|
||||
quat_equal, quat_equal_eps, quat_not_equal, quat_not_equal_eps,
|
||||
quat_exp, quat_log, quat_pow, quat_rotate,
|
||||
quat_angle, quat_angle_axis, quat_axis
|
||||
pub use gtx::{
|
||||
angle, are_collinear, are_collinear2d, are_orthogonal, comp_add, comp_max, comp_min, comp_mul,
|
||||
cross2d, diagonal2x2, diagonal2x3, diagonal2x4, diagonal3x2, diagonal3x3, diagonal3x4,
|
||||
diagonal4x2, diagonal4x3, diagonal4x4, distance2, fast_normalize_dot, is_comp_null,
|
||||
is_normalized, is_null, l1_distance, l1_norm, l2_distance, l2_norm, left_handed, length2,
|
||||
magnitude2, mat3_to_quat, matrix_cross, matrix_cross3, normalize_dot, orientation, proj,
|
||||
proj2d, quat_cross_vec, quat_extract_real_component, quat_fast_mix, quat_identity,
|
||||
quat_inv_cross_vec, quat_length2, quat_magnitude2, quat_rotate_normalized_axis,
|
||||
quat_rotate_vec, quat_rotate_vec3, quat_rotation, quat_short_mix, quat_to_mat3, quat_to_mat4,
|
||||
reflect, reflect2d, right_handed, rotate2d, rotate_normalized_axis, rotate_vec2, rotate_vec3,
|
||||
rotate_vec4, rotate_x_vec3, rotate_x_vec4, rotate_y_vec3, rotate_y_vec4, rotate_z_vec3,
|
||||
rotate_z_vec4, rotation, rotation2d, scale2d, scale_bias, scale_bias_matrix, scaling,
|
||||
scaling2d, shear2d_x, shear2d_y, shear_x, shear_y, shear_z, slerp, to_quat, translate2d,
|
||||
translation, translation2d, triangle_normal,
|
||||
};
|
||||
|
||||
pub use na::{convert, convert_ref, convert_unchecked, convert_ref_unchecked, try_convert, try_convert_ref};
|
||||
pub use na::{Scalar, Real, DefaultAllocator, U1, U2, U3, U4};
|
||||
pub use na::{
|
||||
convert, convert_ref, convert_ref_unchecked, convert_unchecked, try_convert, try_convert_ref,
|
||||
};
|
||||
pub use na::{DefaultAllocator, Real, Scalar, U1, U2, U3, U4};
|
||||
|
||||
mod aliases;
|
||||
mod constructors;
|
||||
mod common;
|
||||
mod matrix;
|
||||
mod constructors;
|
||||
mod exponential;
|
||||
mod geometric;
|
||||
mod matrix;
|
||||
mod traits;
|
||||
mod trigonometric;
|
||||
mod vector_relational;
|
||||
mod exponential;
|
||||
//mod integer;
|
||||
//mod packing;
|
||||
|
||||
|
@ -1,34 +1,52 @@
|
||||
use na::{Scalar, Real, DefaultAllocator};
|
||||
use na::{DefaultAllocator, Real, Scalar};
|
||||
|
||||
use traits::{Alloc, Dimension, Number};
|
||||
use aliases::{TMat, TVec};
|
||||
use traits::{Alloc, Dimension, Number};
|
||||
|
||||
/// The determinant of the matrix `m`.
|
||||
pub fn determinant<N: Real, D: Dimension>(m: &TMat<N, D, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
m.determinant()
|
||||
}
|
||||
|
||||
/// The inverse of the matrix `m`.
|
||||
pub fn inverse<N: Real, D: Dimension>(m: &TMat<N, D, D>) -> TMat<N, D, D>
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
m.clone().try_inverse().unwrap_or_else(TMat::<N, D, D>::zeros)
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
m.clone()
|
||||
.try_inverse()
|
||||
.unwrap_or_else(TMat::<N, D, D>::zeros)
|
||||
}
|
||||
|
||||
/// Component-wise multiplication of two matrices.
|
||||
pub fn matrix_comp_mult<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>) -> TMat<N, R, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
pub fn matrix_comp_mult<N: Number, R: Dimension, C: Dimension>(
|
||||
x: &TMat<N, R, C>,
|
||||
y: &TMat<N, R, C>,
|
||||
) -> TMat<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
x.component_mul(y)
|
||||
}
|
||||
|
||||
/// Treats the first parameter `c` as a column vector and the second parameter `r` as a row vector and does a linear algebraic matrix multiply `c * r`.
|
||||
pub fn outer_product<N: Number, R: Dimension, C: Dimension>(c: &TVec<N, R>, r: &TVec<N, C>) -> TMat<N, R, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
pub fn outer_product<N: Number, R: Dimension, C: Dimension>(
|
||||
c: &TVec<N, R>,
|
||||
r: &TVec<N, C>,
|
||||
) -> TMat<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
c * r.transpose()
|
||||
}
|
||||
|
||||
/// The transpose of the matrix `m`.
|
||||
pub fn transpose<N: Scalar, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N, C, R>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
x.transpose()
|
||||
}
|
||||
|
@ -1,48 +1,80 @@
|
||||
use num::{Signed, FromPrimitive, Bounded};
|
||||
use approx::AbsDiffEq;
|
||||
use num::{Bounded, FromPrimitive, Signed};
|
||||
|
||||
use alga::general::{Ring, Lattice};
|
||||
use na::{Scalar, DimName, DimMin, U1};
|
||||
use alga::general::{Lattice, Ring};
|
||||
use na::allocator::Allocator;
|
||||
use na::{DimMin, DimName, Scalar, U1};
|
||||
|
||||
/// A type-level number representing a vector, matrix row, or matrix column, dimension.
|
||||
pub trait Dimension: DimName + DimMin<Self, Output = Self> {}
|
||||
impl<D: DimName + DimMin<D, Output = Self>> Dimension for D {}
|
||||
|
||||
|
||||
/// A number that can either be an integer or a float.
|
||||
pub trait Number: Scalar + Ring + Lattice + AbsDiffEq<Epsilon = Self> + Signed + FromPrimitive + Bounded {
|
||||
pub trait Number:
|
||||
Scalar + Ring + Lattice + AbsDiffEq<Epsilon = Self> + Signed + FromPrimitive + Bounded
|
||||
{
|
||||
}
|
||||
|
||||
impl<T: Scalar + Ring + Lattice + AbsDiffEq<Epsilon = Self> + Signed + FromPrimitive + Bounded> Number for T {
|
||||
}
|
||||
impl<T: Scalar + Ring + Lattice + AbsDiffEq<Epsilon = Self> + Signed + FromPrimitive + Bounded>
|
||||
Number for T
|
||||
{}
|
||||
|
||||
#[doc(hidden)]
|
||||
pub trait Alloc<N: Scalar, R: Dimension, C: Dimension = U1>:
|
||||
Allocator<N, R> + Allocator<N, C> + Allocator<N, U1, R> + Allocator<N, U1, C> + Allocator<N, R, C> + Allocator<N, C, R> + Allocator<N, R, R> + Allocator<N, C, C> +
|
||||
Allocator<bool, R> + Allocator<bool, C> +
|
||||
Allocator<f32, R> + Allocator<f32, C> +
|
||||
Allocator<u32, R> + Allocator<u32, C> +
|
||||
Allocator<i32, R> + Allocator<i32, C> +
|
||||
Allocator<f64, R> + Allocator<f64, C> +
|
||||
Allocator<u64, R> + Allocator<u64, C> +
|
||||
Allocator<i64, R> + Allocator<i64, C> +
|
||||
Allocator<i16, R> + Allocator<i16, C> +
|
||||
Allocator<(usize, usize), R> + Allocator<(usize, usize), C>
|
||||
Allocator<N, R>
|
||||
+ Allocator<N, C>
|
||||
+ Allocator<N, U1, R>
|
||||
+ Allocator<N, U1, C>
|
||||
+ Allocator<N, R, C>
|
||||
+ Allocator<N, C, R>
|
||||
+ Allocator<N, R, R>
|
||||
+ Allocator<N, C, C>
|
||||
+ Allocator<bool, R>
|
||||
+ Allocator<bool, C>
|
||||
+ Allocator<f32, R>
|
||||
+ Allocator<f32, C>
|
||||
+ Allocator<u32, R>
|
||||
+ Allocator<u32, C>
|
||||
+ Allocator<i32, R>
|
||||
+ Allocator<i32, C>
|
||||
+ Allocator<f64, R>
|
||||
+ Allocator<f64, C>
|
||||
+ Allocator<u64, R>
|
||||
+ Allocator<u64, C>
|
||||
+ Allocator<i64, R>
|
||||
+ Allocator<i64, C>
|
||||
+ Allocator<i16, R>
|
||||
+ Allocator<i16, C>
|
||||
+ Allocator<(usize, usize), R>
|
||||
+ Allocator<(usize, usize), C>
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dimension, C: Dimension, T>
|
||||
Alloc<N, R, C> for T
|
||||
where T: Allocator<N, R> + Allocator<N, C> + Allocator<N, U1, R> + Allocator<N, U1, C> + Allocator<N, R, C> + Allocator<N, C, R> + Allocator<N, R, R> + Allocator<N, C, C> +
|
||||
Allocator<bool, R> + Allocator<bool, C> +
|
||||
Allocator<f32, R> + Allocator<f32, C> +
|
||||
Allocator<u32, R> + Allocator<u32, C> +
|
||||
Allocator<i32, R> + Allocator<i32, C> +
|
||||
Allocator<f64, R> + Allocator<f64, C> +
|
||||
Allocator<u64, R> + Allocator<u64, C> +
|
||||
Allocator<i64, R> + Allocator<i64, C> +
|
||||
Allocator<i16, R> + Allocator<i16, C> +
|
||||
Allocator<(usize, usize), R> + Allocator<(usize, usize), C>
|
||||
{
|
||||
}
|
||||
impl<N: Scalar, R: Dimension, C: Dimension, T> Alloc<N, R, C> for T where
|
||||
T: Allocator<N, R>
|
||||
+ Allocator<N, C>
|
||||
+ Allocator<N, U1, R>
|
||||
+ Allocator<N, U1, C>
|
||||
+ Allocator<N, R, C>
|
||||
+ Allocator<N, C, R>
|
||||
+ Allocator<N, R, R>
|
||||
+ Allocator<N, C, C>
|
||||
+ Allocator<bool, R>
|
||||
+ Allocator<bool, C>
|
||||
+ Allocator<f32, R>
|
||||
+ Allocator<f32, C>
|
||||
+ Allocator<u32, R>
|
||||
+ Allocator<u32, C>
|
||||
+ Allocator<i32, R>
|
||||
+ Allocator<i32, C>
|
||||
+ Allocator<f64, R>
|
||||
+ Allocator<f64, C>
|
||||
+ Allocator<u64, R>
|
||||
+ Allocator<u64, C>
|
||||
+ Allocator<i64, R>
|
||||
+ Allocator<i64, C>
|
||||
+ Allocator<i16, R>
|
||||
+ Allocator<i16, C>
|
||||
+ Allocator<(usize, usize), R>
|
||||
+ Allocator<(usize, usize), C>
|
||||
{}
|
||||
|
@ -1,95 +1,124 @@
|
||||
use na::{self, Real, DefaultAllocator};
|
||||
use na::{self, DefaultAllocator, Real};
|
||||
|
||||
use aliases::TVec;
|
||||
use traits::{Alloc, Dimension};
|
||||
|
||||
|
||||
/// Component-wise arc-cosinus.
|
||||
pub fn acos<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.acos())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic arc-cosinus.
|
||||
pub fn acosh<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.acosh())
|
||||
}
|
||||
|
||||
/// Component-wise arc-sinus.
|
||||
pub fn asin<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.asin())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic arc-sinus.
|
||||
pub fn asinh<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.asinh())
|
||||
}
|
||||
|
||||
/// Component-wise arc-tangent of `y / x`.
|
||||
pub fn atan2<N: Real, D: Dimension>(y: &TVec<N, D>, x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
y.zip_map(x, |y, x| y.atan2(x))
|
||||
}
|
||||
|
||||
/// Component-wise arc-tangent.
|
||||
pub fn atan<N: Real, D: Dimension>(y_over_x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
y_over_x.map(|e| e.atan())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic arc-tangent.
|
||||
pub fn atanh<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.atanh())
|
||||
}
|
||||
|
||||
/// Component-wise cosinus.
|
||||
pub fn cos<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.cos())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic cosinus.
|
||||
pub fn cosh<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.cosh())
|
||||
}
|
||||
|
||||
/// Component-wise conversion from radians to degrees.
|
||||
pub fn degrees<N: Real, D: Dimension>(radians: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
radians.map(|e| e * na::convert(180.0) / N::pi())
|
||||
}
|
||||
|
||||
/// Component-wise conversion fro degrees to radians.
|
||||
pub fn radians<N: Real, D: Dimension>(degrees: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
degrees.map(|e| e * N::pi() / na::convert(180.0))
|
||||
}
|
||||
|
||||
/// Component-wise sinus.
|
||||
pub fn sin<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.sin())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic sinus.
|
||||
pub fn sinh<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.sinh())
|
||||
}
|
||||
|
||||
/// Component-wise tangent.
|
||||
pub fn tan<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.tan())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic tangent.
|
||||
pub fn tanh<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.tanh())
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{DefaultAllocator};
|
||||
use na::DefaultAllocator;
|
||||
|
||||
use aliases::TVec;
|
||||
use traits::{Number, Alloc, Dimension};
|
||||
use traits::{Alloc, Dimension, Number};
|
||||
|
||||
/// Checks that all the vector components are `true`.
|
||||
///
|
||||
@ -21,7 +21,9 @@ use traits::{Number, Alloc, Dimension};
|
||||
/// * [`any`](fn.any.html)
|
||||
/// * [`not`](fn.not.html)
|
||||
pub fn all<D: Dimension>(v: &TVec<bool, D>) -> bool
|
||||
where DefaultAllocator: Alloc<bool, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<bool, D>,
|
||||
{
|
||||
v.iter().all(|x| *x)
|
||||
}
|
||||
|
||||
@ -46,7 +48,9 @@ pub fn all<D: Dimension>(v: &TVec<bool, D>) -> bool
|
||||
/// * [`all`](fn.all.html)
|
||||
/// * [`not`](fn.not.html)
|
||||
pub fn any<D: Dimension>(v: &TVec<bool, D>) -> bool
|
||||
where DefaultAllocator: Alloc<bool, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<bool, D>,
|
||||
{
|
||||
v.iter().any(|x| *x)
|
||||
}
|
||||
|
||||
@ -70,7 +74,9 @@ pub fn any<D: Dimension>(v: &TVec<bool, D>) -> bool
|
||||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x == y)
|
||||
}
|
||||
|
||||
@ -94,7 +100,9 @@ pub fn equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bo
|
||||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn greater_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x > y)
|
||||
}
|
||||
|
||||
@ -118,7 +126,9 @@ pub fn greater_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) ->
|
||||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn greater_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x >= y)
|
||||
}
|
||||
|
||||
@ -142,7 +152,9 @@ pub fn greater_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D
|
||||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn less_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x < y)
|
||||
}
|
||||
|
||||
@ -166,7 +178,9 @@ pub fn less_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVe
|
||||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn less_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x <= y)
|
||||
}
|
||||
|
||||
@ -191,7 +205,9 @@ pub fn less_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>)
|
||||
/// * [`less_than_equal`](fn.less_than_equal.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn not<D: Dimension>(v: &TVec<bool, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<bool, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<bool, D>,
|
||||
{
|
||||
v.map(|x| !x)
|
||||
}
|
||||
|
||||
@ -215,6 +231,8 @@ pub fn not<D: Dimension>(v: &TVec<bool, D>) -> TVec<bool, D>
|
||||
/// * [`less_than_equal`](fn.less_than_equal.html)
|
||||
/// * [`not`](fn.not.html)
|
||||
pub fn not_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x != y)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user