diff --git a/src/linalg/cholesky.rs b/src/linalg/cholesky.rs index 262d1225..111f5680 100644 --- a/src/linalg/cholesky.rs +++ b/src/linalg/cholesky.rs @@ -1,6 +1,7 @@ #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; +use num::One; use alga::general::ComplexField; use crate::allocator::Allocator; @@ -155,23 +156,24 @@ where DefaultAllocator: Allocator, ShapeConstraint: SameNumberOfRows, { - Self::xx_rank_one_update(&mut self.chol, x, sigma) + Self::xx_rank_one_update(&mut self.chol, &mut x.clone_owned(), sigma) } /// Updates the decomposition such that we get the decomposition of a matrix with the given column `col` in the `j`th position. /// Since the matrix is square, an identical row will be added in the `j`th row. pub fn insert_column( - self, + &self, j: usize, - col: &Vector, + col: Vector, ) -> Cholesky> where D: DimAdd, R2: Dim, S2: Storage, - DefaultAllocator: Allocator, DimSum>, + DefaultAllocator: Allocator, DimSum> + Allocator, ShapeConstraint: SameNumberOfRows>, { + let mut col = col.into_owned(); // for an explanation of the formulas, see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition let n = col.nrows(); assert_eq!(n, self.chol.nrows() + 1, "The new column must have the size of the factored matrix plus one."); @@ -186,24 +188,26 @@ where // update the jth row let top_left_corner = self.chol.slice_range(..j, ..j); - let col_jminus = col.rows_range(..j); - let new_rowj_adjoint = top_left_corner.solve_lower_triangular(&col_jminus).expect("Cholesky::insert_column : Unable to solve lower triangular system!"); + + let col_j = col[j]; + let (mut new_rowj_adjoint, mut new_colj) = col.rows_range_pair_mut(..j, j + 1..); + assert!(top_left_corner.solve_lower_triangular_mut(&mut new_rowj_adjoint), "Cholesky::insert_column : Unable to solve lower triangular system!"); + new_rowj_adjoint.adjoint_to(&mut chol.slice_range_mut(j, ..j)); // update the center element - let center_element = N::sqrt(col[j] - N::from_real(new_rowj_adjoint.norm_squared())); - chol[(j,j)] = center_element; + let center_element = N::sqrt(col_j - N::from_real(new_rowj_adjoint.norm_squared())); + chol[(j, j)] = center_element; // update the jth column let bottom_left_corner = self.chol.slice_range(j.., ..j); // new_colj = (col_jplus - bottom_left_corner * new_rowj.adjoint()) / center_element; - let mut new_colj = col.rows_range(j+1..).clone_owned(); - new_colj.gemm(-N::one() / center_element, &bottom_left_corner, &new_rowj_adjoint, N::one() / center_element ); + new_colj.gemm(-N::one() / center_element, &bottom_left_corner, &new_rowj_adjoint, N::one() / center_element); chol.slice_range_mut(j+1.., j).copy_from(&new_colj); // update the bottom right corner let mut bottom_right_corner = chol.slice_range_mut(j+1.., j+1..); - Self::xx_rank_one_update(&mut bottom_right_corner, &new_colj, -N::real(N::one())); + Self::xx_rank_one_update(&mut bottom_right_corner, &mut new_colj, -N::RealField::one()); Cholesky { chol } } @@ -216,7 +220,7 @@ where ) -> Cholesky> where D: DimSub, - DefaultAllocator: Allocator, DimDiff> + DefaultAllocator: Allocator, DimDiff> + Allocator { let n = self.chol.nrows(); assert!(n > 0, "The matrix needs at least one column."); @@ -231,25 +235,25 @@ where // updates the bottom right corner let mut bottom_right_corner = chol.slice_range_mut(j.., j..); - let old_colj = self.chol.slice_range(j+1.., j); - Self::xx_rank_one_update(&mut bottom_right_corner, &old_colj, N::real(N::one())); + let mut workspace = self.chol.column(j).clone_owned(); + let mut old_colj = workspace.rows_range_mut(j+1..); + Self::xx_rank_one_update(&mut bottom_right_corner, &mut old_colj, N::RealField::one()); Cholesky { chol } } /// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`, - /// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v.adjoint()`. + /// performs a rank one update such that we end up with the decomposition of `M + sigma * x*x.adjoint()`. /// /// This helper method is calling for by `rank_one_update` but also `insert_column` and `remove_column` /// where it is used on a square slice of the decomposition - fn xx_rank_one_update(chol : &mut Matrix, x: &Vector, sigma: N::RealField) + fn xx_rank_one_update(chol : &mut Matrix, x: &mut Vector, sigma: N::RealField) where //N: ComplexField, Dm: Dim, Rx: Dim, Sm: StorageMut, - Sx: Storage, - DefaultAllocator: Allocator, + Sx: StorageMut, { // heavily inspired by Eigen's `llt_rank_update_lower` implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html let n = x.nrows(); @@ -258,8 +262,9 @@ where chol.nrows(), "The input vector must be of the same size as the factorized matrix." ); - let mut x = x.clone_owned(); + let mut beta = crate::one::(); + for j in 0..n { // updates the diagonal let diag = N::real(unsafe { *chol.get_unchecked((j, j)) }); diff --git a/tests/linalg/cholesky.rs b/tests/linalg/cholesky.rs index 5f10339d..a89802b2 100644 --- a/tests/linalg/cholesky.rs +++ b/tests/linalg/cholesky.rs @@ -109,7 +109,7 @@ macro_rules! gen_tests( let m = m_updated.clone().remove_column(j).remove_row(j); // remove column from cholesky decomposition and rebuild m - let chol = m.clone().cholesky().unwrap().insert_column(j, &col); + let chol = m.clone().cholesky().unwrap().insert_column(j, col); let m_chol_updated = chol.l() * chol.l().adjoint(); relative_eq!(m_updated, m_chol_updated, epsilon = 1.0e-7)