forked from M-Labs/nalgebra
Fix matrix slerp function (#568)
* Fix matrix slerp function * Adding slerp doc test
This commit is contained in:
parent
d6b5c7f8f7
commit
b4d800f3e2
@ -1480,6 +1480,19 @@ impl<N: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Stor
|
|||||||
|
|
||||||
impl<N: Real, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
|
impl<N: Real, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
|
||||||
/// Computes the spherical linear interpolation between two unit vectors.
|
/// Computes the spherical linear interpolation between two unit vectors.
|
||||||
|
///
|
||||||
|
/// # Examples:
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// # use nalgebra::geometry::UnitQuaternion;
|
||||||
|
///
|
||||||
|
/// let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
|
||||||
|
/// let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
|
||||||
|
///
|
||||||
|
/// let q = q1.slerp(&q2, 1.0 / 3.0);
|
||||||
|
///
|
||||||
|
/// assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
|
||||||
|
/// ```
|
||||||
pub fn slerp<S2: Storage<N, D>>(
|
pub fn slerp<S2: Storage<N, D>>(
|
||||||
&self,
|
&self,
|
||||||
rhs: &Unit<Vector<N, D, S2>>,
|
rhs: &Unit<Vector<N, D, S2>>,
|
||||||
@ -1513,7 +1526,7 @@ impl<N: Real, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
|
|||||||
return Some(Unit::new_unchecked(self.clone_owned()));
|
return Some(Unit::new_unchecked(self.clone_owned()));
|
||||||
}
|
}
|
||||||
|
|
||||||
let hang = c_hang.acos();
|
let hang = c_hang.abs().acos();
|
||||||
let s_hang = (N::one() - c_hang * c_hang).sqrt();
|
let s_hang = (N::one() - c_hang * c_hang).sqrt();
|
||||||
|
|
||||||
// FIXME: what if s_hang is 0.0 ? The result is not well-defined.
|
// FIXME: what if s_hang is 0.0 ? The result is not well-defined.
|
||||||
@ -1522,7 +1535,7 @@ impl<N: Real, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
|
|||||||
} else {
|
} else {
|
||||||
let ta = ((N::one() - t) * hang).sin() / s_hang;
|
let ta = ((N::one() - t) * hang).sin() / s_hang;
|
||||||
let tb = (t * hang).sin() / s_hang;
|
let tb = (t * hang).sin() / s_hang;
|
||||||
let res = &**self * ta + &**rhs * tb;
|
let res = &**self * ta + &**rhs * tb * c_hang.signum();
|
||||||
|
|
||||||
Some(Unit::new_unchecked(res))
|
Some(Unit::new_unchecked(res))
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user