1
0
forked from M-Labs/nalgebra

Fix compilation of tests.

This commit is contained in:
sebcrozet 2020-03-21 23:44:24 +01:00
parent cbcf4d7c27
commit b1857e6a36
9 changed files with 5 additions and 76 deletions

View File

@ -1,18 +1,9 @@
extern crate alga;
extern crate nalgebra as na;
use alga::linear::FiniteDimInnerSpace;
use na::allocator::Allocator;
use na::dimension::Dim;
use na::{DefaultAllocator, RealField, Unit, Vector2, Vector3, VectorN};
/// Reflects a vector wrt. the hyperplane with normal `plane_normal`.
fn reflect_wrt_hyperplane_with_algebraic_genericity<V>(plane_normal: &Unit<V>, vector: &V) -> V
where V: FiniteDimInnerSpace + Copy {
let n = plane_normal.as_ref(); // Get the underlying vector of type `V`.
*vector - *n * (n.dot(vector) * na::convert(2.0))
}
/// Reflects a vector wrt. the hyperplane with normal `plane_normal`.
fn reflect_wrt_hyperplane_with_dimensional_genericity<N: RealField, D: Dim>(
plane_normal: &Unit<VectorN<N, D>>,
@ -50,15 +41,6 @@ fn main() {
let v3 = Vector3::new(1.0, 2.0, 3.0); // 3D vector to be reflected.
// We can call the same function for 2D and 3D.
assert_eq!(
reflect_wrt_hyperplane_with_algebraic_genericity(&plane2, &v2).y,
-2.0
);
assert_eq!(
reflect_wrt_hyperplane_with_algebraic_genericity(&plane3, &v3).y,
-2.0
);
assert_eq!(
reflect_wrt_hyperplane_with_dimensional_genericity(&plane2, &v2).y,
-2.0

View File

@ -1,39 +0,0 @@
extern crate alga;
extern crate nalgebra as na;
use alga::linear::Transformation;
use na::{Id, Isometry3, Point3, Vector3};
/*
* Applies `n` times the transformation `t` to the vector `v` and sum each
* intermediate value.
*/
fn complicated_algorithm<T>(v: &Vector3<f32>, t: &T, n: usize) -> Vector3<f32>
where T: Transformation<Point3<f32>> {
let mut result = *v;
// Do lots of operations involving t.
for _ in 0..n {
result = v + t.transform_vector(&result);
}
result
}
/*
* The two following calls are equivalent in term of result.
*/
fn main() {
let v = Vector3::new(1.0, 2.0, 3.0);
// The specialization generated by the compiler will do vector additions only.
let result1 = complicated_algorithm(&v, &Id::new(), 100000);
// The specialization generated by the compiler will also include matrix multiplications.
let iso = Isometry3::identity();
let result2 = complicated_algorithm(&v, &iso, 100000);
// They both return the same result.
assert!(result1 == Vector3::new(100001.0, 200002.0, 300003.0));
assert!(result2 == Vector3::new(100001.0, 200002.0, 300003.0));
}

View File

@ -1,19 +1,12 @@
extern crate alga;
extern crate nalgebra as na;
use na::{Scalar, Vector3};
use simba::scalar::{RealField, RingCommutative};
use simba::scalar::RealField;
fn print_vector<N: Scalar>(m: &Vector3<N>) {
println!("{:?}", m)
}
fn print_squared_norm<N: Scalar + RingCommutative>(v: &Vector3<N>) {
// NOTE: alternatively, nalgebra already defines `v.squared_norm()`.
let sqnorm = v.dot(v);
println!("{:?}", sqnorm);
}
fn print_norm<N: RealField>(v: &Vector3<N>) {
// NOTE: alternatively, nalgebra already defines `v.norm()`.
let norm = v.dot(v).sqrt();
@ -28,6 +21,5 @@ fn main() {
let v2 = Vector3::new(1.0, 2.0, 3.0);
print_vector(&v1);
print_squared_norm(&v1);
print_norm(&v2);
}

View File

@ -18,6 +18,6 @@ fn main() {
assert!(iso_fail.is_none());
// Similarity -> Isometry conversion can be forced at your own risks.
let iso_forced: Isometry2<f32> = unsafe { na::convert_unchecked(sim_with_scaling) };
let iso_forced: Isometry2<f32> = na::convert_unchecked(sim_with_scaling);
assert_eq!(iso_success.unwrap(), iso_forced);
}

View File

@ -1,4 +1,3 @@
extern crate alga;
#[macro_use]
extern crate approx;
extern crate nalgebra as na;

View File

@ -1,4 +1,3 @@
extern crate alga;
extern crate nalgebra as na;
use na::{Matrix4, Point3, Vector3, Vector4};

View File

@ -571,13 +571,13 @@ where N::Element: SimdRealField
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let mut q = Quaternion::new(1.0f32, 2.0, 3.0, 4.0);
///
/// assert!(q.try_inverse_mut());
/// assert_relative_eq!(q * Quaternion::new(1.0, 2.0, 3.0, 4.0), Quaternion::identity());
///
/// //Non-invertible case
/// let mut q = Quaternion::new(0.0, 0.0, 0.0, 0.0);
/// let mut q = Quaternion::new(0.0f32, 0.0, 0.0, 0.0);
/// assert!(!q.try_inverse_mut());
/// ```
#[inline]

View File

@ -1,6 +1,5 @@
#[cfg(feature = "abomonation-serialize")]
extern crate abomonation;
extern crate alga;
#[macro_use]
extern crate approx;
#[cfg(feature = "mint")]
@ -10,9 +9,6 @@ extern crate num_traits as num;
#[cfg(feature = "arbitrary")]
#[macro_use]
extern crate quickcheck;
extern crate rand;
extern crate serde_json;
extern crate num_complex;
mod core;
mod geometry;

View File

@ -130,7 +130,7 @@ fn matrix5_try_inverse_scaled_identity() {
0.0, 1.0e+20, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0e+20, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0e+20, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0e+20);;
0.0, 0.0, 0.0, 0.0, 1.0e+20);
let a_inv = a.try_inverse().expect("Matrix should be invertible");
assert_relative_eq!(a_inv, expected_inverse);