Improve cross-linking and cross-referencing in docs.

This commit is contained in:
Bruce Mitchener 2018-09-26 16:39:30 +07:00 committed by Sébastien Crozet
parent a3a2ed81a8
commit a8ae62ea52
5 changed files with 189 additions and 20 deletions

View File

@ -9,6 +9,10 @@ pub fn cross<N: Number, D: Dimension>(x: &TVec3<N>, y: &TVec3<N>) -> TVec3<N> {
} }
/// The distance between two points. /// The distance between two points.
///
/// # See also:
///
/// * [`distance2`](fn.distance2.html)
pub fn distance<N: Real, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N pub fn distance<N: Real, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
(p1 - p0).norm() (p1 - p0).norm()
@ -31,12 +35,28 @@ pub fn faceforward<N: Number, D: Dimension>(n: &TVec<N, D>, i: &TVec<N, D>, nref
} }
/// The magnitude of a vector. /// The magnitude of a vector.
///
/// A synonym for [`magnitude`](fn.magnitude.html).
///
/// # See also:
///
/// * [`length2`](fn.length2.html)
/// * [`magnitude`](fn.magnitude.html)
/// * [`magnitude2`](fn.magnitude2.html)
pub fn length<N: Real, D: Dimension>(x: &TVec<N, D>) -> N pub fn length<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.norm() x.norm()
} }
/// The magnitude of a vector. /// The magnitude of a vector.
///
/// A wrapper around [`nalgebra::norm`](../nalgebra/fn.norm.html).
///
/// # See also:
///
/// * [`length`](fn.length.html)
/// * [`magnitude2`](fn.magnitude2.html)
/// * [`nalgebra::norm`](../nalgebra/fn.norm.html)
pub fn magnitude<N: Real, D: Dimension>(x: &TVec<N, D>) -> N pub fn magnitude<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.norm() x.norm()

View File

@ -4,6 +4,10 @@ use traits::{Alloc, Dimension};
use aliases::TVec; use aliases::TVec;
/// The squared distance between two points. /// The squared distance between two points.
///
/// # See also:
///
/// * [`distance`](fn.distance.html)
pub fn distance2<N: Real, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N pub fn distance2<N: Real, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
(p1 - p0).norm_squared() (p1 - p0).norm_squared()
@ -34,12 +38,32 @@ pub fn l2_norm<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
} }
/// The squared magnitude of `x`. /// The squared magnitude of `x`.
///
/// A synonym for [`magnitude2`](fn.magnitude2.html).
///
/// # See also:
///
/// * [`distance`](fn.distance.html)
/// * [`distance2`](fn.distance2.html)
/// * [`length`](fn.length.html)
/// * [`magnitude`](fn.magnitude.html)
/// * [`magnitude2`](fn.magnitude2.html)
pub fn length2<N: Real, D: Dimension>(x: &TVec<N, D>) -> N pub fn length2<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.norm_squared() x.norm_squared()
} }
/// The squared magnitude of `x`. /// The squared magnitude of `x`.
///
/// A wrapper around [`nalgebra::norm_squared`](../nalgebra/fn.norm_squared.html).
///
/// # See also:
///
/// * [`distance`](fn.distance.html)
/// * [`distance2`](fn.distance2.html)
/// * [`length2`](fn.length2.html)
/// * [`magnitude`](fn.magnitude.html)
/// * [`nalgebra::norm_squared`](../nalgebra/fn.norm_squared.html)
pub fn magnitude2<N: Real, D: Dimension>(x: &TVec<N, D>) -> N pub fn magnitude2<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.norm_squared() x.norm_squared()

View File

@ -38,7 +38,7 @@
* All function names use `snake_case`, which is the Rust convention. * All function names use `snake_case`, which is the Rust convention.
* All type names use `CamelCase`, which is the Rust convention. * All type names use `CamelCase`, which is the Rust convention.
* All function arguments, except for scalars, are all passed by-reference. * All function arguments, except for scalars, are all passed by-reference.
* The most generic vector and matrix types are `TMat` and `TVec` instead of `mat` and `vec`. * The most generic vector and matrix types are [`TMat`](type.TMat.html) and [`TVec`](type.TVec.html) instead of `mat` and `vec`.
* Some feature are not yet implemented and should be added in the future. In particular, no packing * Some feature are not yet implemented and should be added in the future. In particular, no packing
functions are available. functions are available.
* A few features are not implemented and will never be. This includes functions related to color * A few features are not implemented and will never be. This includes functions related to color
@ -47,17 +47,17 @@
In addition, because Rust does not allows function overloading, all functions must be given a unique name. In addition, because Rust does not allows function overloading, all functions must be given a unique name.
Here are a few rules chosen arbitrarily for **nalgebra-glm**: Here are a few rules chosen arbitrarily for **nalgebra-glm**:
* Functions operating in 2d will usually end with the `2d` suffix, e.g., `glm::rotade2d` is for 2D while `glm::rotate` is for 3D. * Functions operating in 2d will usually end with the `2d` suffix, e.g., [`glm::rotate2d`](fn.rotate2d.html) is for 2D while [`glm::rotate`](fn.rotate.html) is for 3D.
* Functions operating on vector will often end with the `_vec` suffix, possibly followed by the dimension of vector, e.g., `glm::rotate_vec2`. * Functions operating on vectors will often end with the `_vec` suffix, possibly followed by the dimension of vector, e.g., [`glm::rotate_vec2`](fn.rotate_vec2.html).
* Every function related to quaternions start with the `quat_` prefix, e.g., `glm::quat_dot(q1, q2)`. * Every function related to quaternions start with the `quat_` prefix, e.g., [`glm::quat_dot(q1, q2)`](fn.quat_dot.html).
* All the conversion functions have unique names as described [below](#conversions). * All the conversion functions have unique names as described [below](#conversions).
### Vector and matrix construction ### Vector and matrix construction
Vectors, matrices, and quaternions can be constructed using several approaches: Vectors, matrices, and quaternions can be constructed using several approaches:
* Using functions with the same name as their type in lower-case. For example `glm::vec3(x, y, z)` will create a 3D vector. * Using functions with the same name as their type in lower-case. For example [`glm::vec3(x, y, z)`](fn.vec3.html) will create a 3D vector.
* Using the `::new` constructor. For example `Vec3::new(x, y, z)` will create a 3D vector. * Using the `::new` constructor. For example [`Vec3::new(x, y, z)`](../nalgebra/base/type.MatrixMN.html#method.new-27) will create a 3D vector.
* Using the functions prefixed by `make_` to build a vector a matrix from a slice. For example `glm::make_vec3(&[x, y, z])` will create a 3D vector. * Using the functions prefixed by `make_` to build a vector a matrix from a slice. For example [`glm::make_vec3(&[x, y, z])`](fn.make_vec3.html) will create a 3D vector.
Keep in mind that constructing a matrix using this type of functions require its components to be arrange in column-major order on the slice. Keep in mind that constructing a matrix using this type of functions require its components to be arranged in column-major order on the slice.
* Using a geometric construction function. For example `glm::rotation(angle, axis)` will build a 4x4 homogeneous rotation matrix from an angle (in radians) and an axis. * Using a geometric construction function. For example [`glm::rotation(angle, axis)`](fn.rotation.html) will build a 4x4 homogeneous rotation matrix from an angle (in radians) and an axis.
* Using swizzling and conversions as described in the next sections. * Using swizzling and conversions as described in the next sections.
### Swizzling ### Swizzling
Vector swizzling is a native feature of **nalgebra** itself. Therefore, you can use it with all Vector swizzling is a native feature of **nalgebra** itself. Therefore, you can use it with all
@ -75,11 +75,11 @@
It is often useful to convert one algebraic type to another. There are two main approaches for converting It is often useful to convert one algebraic type to another. There are two main approaches for converting
between types in `nalgebra-glm`: between types in `nalgebra-glm`:
* Using function with the form `type1_to_type2` in order to convert an instance of `type1` into an instance of `type2`. * Using function with the form `type1_to_type2` in order to convert an instance of `type1` into an instance of `type2`.
For example `glm::mat3_to_mat4(m)` will convert the 3x3 matrix `m` to a 4x4 matrix by appending one column on the right For example [`glm::mat3_to_mat4(m)`](fn.mat3_to_mat4.html) will convert the 3x3 matrix `m` to a 4x4 matrix by appending one column on the right
and one row on the left. Those now row and columns are filled with 0 except for the diagonal element which is set to 1. and one row on the left. Those now row and columns are filled with 0 except for the diagonal element which is set to 1.
* Using one of the `convert`, `try_convert`, or `convert_unchecked` functions. * Using one of the [`convert`](fn.convert.html), [`try_convert`](fn.try_convert.html), or [`convert_unchecked`](fn.convert_unchecked.html) functions.
These functions are directly re-exported from nalgebra and are extremely versatile: These functions are directly re-exported from nalgebra and are extremely versatile:
1. The `convert` function can convert any type (especially geometric types from nalgebra like `Isometry3`) into another algebraic type which equivalent but more general. For example, 1. The `convert` function can convert any type (especially geometric types from nalgebra like `Isometry3`) into another algebraic type which is equivalent but more general. For example,
`let sim: Similarity3<_> = na::convert(isometry)` will convert an `Isometry3` into a `Similarity3`. `let sim: Similarity3<_> = na::convert(isometry)` will convert an `Isometry3` into a `Similarity3`.
In addition, `let mat: Mat4 = glm::convert(isometry)` will convert an `Isometry3` to a 4x4 matrix. This will also convert the scalar types, In addition, `let mat: Mat4 = glm::convert(isometry)` will convert an `Isometry3` to a 4x4 matrix. This will also convert the scalar types,
therefore: `let mat: DMat4 = glm::convert(m)` where `m: Mat4` will work. However, conversion will not work the other way round: you therefore: `let mat: DMat4 = glm::convert(m)` where `m: Mat4` will work. However, conversion will not work the other way round: you

View File

@ -209,6 +209,7 @@ pub trait NamedDim: Sized + Any + Unsigned {
type Name: DimName<Value = Self>; type Name: DimName<Value = Self>;
} }
/// A type level dimension with a value of `1`.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)] #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct U1; pub struct U1;
@ -246,6 +247,7 @@ impl NamedDim for typenum::U1 {
macro_rules! named_dimension( macro_rules! named_dimension(
($($D: ident),* $(,)*) => {$( ($($D: ident),* $(,)*) => {$(
/// A type level dimension.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)] #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct $D; pub struct $D;

View File

@ -161,18 +161,33 @@ pub fn id() -> Id {
} }
/// Gets the multiplicative identity element. /// Gets the multiplicative identity element.
///
/// # See also:
///
/// * [`origin`](../nalgebra/fn.origin.html)
/// * [`zero`](fn.zero.html)
#[inline] #[inline]
pub fn one<T: Identity<Multiplicative>>() -> T { pub fn one<T: Identity<Multiplicative>>() -> T {
T::identity() T::identity()
} }
/// Gets the additive identity element. /// Gets the additive identity element.
///
/// # See also:
///
/// * [`one`](fn.one.html)
/// * [`origin`](../nalgebra/fn.origin.html)
#[inline] #[inline]
pub fn zero<T: Identity<Additive>>() -> T { pub fn zero<T: Identity<Additive>>() -> T {
T::identity() T::identity()
} }
/// Gets the origin of the given point. /// Gets the origin of the given point.
///
/// # See also:
///
/// * [`one`](fn.one.html)
/// * [`zero`](fn.zero.html)
#[inline] #[inline]
pub fn origin<P: EuclideanSpace>() -> P { pub fn origin<P: EuclideanSpace>() -> P {
P::origin() P::origin()
@ -375,12 +390,20 @@ pub fn partial_sort2<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<(&'a T, &'
*/ */
/// Tries to gets an inverted copy of a square matrix. /// Tries to gets an inverted copy of a square matrix.
///
/// # See also:
///
/// * [`inverse`](fn.inverse.html)
#[inline] #[inline]
pub fn try_inverse<M: AlgaSquareMatrix>(m: &M) -> Option<M> { pub fn try_inverse<M: AlgaSquareMatrix>(m: &M) -> Option<M> {
m.try_inverse() m.try_inverse()
} }
/// Computes the multiplicative inverse of an (always invertible) algebraic entity. /// Computes the multiplicative inverse of an (always invertible) algebraic entity.
///
/// # See also:
///
/// * [`try_inverse`](fn.try_inverse.html)
#[inline] #[inline]
pub fn inverse<M: Inverse<Multiplicative>>(m: &M) -> M { pub fn inverse<M: Inverse<Multiplicative>>(m: &M) -> M {
m.inverse() m.inverse()
@ -407,24 +430,49 @@ pub fn angle<V: InnerSpace>(a: &V, b: &V) -> V::Real {
*/ */
/// Computes the L2 (euclidean) norm of a vector. /// Computes the L2 (euclidean) norm of a vector.
///
/// # See also:
///
/// * [`magnitude`](fn.magnitude.html)
/// * [`magnitude_squared`](fn.magnitude_squared.html)
/// * [`norm_squared`](fn.norm_squared.html)
#[inline] #[inline]
pub fn norm<V: NormedSpace>(v: &V) -> V::Field { pub fn norm<V: NormedSpace>(v: &V) -> V::Field {
v.norm() v.norm()
} }
/// Computes the squared L2 (euclidean) norm of the vector `v`. /// Computes the squared L2 (euclidean) norm of the vector `v`.
///
/// # See also:
///
/// * [`magnitude`](fn.magnitude.html)
/// * [`magnitude_squared`](fn.magnitude_squared.html)
/// * [`norm`](fn.norm.html)
#[inline] #[inline]
pub fn norm_squared<V: NormedSpace>(v: &V) -> V::Field { pub fn norm_squared<V: NormedSpace>(v: &V) -> V::Field {
v.norm_squared() v.norm_squared()
} }
/// A synonym function for `norm()` aka length. /// A synonym for [`norm`](fn.norm.html), aka length.
///
/// # See also:
///
/// * [`magnitude_squared`](fn.magnitude_squared.html)
/// * [`norm`](fn.norm.html)
/// * [`norm_squared`](fn.norm_squared.html)
#[inline] #[inline]
pub fn magnitude<V: NormedSpace>(v: &V) -> V::Field { pub fn magnitude<V: NormedSpace>(v: &V) -> V::Field {
v.norm() v.norm()
} }
/// A synonym function for `norm_squared()` aka length squared. /// A synonym for [`norm_squared`](fn.norm_squared.html),
/// aka length squared.
///
/// # See also:
///
/// * [`magnitude`](fn.magnitude.html)
/// * [`norm`](fn.norm.html)
/// * [`norm_squared`](fn.norm_squared.html)
#[inline] #[inline]
pub fn magnitude_squared<V: NormedSpace>(v: &V) -> V::Field { pub fn magnitude_squared<V: NormedSpace>(v: &V) -> V::Field {
v.norm_squared() v.norm_squared()
@ -448,18 +496,33 @@ pub fn try_normalize<V: NormedSpace>(v: &V, min_norm: V::Field) -> Option<V> {
* *
*/ */
/// The center of two points. /// The center of two points.
///
/// # See also:
///
/// * [distance](fn.distance.html)
/// * [distance_squared](fn.distance_squared.html)
#[inline] #[inline]
pub fn center<P: EuclideanSpace>(p1: &P, p2: &P) -> P { pub fn center<P: EuclideanSpace>(p1: &P, p2: &P) -> P {
P::from_coordinates((p1.coordinates() + p2.coordinates()) * convert(0.5)) P::from_coordinates((p1.coordinates() + p2.coordinates()) * convert(0.5))
} }
/// The distance between two points. /// The distance between two points.
///
/// # See also:
///
/// * [center](fn.center.html)
/// * [distance_squared](fn.distance_squared.html)
#[inline] #[inline]
pub fn distance<P: EuclideanSpace>(p1: &P, p2: &P) -> P::Real { pub fn distance<P: EuclideanSpace>(p1: &P, p2: &P) -> P::Real {
(p2.coordinates() - p1.coordinates()).norm() (p2.coordinates() - p1.coordinates()).norm()
} }
/// The squared distance between two points. /// The squared distance between two points.
///
/// # See also:
///
/// * [center](fn.center.html)
/// * [distance](fn.distance.html)
#[inline] #[inline]
pub fn distance_squared<P: EuclideanSpace>(p1: &P, p2: &P) -> P::Real { pub fn distance_squared<P: EuclideanSpace>(p1: &P, p2: &P) -> P::Real {
(p2.coordinates() - p1.coordinates()).norm_squared() (p2.coordinates() - p1.coordinates()).norm_squared()
@ -470,7 +533,15 @@ pub fn distance_squared<P: EuclideanSpace>(p1: &P, p2: &P) -> P::Real {
*/ */
/// Converts an object from one type to an equivalent or more general one. /// Converts an object from one type to an equivalent or more general one.
/// ///
/// See also `::try_convert` for conversion to more specific types. /// See also [`try_convert`](fn.try_convert.html) for conversion to more specific types.
///
/// # See also:
///
/// * [convert_ref](fn.convert_ref.html)
/// * [convert_ref_unchecked](fn.convert_ref_unchecked.html)
/// * [is_convertible](../nalgebra/fn.is_convertible.html)
/// * [try_convert](fn.try_convert.html)
/// * [try_convert_ref](fn.try_convert_ref.html)
#[inline] #[inline]
pub fn convert<From, To: SupersetOf<From>>(t: From) -> To { pub fn convert<From, To: SupersetOf<From>>(t: From) -> To {
To::from_subset(&t) To::from_subset(&t)
@ -478,37 +549,89 @@ pub fn convert<From, To: SupersetOf<From>>(t: From) -> To {
/// Attempts to convert an object to a more specific one. /// Attempts to convert an object to a more specific one.
/// ///
/// See also `::convert` for conversion to more general types. /// See also [`convert`](fn.convert.html) for conversion to more general types.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [convert_ref](fn.convert_ref.html)
/// * [convert_ref_unchecked](fn.convert_ref_unchecked.html)
/// * [is_convertible](../nalgebra/fn.is_convertible.html)
/// * [try_convert_ref](fn.try_convert_ref.html)
#[inline] #[inline]
pub fn try_convert<From: SupersetOf<To>, To>(t: From) -> Option<To> { pub fn try_convert<From: SupersetOf<To>, To>(t: From) -> Option<To> {
t.to_subset() t.to_subset()
} }
/// Indicates if `::try_convert` will succeed without actually performing the conversion. /// Indicates if [`try_convert`](fn.try_convert.html) will succeed without
/// actually performing the conversion.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [convert_ref](fn.convert_ref.html)
/// * [convert_ref_unchecked](fn.convert_ref_unchecked.html)
/// * [try_convert](fn.try_convert.html)
/// * [try_convert_ref](fn.try_convert_ref.html)
#[inline] #[inline]
pub fn is_convertible<From: SupersetOf<To>, To>(t: &From) -> bool { pub fn is_convertible<From: SupersetOf<To>, To>(t: &From) -> bool {
t.is_in_subset() t.is_in_subset()
} }
/// Use with care! Same as `try_convert` but without any property checks. /// Use with care! Same as [`try_convert`](fn.try_convert.html) but
/// without any property checks.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [convert_ref](fn.convert_ref.html)
/// * [convert_ref_unchecked](fn.convert_ref_unchecked.html)
/// * [is_convertible](../nalgebra/fn.is_convertible.html)
/// * [try_convert](fn.try_convert.html)
/// * [try_convert_ref](fn.try_convert_ref.html)
#[inline] #[inline]
pub unsafe fn convert_unchecked<From: SupersetOf<To>, To>(t: From) -> To { pub unsafe fn convert_unchecked<From: SupersetOf<To>, To>(t: From) -> To {
t.to_subset_unchecked() t.to_subset_unchecked()
} }
/// Converts an object from one type to an equivalent or more general one. /// Converts an object from one type to an equivalent or more general one.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [convert_ref_unchecked](fn.convert_ref_unchecked.html)
/// * [is_convertible](../nalgebra/fn.is_convertible.html)
/// * [try_convert](fn.try_convert.html)
/// * [try_convert_ref](fn.try_convert_ref.html)
#[inline] #[inline]
pub fn convert_ref<From, To: SupersetOf<From>>(t: &From) -> To { pub fn convert_ref<From, To: SupersetOf<From>>(t: &From) -> To {
To::from_subset(t) To::from_subset(t)
} }
/// Attempts to convert an object to a more specific one. /// Attempts to convert an object to a more specific one.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [convert_ref](fn.convert_ref.html)
/// * [convert_ref_unchecked](fn.convert_ref_unchecked.html)
/// * [is_convertible](../nalgebra/fn.is_convertible.html)
/// * [try_convert](fn.try_convert.html)
#[inline] #[inline]
pub fn try_convert_ref<From: SupersetOf<To>, To>(t: &From) -> Option<To> { pub fn try_convert_ref<From: SupersetOf<To>, To>(t: &From) -> Option<To> {
t.to_subset() t.to_subset()
} }
/// Use with care! Same as `try_convert` but without any property checks. /// Use with care! Same as [`try_convert`](fn.try_convert.html) but
/// without any property checks.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [convert_ref](fn.convert_ref.html)
/// * [is_convertible](../nalgebra/fn.is_convertible.html)
/// * [try_convert](fn.try_convert.html)
/// * [try_convert_ref](fn.try_convert_ref.html)
#[inline] #[inline]
pub unsafe fn convert_ref_unchecked<From: SupersetOf<To>, To>(t: &From) -> To { pub unsafe fn convert_ref_unchecked<From: SupersetOf<To>, To>(t: &From) -> To {
t.to_subset_unchecked() t.to_subset_unchecked()