Add doc-tests to unit_complex_construction.

This commit is contained in:
sebcrozet 2018-11-05 10:34:58 +01:00 committed by Sébastien Crozet
parent ff5b64e35d
commit a8a9a3082a
2 changed files with 121 additions and 13 deletions

View File

@ -29,7 +29,7 @@ impl<N: Real> Rotation2<N> {
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use std::f32;
/// # use nalgebra::{Rotation2, Vector2, Point2};
/// # use nalgebra::{Rotation2, Point2};
/// let rot = Rotation2::new(f32::consts::FRAC_PI_2);
///
/// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));

View File

@ -11,16 +11,38 @@ use base::allocator::Allocator;
use base::dimension::{U1, U2};
use base::storage::Storage;
use base::{DefaultAllocator, Unit, Vector};
use geometry::{Rotation, UnitComplex};
use geometry::{Rotation2, UnitComplex};
impl<N: Real> UnitComplex<N> {
/// The unit complex number multiplicative identity.
///
/// # Example
/// ```
/// # use nalgebra::UnitComplex;
/// let rot1 = UnitComplex::identity();
/// let rot2 = UnitComplex::new(1.7);
///
/// assert_eq!(rot1 * rot2, rot2);
/// assert_eq!(rot2 * rot1, rot2);
/// ```
#[inline]
pub fn identity() -> Self {
Self::new_unchecked(Complex::new(N::one(), N::zero()))
}
/// Builds the unit complex number corresponding to the rotation with the angle.
/// Builds the unit complex number corresponding to the rotation with the given angle.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use std::f32;
/// # use nalgebra::{UnitComplex, Point2};
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
///
/// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
/// ```
#[inline]
pub fn new(angle: N) -> Self {
let (sin, cos) = angle.sin_cos();
@ -30,6 +52,19 @@ impl<N: Real> UnitComplex<N> {
/// Builds the unit complex number corresponding to the rotation with the angle.
///
/// Same as `Self::new(angle)`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use std::f32;
/// # use nalgebra::{UnitComplex, Point2};
/// let rot = UnitComplex::from_angle(f32::consts::FRAC_PI_2);
///
/// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
/// ```
// FIXME: deprecate this.
#[inline]
pub fn from_angle(angle: N) -> Self {
Self::new(angle)
@ -37,7 +72,21 @@ impl<N: Real> UnitComplex<N> {
/// Builds the unit complex number from the sinus and cosinus of the rotation angle.
///
/// The input values are not checked.
/// The input values are not checked to actually be cosines and sine of the same value.
/// Is is generally preferable to use the `::new(angle)` constructor instead.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use std::f32;
/// # use nalgebra::{UnitComplex, Vector2, Point2};
/// let angle = f32::consts::FRAC_PI_2;
/// let rot = UnitComplex::from_cos_sin_unchecked(angle.cos(), angle.sin());
///
/// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
/// ```
#[inline]
pub fn from_cos_sin_unchecked(cos: N, sin: N) -> Self {
UnitComplex::new_unchecked(Complex::new(cos, sin))
@ -45,9 +94,10 @@ impl<N: Real> UnitComplex<N> {
/// Builds a unit complex rotation from an angle in radian wrapped in a 1-dimensional vector.
///
/// Equivalent to `Self::new(axisangle[0])`.
/// This is generally used in the context of generic programming. Using
/// the `::new(angle)` method instead is more common.
#[inline]
pub fn from_scaled_axis<SB: Storage<N, U1, U1>>(axisangle: Vector<N, U1, SB>) -> Self {
pub fn from_scaled_axis<SB: Storage<N, U1>>(axisangle: Vector<N, U1, SB>) -> Self {
Self::from_angle(axisangle[0])
}
@ -61,7 +111,7 @@ impl<N: Real> UnitComplex<N> {
/// Creates a new unit complex number from a complex number.
///
/// The input complex number will be normalized. Returns the complex number norm as well.
/// The input complex number will be normalized. Returns the norm of the complex number as well.
#[inline]
pub fn from_complex_and_get(q: Complex<N>) -> (Self, N) {
let norm = (q.im * q.im + q.re * q.re).sqrt();
@ -69,25 +119,58 @@ impl<N: Real> UnitComplex<N> {
}
/// Builds the unit complex number from the corresponding 2D rotation matrix.
///
/// # Example
/// ```
/// # use nalgebra::{Rotation2, UnitComplex};
/// let rot = Rotation2::new(1.7);
/// let complex = UnitComplex::from_rotation_matrix(&rot);
/// assert_eq!(complex, UnitComplex::new(1.7));
/// ```
// FIXME: add UnitComplex::from(...) instead?
#[inline]
pub fn from_rotation_matrix(rotmat: &Rotation<N, U2>) -> Self
where DefaultAllocator: Allocator<N, U2, U2> {
pub fn from_rotation_matrix(rotmat: &Rotation2<N>) -> Self {
Self::new_unchecked(Complex::new(rotmat[(0, 0)], rotmat[(1, 0)]))
}
/// The unit complex needed to make `a` and `b` be collinear and point toward the same
/// direction.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Vector2, UnitComplex};
/// let a = Vector2::new(1.0, 2.0);
/// let b = Vector2::new(2.0, 1.0);
/// let rot = UnitComplex::rotation_between(&a, &b);
/// assert_relative_eq!(rot * a, b);
/// assert_relative_eq!(rot.inverse() * b, a);
/// ```
#[inline]
pub fn rotation_between<SB, SC>(a: &Vector<N, U2, SB>, b: &Vector<N, U2, SC>) -> Self
where
SB: Storage<N, U2, U1>,
SC: Storage<N, U2, U1>,
SB: Storage<N, U2>,
SC: Storage<N, U2>,
{
Self::scaled_rotation_between(a, b, N::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Vector2, UnitComplex};
/// let a = Vector2::new(1.0, 2.0);
/// let b = Vector2::new(2.0, 1.0);
/// let rot2 = UnitComplex::scaled_rotation_between(&a, &b, 0.2);
/// let rot5 = UnitComplex::scaled_rotation_between(&a, &b, 0.5);
/// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
/// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<N, U2, SB>,
@ -95,8 +178,8 @@ impl<N: Real> UnitComplex<N> {
s: N,
) -> Self
where
SB: Storage<N, U2, U1>,
SC: Storage<N, U2, U1>,
SB: Storage<N, U2>,
SC: Storage<N, U2>,
{
// FIXME: code duplication with Rotation.
if let (Some(na), Some(nb)) = (
@ -111,6 +194,18 @@ impl<N: Real> UnitComplex<N> {
/// The unit complex needed to make `a` and `b` be collinear and point toward the same
/// direction.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Unit, Vector2, UnitComplex};
/// let a = Unit::new_normalize(Vector2::new(1.0, 2.0));
/// let b = Unit::new_normalize(Vector2::new(2.0, 1.0));
/// let rot = UnitComplex::rotation_between_axis(&a, &b);
/// assert_relative_eq!(rot * a, b);
/// assert_relative_eq!(rot.inverse() * b, a);
/// ```
#[inline]
pub fn rotation_between_axis<SB, SC>(
a: &Unit<Vector<N, U2, SB>>,
@ -125,6 +220,19 @@ impl<N: Real> UnitComplex<N> {
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Unit, Vector2, UnitComplex};
/// let a = Unit::new_normalize(Vector2::new(1.0, 2.0));
/// let b = Unit::new_normalize(Vector2::new(2.0, 1.0));
/// let rot2 = UnitComplex::scaled_rotation_between_axis(&a, &b, 0.2);
/// let rot5 = UnitComplex::scaled_rotation_between_axis(&a, &b, 0.5);
/// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
/// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn scaled_rotation_between_axis<SB, SC>(
na: &Unit<Vector<N, U2, SB>>,