From 7230ae1e638893d2aa87b30f96dfd3cfa1e73f46 Mon Sep 17 00:00:00 2001 From: metric-space Date: Tue, 18 Jan 2022 22:35:11 -0500 Subject: [PATCH 01/31] First attempt at xgges (qz decomposition), passing tests. Serialization failing across many modules --- nalgebra-lapack/src/lib.rs | 2 + nalgebra-lapack/src/qz.rs | 288 ++++++++++++++++++++++++++++ nalgebra-lapack/tests/linalg/mod.rs | 1 + nalgebra-lapack/tests/linalg/qz.rs | 27 +++ 4 files changed, 318 insertions(+) create mode 100644 nalgebra-lapack/src/qz.rs create mode 100644 nalgebra-lapack/tests/linalg/qz.rs diff --git a/nalgebra-lapack/src/lib.rs b/nalgebra-lapack/src/lib.rs index 9cf0d73d..e89ab160 100644 --- a/nalgebra-lapack/src/lib.rs +++ b/nalgebra-lapack/src/lib.rs @@ -86,6 +86,7 @@ mod eigen; mod hessenberg; mod lu; mod qr; +mod qz; mod schur; mod svd; mod symmetric_eigen; @@ -97,6 +98,7 @@ pub use self::eigen::Eigen; pub use self::hessenberg::Hessenberg; pub use self::lu::{LUScalar, LU}; pub use self::qr::QR; +pub use self::qz::QZ; pub use self::schur::Schur; pub use self::svd::SVD; pub use self::symmetric_eigen::SymmetricEigen; diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs new file mode 100644 index 00000000..47efc08c --- /dev/null +++ b/nalgebra-lapack/src/qz.rs @@ -0,0 +1,288 @@ +#[cfg(feature = "serde-serialize")] +use serde::{Deserialize, Serialize}; + +use num::Zero; +use num_complex::Complex; + +use simba::scalar::RealField; + +use crate::ComplexHelper; +use na::allocator::Allocator; +use na::dimension::{Const, Dim}; +use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar}; + +use lapack; + +/// Eigendecomposition of a real square matrix with complex eigenvalues. +#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] +#[cfg_attr( + feature = "serde-serialize", + serde( + bound(serialize = "DefaultAllocator: Allocator + Allocator, + OVector: Serialize, + OMatrix: Serialize") + ) +)] +#[cfg_attr( + feature = "serde-serialize", + serde( + bound(deserialize = "DefaultAllocator: Allocator + Allocator, + OVector: Serialize, + OMatrix: Deserialize<'de>") + ) +)] +#[derive(Clone, Debug)] +pub struct QZ +where + DefaultAllocator: Allocator + Allocator, +{ + alphar: OVector, + alphai: OVector, + beta: OVector, + vsl: OMatrix, + s: OMatrix, + vsr: OMatrix, + t: OMatrix +} + +impl Copy for QZ +where + DefaultAllocator: Allocator + Allocator, + OMatrix: Copy, + OVector: Copy, +{ +} + +impl QZ +where + DefaultAllocator: Allocator + Allocator, +{ + /// Computes the eigenvalues and real Schur form of the matrix `m`. + /// + /// Panics if the method did not converge. + pub fn new(a: OMatrix, b: OMatrix) -> Self { + Self::try_new(a,b).expect("Schur decomposition: convergence failed.") + } + + /// Computes the eigenvalues and real Schur form of the matrix `m`. + /// + /// Returns `None` if the method did not converge. + pub fn try_new(mut a: OMatrix, mut b: OMatrix) -> Option { + assert!( + a.is_square() && b.is_square(), + "Unable to compute the qz decomposition of non-square matrices." + ); + + // another assert to compare shape? + + let (nrows, ncols) = a.shape_generic(); + let n = nrows.value(); + + let lda = n as i32; + let ldb = lda.clone(); + + let mut info = 0; + + let mut alphar = Matrix::zeros_generic(nrows, Const::<1>); + let mut alphai = Matrix::zeros_generic(nrows, Const::<1>); + let mut beta = Matrix::zeros_generic(nrows, Const::<1>); + let mut vsl = Matrix::zeros_generic(nrows, ncols); + let mut vsr = Matrix::zeros_generic(nrows, ncols); + // Placeholders: + let mut bwork = [0i32]; + let mut unused = 0; + + let lwork = T::xgges_work_size( + b'V', + b'V', + b'N', + n as i32, + a.as_mut_slice(), + n as i32, + b.as_mut_slice(), + n as i32, + &mut unused, + alphar.as_mut_slice(), + alphai.as_mut_slice(), + beta.as_mut_slice(), + vsl.as_mut_slice(), + n as i32, + vsr.as_mut_slice(), + n as i32, + &mut bwork, + &mut info, + ); + lapack_check!(info); + + let mut work = vec![T::zero(); lwork as usize]; + + T::xgges( + b'V', + b'V', + b'N', + n as i32, + a.as_mut_slice(), + n as i32, + b.as_mut_slice(), + n as i32, + &mut unused, + alphar.as_mut_slice(), + alphai.as_mut_slice(), + beta.as_mut_slice(), + vsl.as_mut_slice(), + n as i32, + vsr.as_mut_slice(), + n as i32, + &mut work, + lwork, + &mut bwork, + &mut info, + ); + lapack_check!(info); + + Some(QZ {alphar, alphai, beta, + vsl, s:a, + vsr, t:b}) + } + + /// Retrieves the unitary matrix `Q` and the upper-quasitriangular matrix `T` such that the + /// decomposed matrix equals `Q * T * Q.transpose()`. + pub fn unpack(self) -> (OMatrix, OMatrix, OMatrix, OMatrix){ + (self.vsl, self.s, self.t, self.vsr) + } + + /// computes the generalized eigenvalues + #[must_use] + pub fn eigenvalues(&self) -> OVector, D> + where + DefaultAllocator: Allocator, D>, + { + let mut out = Matrix::zeros_generic(self.t.shape_generic().0, Const::<1>); + + for i in 0..out.len() { + out[i] = Complex::new(self.alphar[i].clone()/self.beta[i].clone(), + self.alphai[i].clone()/self.beta[i].clone()) + } + + out + } +} + +/* + * + * Lapack functions dispatch. + * + */ +/// Trait implemented by scalars for which Lapack implements the RealField QZ decomposition. +pub trait QZScalar: Scalar { + #[allow(missing_docs)] + fn xgges( + jobvsl: u8, + jobvsr: u8, + sort: u8, + // select: ??? + n: i32, + a: &mut [Self], + lda: i32, + b: &mut [Self], + ldb: i32, + sdim: &mut i32, + alphar: &mut [Self], + alphai: &mut [Self], + beta : &mut [Self], + vsl: &mut [Self], + ldvsl: i32, + vsr: &mut [Self], + ldvsr: i32, + work: &mut [Self], + lwork: i32, + bwork: &mut [i32], + info: &mut i32 + ); + + #[allow(missing_docs)] + fn xgges_work_size( + jobvsl: u8, + jobvsr: u8, + sort: u8, + // select: ??? + n: i32, + a: &mut [Self], + lda: i32, + b: &mut [Self], + ldb: i32, + sdim: &mut i32, + alphar: &mut [Self], + alphai: &mut [Self], + beta : &mut [Self], + vsl: &mut [Self], + ldvsl: i32, + vsr: &mut [Self], + ldvsr: i32, + bwork: &mut [i32], + info: &mut i32 + ) -> i32; +} + +macro_rules! real_eigensystem_scalar_impl ( + ($N: ty, $xgges: path) => ( + impl QZScalar for $N { + #[inline] + fn xgges(jobvsl: u8, + jobvsr: u8, + sort: u8, + // select: ??? + n: i32, + a: &mut [$N], + lda: i32, + b: &mut [$N], + ldb: i32, + sdim: &mut i32, + alphar: &mut [$N], + alphai: &mut [$N], + beta : &mut [$N], + vsl: &mut [$N], + ldvsl: i32, + vsr: &mut [$N], + ldvsr: i32, + work: &mut [$N], + lwork: i32, + bwork: &mut [i32], + info: &mut i32) { + unsafe { $xgges(jobvsl, jobvsr, sort, None, n, a, lda, b, ldb, sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info); } + } + + + #[inline] + fn xgges_work_size(jobvsl: u8, + jobvsr: u8, + sort: u8, + // select: ??? + n: i32, + a: &mut [$N], + lda: i32, + b: &mut [$N], + ldb: i32, + sdim: &mut i32, + alphar: &mut [$N], + alphai: &mut [$N], + beta : &mut [$N], + vsl: &mut [$N], + ldvsl: i32, + vsr: &mut [$N], + ldvsr: i32, + bwork: &mut [i32], + info: &mut i32) + -> i32 { + let mut work = [ Zero::zero() ]; + let lwork = -1 as i32; + + unsafe { $xgges(jobvsl, jobvsr, sort, None, n, a, lda, b, ldb, sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, &mut work, lwork, bwork, info); } + ComplexHelper::real_part(work[0]) as i32 + } + } + ) +); + +real_eigensystem_scalar_impl!(f32, lapack::sgges); +real_eigensystem_scalar_impl!(f64, lapack::dgges); diff --git a/nalgebra-lapack/tests/linalg/mod.rs b/nalgebra-lapack/tests/linalg/mod.rs index a6742217..a4043469 100644 --- a/nalgebra-lapack/tests/linalg/mod.rs +++ b/nalgebra-lapack/tests/linalg/mod.rs @@ -1,6 +1,7 @@ mod cholesky; mod lu; mod qr; +mod qz; mod real_eigensystem; mod schur; mod svd; diff --git a/nalgebra-lapack/tests/linalg/qz.rs b/nalgebra-lapack/tests/linalg/qz.rs new file mode 100644 index 00000000..6b4efbda --- /dev/null +++ b/nalgebra-lapack/tests/linalg/qz.rs @@ -0,0 +1,27 @@ +use na::DMatrix; +use nl::QZ; +use std::cmp; + +use crate::proptest::*; +use proptest::{prop_assert, proptest}; + +proptest! { + #[test] + fn qz(n in PROPTEST_MATRIX_DIM) { + let n = cmp::max(1, cmp::min(n, 10)); + let a = DMatrix::::new_random(n, n); + let b = DMatrix::::new_random(n, n); + + let (vsl,s,t,vsr) = QZ::new(a.clone(), b.clone()).unpack(); + + prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7)) + } + + #[test] + fn qz_static(a in matrix4(), b in matrix4()) { + let (vsl,s,t,vsr) = QZ::new(a.clone(), b.clone()).unpack(); + prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7)) + } +} From 6f7ef387e5c2b53132f8fc453d9b52221f4624dc Mon Sep 17 00:00:00 2001 From: metric-space Date: Tue, 18 Jan 2022 22:42:12 -0500 Subject: [PATCH 02/31] Format file --- nalgebra-lapack/src/qz.rs | 113 +++++++++++++++++++++----------------- 1 file changed, 64 insertions(+), 49 deletions(-) diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs index 47efc08c..d6abac22 100644 --- a/nalgebra-lapack/src/qz.rs +++ b/nalgebra-lapack/src/qz.rs @@ -38,11 +38,11 @@ where { alphar: OVector, alphai: OVector, - beta: OVector, - vsl: OMatrix, - s: OMatrix, - vsr: OMatrix, - t: OMatrix + beta: OVector, + vsl: OMatrix, + s: OMatrix, + vsr: OMatrix, + t: OMatrix, } impl Copy for QZ @@ -61,7 +61,7 @@ where /// /// Panics if the method did not converge. pub fn new(a: OMatrix, b: OMatrix) -> Self { - Self::try_new(a,b).expect("Schur decomposition: convergence failed.") + Self::try_new(a, b).expect("Schur decomposition: convergence failed.") } /// Computes the eigenvalues and real Schur form of the matrix `m`. @@ -85,9 +85,9 @@ where let mut alphar = Matrix::zeros_generic(nrows, Const::<1>); let mut alphai = Matrix::zeros_generic(nrows, Const::<1>); - let mut beta = Matrix::zeros_generic(nrows, Const::<1>); - let mut vsl = Matrix::zeros_generic(nrows, ncols); - let mut vsr = Matrix::zeros_generic(nrows, ncols); + let mut beta = Matrix::zeros_generic(nrows, Const::<1>); + let mut vsl = Matrix::zeros_generic(nrows, ncols); + let mut vsr = Matrix::zeros_generic(nrows, ncols); // Placeholders: let mut bwork = [0i32]; let mut unused = 0; @@ -140,14 +140,27 @@ where ); lapack_check!(info); - Some(QZ {alphar, alphai, beta, - vsl, s:a, - vsr, t:b}) + Some(QZ { + alphar, + alphai, + beta, + vsl, + s: a, + vsr, + t: b, + }) } /// Retrieves the unitary matrix `Q` and the upper-quasitriangular matrix `T` such that the /// decomposed matrix equals `Q * T * Q.transpose()`. - pub fn unpack(self) -> (OMatrix, OMatrix, OMatrix, OMatrix){ + pub fn unpack( + self, + ) -> ( + OMatrix, + OMatrix, + OMatrix, + OMatrix, + ) { (self.vsl, self.s, self.t, self.vsr) } @@ -160,8 +173,10 @@ where let mut out = Matrix::zeros_generic(self.t.shape_generic().0, Const::<1>); for i in 0..out.len() { - out[i] = Complex::new(self.alphar[i].clone()/self.beta[i].clone(), - self.alphai[i].clone()/self.beta[i].clone()) + out[i] = Complex::new( + self.alphar[i].clone() / self.beta[i].clone(), + self.alphai[i].clone() / self.beta[i].clone(), + ) } out @@ -177,50 +192,50 @@ where pub trait QZScalar: Scalar { #[allow(missing_docs)] fn xgges( - jobvsl: u8, - jobvsr: u8, - sort: u8, + jobvsl: u8, + jobvsr: u8, + sort: u8, // select: ??? - n: i32, - a: &mut [Self], - lda: i32, - b: &mut [Self], - ldb: i32, - sdim: &mut i32, + n: i32, + a: &mut [Self], + lda: i32, + b: &mut [Self], + ldb: i32, + sdim: &mut i32, alphar: &mut [Self], alphai: &mut [Self], - beta : &mut [Self], - vsl: &mut [Self], - ldvsl: i32, - vsr: &mut [Self], - ldvsr: i32, - work: &mut [Self], - lwork: i32, - bwork: &mut [i32], - info: &mut i32 + beta: &mut [Self], + vsl: &mut [Self], + ldvsl: i32, + vsr: &mut [Self], + ldvsr: i32, + work: &mut [Self], + lwork: i32, + bwork: &mut [i32], + info: &mut i32, ); #[allow(missing_docs)] fn xgges_work_size( - jobvsl: u8, - jobvsr: u8, - sort: u8, + jobvsl: u8, + jobvsr: u8, + sort: u8, // select: ??? - n: i32, - a: &mut [Self], - lda: i32, - b: &mut [Self], - ldb: i32, - sdim: &mut i32, + n: i32, + a: &mut [Self], + lda: i32, + b: &mut [Self], + ldb: i32, + sdim: &mut i32, alphar: &mut [Self], alphai: &mut [Self], - beta : &mut [Self], - vsl: &mut [Self], - ldvsl: i32, - vsr: &mut [Self], - ldvsr: i32, - bwork: &mut [i32], - info: &mut i32 + beta: &mut [Self], + vsl: &mut [Self], + ldvsl: i32, + vsr: &mut [Self], + ldvsr: i32, + bwork: &mut [i32], + info: &mut i32, ) -> i32; } From 769f20ce6f813c8d7df2065092d21792da978319 Mon Sep 17 00:00:00 2001 From: metric-space Date: Wed, 19 Jan 2022 02:42:22 -0500 Subject: [PATCH 03/31] Comments more tailored to QZ --- nalgebra-lapack/src/qz.rs | 23 +++++++++++++---------- 1 file changed, 13 insertions(+), 10 deletions(-) diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs index d6abac22..06ce0ba3 100644 --- a/nalgebra-lapack/src/qz.rs +++ b/nalgebra-lapack/src/qz.rs @@ -13,7 +13,7 @@ use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar}; use lapack; -/// Eigendecomposition of a real square matrix with complex eigenvalues. +/// Generalized eigendecomposition of a pair of N*N square matrices. #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", @@ -57,14 +57,15 @@ impl QZ where DefaultAllocator: Allocator + Allocator, { - /// Computes the eigenvalues and real Schur form of the matrix `m`. + /// Attempts to compute the QZ decomposition of input square matrices `a` and `b`. /// /// Panics if the method did not converge. pub fn new(a: OMatrix, b: OMatrix) -> Self { - Self::try_new(a, b).expect("Schur decomposition: convergence failed.") + Self::try_new(a, b).expect("QZ decomposition: convergence failed.") } - /// Computes the eigenvalues and real Schur form of the matrix `m`. + /// Computes the decomposition of input matrices `a` and `b` into a pair of matrices of Schur vectors + /// , a quasi-upper triangular matrix and an upper-triangular matrix . /// /// Returns `None` if the method did not converge. pub fn try_new(mut a: OMatrix, mut b: OMatrix) -> Option { @@ -73,14 +74,14 @@ where "Unable to compute the qz decomposition of non-square matrices." ); - // another assert to compare shape? + assert!( + a.shape_generic() == b.shape_generic(), + "Unable to compute the qz decomposition of two square matrices of different dimensions." + ); let (nrows, ncols) = a.shape_generic(); let n = nrows.value(); - let lda = n as i32; - let ldb = lda.clone(); - let mut info = 0; let mut alphar = Matrix::zeros_generic(nrows, Const::<1>); @@ -151,8 +152,10 @@ where }) } - /// Retrieves the unitary matrix `Q` and the upper-quasitriangular matrix `T` such that the - /// decomposed matrix equals `Q * T * Q.transpose()`. + /// Retrieves the left and right matrices of Schur Vectors (VSL and VSR) + /// the upper-quasitriangular matrix `S` and upper triangular matrix `T` such that the + /// decomposed matrix `A` equals `VSL * S * VSL.transpose()` and + /// decomposed matrix `B` equals `VSL * T * VSL.transpose()`. pub fn unpack( self, ) -> ( From b2c6c6b02d9b295c0984efcbde139e016d8b36ba Mon Sep 17 00:00:00 2001 From: metric-space Date: Wed, 19 Jan 2022 21:47:44 -0500 Subject: [PATCH 04/31] Add non-naive way of calculate generalized eigenvalue, write spotty test for generalized eigenvalues --- nalgebra-lapack/src/qz.rs | 15 +++++++++++---- nalgebra-lapack/tests/linalg/qz.rs | 18 ++++++++++++++---- 2 files changed, 25 insertions(+), 8 deletions(-) diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs index 06ce0ba3..b02a095f 100644 --- a/nalgebra-lapack/src/qz.rs +++ b/nalgebra-lapack/src/qz.rs @@ -176,10 +176,17 @@ where let mut out = Matrix::zeros_generic(self.t.shape_generic().0, Const::<1>); for i in 0..out.len() { - out[i] = Complex::new( - self.alphar[i].clone() / self.beta[i].clone(), - self.alphai[i].clone() / self.beta[i].clone(), - ) + let b = self.beta[i].clone(); + out[i] = { + if b < T::RealField::zero() { + Complex::::zero() + } else { + Complex::new( + self.alphar[i].clone() / b.clone(), + self.alphai[i].clone() / b.clone(), + ) + } + } } out diff --git a/nalgebra-lapack/tests/linalg/qz.rs b/nalgebra-lapack/tests/linalg/qz.rs index 6b4efbda..2b7730a7 100644 --- a/nalgebra-lapack/tests/linalg/qz.rs +++ b/nalgebra-lapack/tests/linalg/qz.rs @@ -1,5 +1,6 @@ -use na::DMatrix; +use na::{zero, DMatrix, Normed}; use nl::QZ; +use num_complex::Complex; use std::cmp; use crate::proptest::*; @@ -12,10 +13,19 @@ proptest! { let a = DMatrix::::new_random(n, n); let b = DMatrix::::new_random(n, n); - let (vsl,s,t,vsr) = QZ::new(a.clone(), b.clone()).unpack(); + let qz = QZ::new(a.clone(), b.clone()); + let (vsl,s,t,vsr) = qz.clone().unpack(); + let eigenvalues = qz.eigenvalues(); + let a_c = a.clone().map(|x| Complex::new(x, zero::())); - prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7)); - prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7)) + prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a.clone(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b.clone(), epsilon = 1.0e-7)); + // spotty test that skips over the first eiegenvalue which in some cases is extremely large relative to the other ones + // and fails the condition + for i in 1..n { + let b_c = b.clone().map(|x| eigenvalues[i]*Complex::new(x,zero::())); + prop_assert!(relative_eq!((&a_c - &b_c).determinant().norm(), 0.0, epsilon = 1.0e-6)); + } } #[test] From 6a283060743c0abd7edcf08766dcdd1213546a1d Mon Sep 17 00:00:00 2001 From: metric-space Date: Wed, 19 Jan 2022 23:51:46 -0500 Subject: [PATCH 05/31] Commented out failing tests, refactored checks for almost zeroes --- nalgebra-lapack/src/qz.rs | 28 ++++++++++++++++++--------- nalgebra-lapack/tests/linalg/qz.rs | 31 ++++++++++++++++++++---------- 2 files changed, 40 insertions(+), 19 deletions(-) diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs index b02a095f..477ddfb7 100644 --- a/nalgebra-lapack/src/qz.rs +++ b/nalgebra-lapack/src/qz.rs @@ -176,16 +176,26 @@ where let mut out = Matrix::zeros_generic(self.t.shape_generic().0, Const::<1>); for i in 0..out.len() { - let b = self.beta[i].clone(); - out[i] = { - if b < T::RealField::zero() { - Complex::::zero() + out[i] = if self.beta[i].clone() < T::RealField::default_epsilon() { + Complex::zero() + } else { + let mut cr = self.alphar[i].clone(); + let mut ci = self.alphai[i].clone(); + let b = self.beta[i].clone(); + + if cr < T::RealField::default_epsilon() { + cr = T::RealField::zero() } else { - Complex::new( - self.alphar[i].clone() / b.clone(), - self.alphai[i].clone() / b.clone(), - ) - } + cr = cr / b.clone() + }; + + if ci < T::RealField::default_epsilon() { + ci = T::RealField::zero() + } else { + ci = ci / b + }; + + Complex::new(cr, ci) } } diff --git a/nalgebra-lapack/tests/linalg/qz.rs b/nalgebra-lapack/tests/linalg/qz.rs index 2b7730a7..84a7b030 100644 --- a/nalgebra-lapack/tests/linalg/qz.rs +++ b/nalgebra-lapack/tests/linalg/qz.rs @@ -1,6 +1,7 @@ -use na::{zero, DMatrix, Normed}; +use na::{zero, DMatrix, SMatrix}; use nl::QZ; use num_complex::Complex; +use simba::scalar::ComplexField; use std::cmp; use crate::proptest::*; @@ -15,23 +16,33 @@ proptest! { let qz = QZ::new(a.clone(), b.clone()); let (vsl,s,t,vsr) = qz.clone().unpack(); - let eigenvalues = qz.eigenvalues(); - let a_c = a.clone().map(|x| Complex::new(x, zero::())); + //let eigenvalues = qz.eigenvalues(); + //let a_c = a.clone().map(|x| Complex::new(x, zero::())); prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a.clone(), epsilon = 1.0e-7)); prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b.clone(), epsilon = 1.0e-7)); - // spotty test that skips over the first eiegenvalue which in some cases is extremely large relative to the other ones + // spotty test that skips over the first eigenvalue which in some cases is extremely large relative to the other ones // and fails the condition - for i in 1..n { - let b_c = b.clone().map(|x| eigenvalues[i]*Complex::new(x,zero::())); - prop_assert!(relative_eq!((&a_c - &b_c).determinant().norm(), 0.0, epsilon = 1.0e-6)); - } + //for i in 1..n { + // let b_c = b.clone().map(|x| eigenvalues[i]*Complex::new(x,zero::())); + // prop_assert!(relative_eq!((&a_c - &b_c).determinant().modulus(), 0.0, epsilon = 1.0e-6)); + //} } #[test] fn qz_static(a in matrix4(), b in matrix4()) { - let (vsl,s,t,vsr) = QZ::new(a.clone(), b.clone()).unpack(); + let qz = QZ::new(a.clone(), b.clone()); + let (vsl,s,t,vsr) = qz.unpack(); + //let eigenvalues = qz.eigenvalues(); + //let a_c = a.clone().map(|x| Complex::new(x, zero::())); + prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7)); - prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7)) + prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7)); + + //for i in 0..4 { + // let b_c = b.clone().map(|x| eigenvalues[i]*Complex::new(x,zero::())); + // println!("{}",eigenvalues); + // prop_assert!(relative_eq!((&a_c - &b_c).determinant().modulus(), 0.0, epsilon = 1.0e-4)) + //} } } From 7e9345d91edd068ce0a965912a1e514b3bd1e342 Mon Sep 17 00:00:00 2001 From: metric-space Date: Fri, 21 Jan 2022 06:41:06 -0500 Subject: [PATCH 06/31] Correction for not calculating absolurte value --- nalgebra-lapack/src/qz.rs | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs index 477ddfb7..e3319452 100644 --- a/nalgebra-lapack/src/qz.rs +++ b/nalgebra-lapack/src/qz.rs @@ -167,6 +167,8 @@ where (self.vsl, self.s, self.t, self.vsr) } + + /// computes the generalized eigenvalues #[must_use] pub fn eigenvalues(&self) -> OVector, D> @@ -176,20 +178,20 @@ where let mut out = Matrix::zeros_generic(self.t.shape_generic().0, Const::<1>); for i in 0..out.len() { - out[i] = if self.beta[i].clone() < T::RealField::default_epsilon() { + out[i] = if self.beta[i].clone().abs() < T::RealField::default_epsilon() { Complex::zero() } else { let mut cr = self.alphar[i].clone(); let mut ci = self.alphai[i].clone(); let b = self.beta[i].clone(); - if cr < T::RealField::default_epsilon() { + if cr.clone().abs() < T::RealField::default_epsilon() { cr = T::RealField::zero() } else { cr = cr / b.clone() }; - if ci < T::RealField::default_epsilon() { + if ci.clone().abs() < T::RealField::default_epsilon() { ci = T::RealField::zero() } else { ci = ci / b From 7d8fb3d3848978e42ad0c65732a00267aa428202 Mon Sep 17 00:00:00 2001 From: metric-space Date: Mon, 24 Jan 2022 23:56:44 -0500 Subject: [PATCH 07/31] New wrapper for generalized eigenvalues and associated eigenvectors via LAPACK routines sggev/dggev --- .../src/generalized_eigenvalues.rs | 339 ++++++++++++++++++ nalgebra-lapack/src/lib.rs | 2 + .../tests/linalg/generalized_eigenvalues.rs | 59 +++ nalgebra-lapack/tests/linalg/mod.rs | 1 + 4 files changed, 401 insertions(+) create mode 100644 nalgebra-lapack/src/generalized_eigenvalues.rs create mode 100644 nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs new file mode 100644 index 00000000..6332f2db --- /dev/null +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -0,0 +1,339 @@ +#[cfg(feature = "serde-serialize")] +use serde::{Deserialize, Serialize}; + +use num::Zero; +use num_complex::Complex; + +use simba::scalar:: RealField; + +use crate::ComplexHelper; +use na::allocator::Allocator; +use na::dimension::{Const, Dim}; +use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar}; + +use lapack; + +/// Generalized eigenvalues and generalized eigenvectors(left and right) of a pair of N*N square matrices. +#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] +#[cfg_attr( + feature = "serde-serialize", + serde( + bound(serialize = "DefaultAllocator: Allocator + Allocator, + OVector: Serialize, + OMatrix: Serialize") + ) +)] +#[cfg_attr( + feature = "serde-serialize", + serde( + bound(deserialize = "DefaultAllocator: Allocator + Allocator, + OVector: Serialize, + OMatrix: Deserialize<'de>") + ) +)] +#[derive(Clone, Debug)] +pub struct GE +where + DefaultAllocator: Allocator + Allocator, +{ + alphar: OVector, + alphai: OVector, + beta: OVector, + vsl: OMatrix, + vsr: OMatrix, +} + +impl Copy for GE +where + DefaultAllocator: Allocator + Allocator, + OMatrix: Copy, + OVector: Copy, +{ +} + +impl GE +where + DefaultAllocator: Allocator + Allocator, +{ + /// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's + /// dggev and sggev routines + /// + /// For each e in generalized eigenvalues and the associated eigenvectors e_l and e_r (left andf right) + /// it satisfies e_l*a = e*e_l*b and a*e_r = e*b*e_r + /// + /// Panics if the method did not converge. + pub fn new(a: OMatrix, b: OMatrix) -> Self { + Self::try_new(a, b).expect("Calculation of generalized eigenvalues failed.") + } + + /// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's + /// dggev and sggev routines + /// + /// For each e in generalized eigenvalues and the associated eigenvectors e_l and e_r (left andf right) + /// it satisfies e_l*a = e*e_l*b and a*e_r = e*b*e_r + /// + /// Returns `None` if the method did not converge. + pub fn try_new(mut a: OMatrix, mut b: OMatrix) -> Option { + assert!( + a.is_square() && b.is_square(), + "Unable to compute the generalized eigenvalues of non-square matrices." + ); + + assert!( + a.shape_generic() == b.shape_generic(), + "Unable to compute the generalized eigenvalues of two square matrices of different dimensions." + ); + + let (nrows, ncols) = a.shape_generic(); + let n = nrows.value(); + + let mut info = 0; + + let mut alphar = Matrix::zeros_generic(nrows, Const::<1>); + let mut alphai = Matrix::zeros_generic(nrows, Const::<1>); + let mut beta = Matrix::zeros_generic(nrows, Const::<1>); + let mut vsl = Matrix::zeros_generic(nrows, ncols); + let mut vsr = Matrix::zeros_generic(nrows, ncols); + + let lwork = T::xggev_work_size( + b'V', + b'V', + n as i32, + a.as_mut_slice(), + n as i32, + b.as_mut_slice(), + n as i32, + alphar.as_mut_slice(), + alphai.as_mut_slice(), + beta.as_mut_slice(), + vsl.as_mut_slice(), + n as i32, + vsr.as_mut_slice(), + n as i32, + &mut info, + ); + lapack_check!(info); + + let mut work = vec![T::zero(); lwork as usize]; + + T::xggev( + b'V', + b'V', + n as i32, + a.as_mut_slice(), + n as i32, + b.as_mut_slice(), + n as i32, + alphar.as_mut_slice(), + alphai.as_mut_slice(), + beta.as_mut_slice(), + vsl.as_mut_slice(), + n as i32, + vsr.as_mut_slice(), + n as i32, + &mut work, + lwork, + &mut info, + ); + lapack_check!(info); + + Some(GE { + alphar, + alphai, + beta, + vsl, + vsr, + }) + } + + /// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues + pub fn eigenvectors(self) -> (OMatrix, D, D>, OMatrix, D, D>) + where + DefaultAllocator: Allocator, D, D> + Allocator, D>, + { + let n = self.vsl.shape().0; + let mut l = self + .vsl + .clone() + .map(|x| Complex::new(x, T::RealField::zero())); + let mut r = self + .vsr + .clone() + .map(|x| Complex::new(x, T::RealField::zero())); + + let eigenvalues = &self.eigenvalues(); + + let mut ll; + let mut c = 0; + while c < n { + if eigenvalues[c].im.abs() > T::RealField::default_epsilon() && c + 1 < n && { + let e_conj = eigenvalues[c].conj(); + let e = eigenvalues[c + 1]; + ((e_conj.re - e.re).abs() < T::RealField::default_epsilon()) + && ((e_conj.im - e.im).abs() < T::RealField::default_epsilon()) + } { + ll = l.column(c + 1).into_owned(); + l.column_mut(c).zip_apply(&ll, |r, i| { + *r = Complex::new(r.re.clone(), i.re); + }); + ll.copy_from(&l.column(c)); + l.column_mut(c + 1).zip_apply(&ll, |r, i| { + *r = i.conj(); + }); + + ll.copy_from(&r.column(c + 1)); + r.column_mut(c).zip_apply(&ll, |r, i| { + *r = Complex::new(r.re, i.re); + }); + ll.copy_from(&r.column(c)); + r.column_mut(c + 1).zip_apply(&ll, |r, i| { + *r = i.conj(); + }); + + c += 2; + } else { + c += 1; + } + } + + (l, r) + } + + /// computes the generalized eigenvalues + #[must_use] + pub fn eigenvalues(&self) -> OVector, D> + where + DefaultAllocator: Allocator, D>, + { + let mut out = Matrix::zeros_generic(self.vsl.shape_generic().0, Const::<1>); + + for i in 0..out.len() { + out[i] = if self.beta[i].clone().abs() < T::RealField::default_epsilon() { + Complex::zero() + } else { + let mut cr = self.alphar[i].clone(); + let mut ci = self.alphai[i].clone(); + let b = self.beta[i].clone(); + + if cr.clone().abs() < T::RealField::default_epsilon() { + cr = T::RealField::zero() + } else { + cr = cr / b.clone() + }; + + if ci.clone().abs() < T::RealField::default_epsilon() { + ci = T::RealField::zero() + } else { + ci = ci / b + }; + + Complex::new(cr, ci) + } + } + + out + } +} + +/* + * + * Lapack functions dispatch. + * + */ +/// Trait implemented by scalars for which Lapack implements the RealField GE decomposition. +pub trait GEScalar: Scalar { + #[allow(missing_docs)] + fn xggev( + jobvsl: u8, + jobvsr: u8, + n: i32, + a: &mut [Self], + lda: i32, + b: &mut [Self], + ldb: i32, + alphar: &mut [Self], + alphai: &mut [Self], + beta: &mut [Self], + vsl: &mut [Self], + ldvsl: i32, + vsr: &mut [Self], + ldvsr: i32, + work: &mut [Self], + lwork: i32, + info: &mut i32, + ); + + #[allow(missing_docs)] + fn xggev_work_size( + jobvsl: u8, + jobvsr: u8, + n: i32, + a: &mut [Self], + lda: i32, + b: &mut [Self], + ldb: i32, + alphar: &mut [Self], + alphai: &mut [Self], + beta: &mut [Self], + vsl: &mut [Self], + ldvsl: i32, + vsr: &mut [Self], + ldvsr: i32, + info: &mut i32, + ) -> i32; +} + +macro_rules! real_eigensystem_scalar_impl ( + ($N: ty, $xggev: path) => ( + impl GEScalar for $N { + #[inline] + fn xggev(jobvsl: u8, + jobvsr: u8, + n: i32, + a: &mut [$N], + lda: i32, + b: &mut [$N], + ldb: i32, + alphar: &mut [$N], + alphai: &mut [$N], + beta : &mut [$N], + vsl: &mut [$N], + ldvsl: i32, + vsr: &mut [$N], + ldvsr: i32, + work: &mut [$N], + lwork: i32, + info: &mut i32) { + unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, info); } + } + + + #[inline] + fn xggev_work_size(jobvsl: u8, + jobvsr: u8, + n: i32, + a: &mut [$N], + lda: i32, + b: &mut [$N], + ldb: i32, + alphar: &mut [$N], + alphai: &mut [$N], + beta : &mut [$N], + vsl: &mut [$N], + ldvsl: i32, + vsr: &mut [$N], + ldvsr: i32, + info: &mut i32) + -> i32 { + let mut work = [ Zero::zero() ]; + let lwork = -1 as i32; + + unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, &mut work, lwork, info); } + ComplexHelper::real_part(work[0]) as i32 + } + } + ) +); + +real_eigensystem_scalar_impl!(f32, lapack::sggev); +real_eigensystem_scalar_impl!(f64, lapack::dggev); diff --git a/nalgebra-lapack/src/lib.rs b/nalgebra-lapack/src/lib.rs index e89ab160..dec4daac 100644 --- a/nalgebra-lapack/src/lib.rs +++ b/nalgebra-lapack/src/lib.rs @@ -87,6 +87,7 @@ mod hessenberg; mod lu; mod qr; mod qz; +mod generalized_eigenvalues; mod schur; mod svd; mod symmetric_eigen; @@ -99,6 +100,7 @@ pub use self::hessenberg::Hessenberg; pub use self::lu::{LUScalar, LU}; pub use self::qr::QR; pub use self::qz::QZ; +pub use self::generalized_eigenvalues::GE; pub use self::schur::Schur; pub use self::svd::SVD; pub use self::symmetric_eigen::SymmetricEigen; diff --git a/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs b/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs new file mode 100644 index 00000000..275691c8 --- /dev/null +++ b/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs @@ -0,0 +1,59 @@ +use na::dimension::{Const, Dynamic}; +use na::{DMatrix, EuclideanNorm, Norm, OMatrix}; +use nl::GE; +use num_complex::Complex; +use simba::scalar::ComplexField; +use std::cmp; + +use crate::proptest::*; +use proptest::{prop_assert, proptest}; + +proptest! { + #[test] + fn ge(n in PROPTEST_MATRIX_DIM) { + let n = cmp::max(1, cmp::min(n, 10)); + let a = DMatrix::::new_random(n, n); + let b = DMatrix::::new_random(n, n); + let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); + let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); + + if a_condition_no.unwrap_or(200000.0) < 10.0 && b_condition_no.unwrap_or(200000.0) < 10.0 { + let a_c =a.clone().map(|x| Complex::new(x, 0.0)); + let b_c = b.clone().map(|x| Complex::new(x, 0.0)); + + let ge = GE::new(a.clone(), b.clone()); + let (vsl,vsr) = ge.clone().eigenvectors(); + let eigenvalues = ge.clone().eigenvalues(); + + for i in 0..n { + let left_eigenvector = &vsl.column(i); + prop_assert!(relative_eq!((left_eigenvector.transpose()*&a_c - left_eigenvector.transpose()*&b_c*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<1>,Dynamic::new(n)) ,epsilon = 1.0e-7)); + + let right_eigenvector = &vsr.column(i); + prop_assert!(relative_eq!((&a_c*right_eigenvector - &b_c*right_eigenvector*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Dynamic::new(n), Const::<1>) ,epsilon = 1.0e-7)); + }; + }; + } + + #[test] + fn ge_static(a in matrix4(), b in matrix4()) { + let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); + let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); + + if a_condition_no.unwrap_or(200000.0) < 10.0 && b_condition_no.unwrap_or(200000.0) < 10.0{ + let ge = GE::new(a.clone(), b.clone()); + let a_c =a.clone().map(|x| Complex::new(x, 0.0)); + let b_c = b.clone().map(|x| Complex::new(x, 0.0)); + let (vsl,vsr) = ge.eigenvectors(); + let eigenvalues = ge.eigenvalues(); + + for i in 0..4 { + let left_eigenvector = &vsl.column(i); + prop_assert!(relative_eq!((left_eigenvector.transpose()*&a_c - left_eigenvector.transpose()*&b_c*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<1>,Const::<4>) ,epsilon = 1.0e-7)); + + let right_eigenvector = &vsr.column(i); + prop_assert!(relative_eq!((&a_c*right_eigenvector - &b_c*right_eigenvector*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<4>, Const::<1>) ,epsilon = 1.0e-7)); + }; + }; + } +} diff --git a/nalgebra-lapack/tests/linalg/mod.rs b/nalgebra-lapack/tests/linalg/mod.rs index a4043469..9fd539c4 100644 --- a/nalgebra-lapack/tests/linalg/mod.rs +++ b/nalgebra-lapack/tests/linalg/mod.rs @@ -2,6 +2,7 @@ mod cholesky; mod lu; mod qr; mod qz; +mod generalized_eigenvalues; mod real_eigensystem; mod schur; mod svd; From 748848fea756d87daa1a2ab9128a28caa6646d1f Mon Sep 17 00:00:00 2001 From: metric-space Date: Mon, 24 Jan 2022 23:58:21 -0500 Subject: [PATCH 08/31] Cleanup of QZ module and added GE's calculation of eigenvalues as a test for QZ's calculation of eigenvalues --- nalgebra-lapack/src/qz.rs | 17 +++++++++++----- nalgebra-lapack/tests/linalg/qz.rs | 31 ++++++++++++------------------ 2 files changed, 24 insertions(+), 24 deletions(-) diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs index e3319452..ea775ea6 100644 --- a/nalgebra-lapack/src/qz.rs +++ b/nalgebra-lapack/src/qz.rs @@ -13,7 +13,11 @@ use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar}; use lapack; -/// Generalized eigendecomposition of a pair of N*N square matrices. +/// QZ decomposition of a pair of N*N square matrices. +/// Retrieves the left and right matrices of Schur Vectors (VSL and VSR) +/// the upper-quasitriangular matrix `S` and upper triangular matrix `T` such that the +/// decomposed input matrix `a` equals `VSL * S * VSL.transpose()` and +/// decomposed input matrix `b` equals `VSL * T * VSL.transpose()`. #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", @@ -59,6 +63,11 @@ where { /// Attempts to compute the QZ decomposition of input square matrices `a` and `b`. /// + /// i.e retrieves the left and right matrices of Schur Vectors (VSL and VSR) + /// the upper-quasitriangular matrix `S` and upper triangular matrix `T` such that the + /// decomposed matrix `a` equals `VSL * S * VSL.transpose()` and + /// decomposed matrix `b` equals `VSL * T * VSL.transpose()`. + /// /// Panics if the method did not converge. pub fn new(a: OMatrix, b: OMatrix) -> Self { Self::try_new(a, b).expect("QZ decomposition: convergence failed.") @@ -154,8 +163,8 @@ where /// Retrieves the left and right matrices of Schur Vectors (VSL and VSR) /// the upper-quasitriangular matrix `S` and upper triangular matrix `T` such that the - /// decomposed matrix `A` equals `VSL * S * VSL.transpose()` and - /// decomposed matrix `B` equals `VSL * T * VSL.transpose()`. + /// decomposed input matrix `a` equals `VSL * S * VSL.transpose()` and + /// decomposed input matrix `b` equals `VSL * T * VSL.transpose()`. pub fn unpack( self, ) -> ( @@ -167,8 +176,6 @@ where (self.vsl, self.s, self.t, self.vsr) } - - /// computes the generalized eigenvalues #[must_use] pub fn eigenvalues(&self) -> OVector, D> diff --git a/nalgebra-lapack/tests/linalg/qz.rs b/nalgebra-lapack/tests/linalg/qz.rs index 84a7b030..d7fe4132 100644 --- a/nalgebra-lapack/tests/linalg/qz.rs +++ b/nalgebra-lapack/tests/linalg/qz.rs @@ -1,7 +1,5 @@ -use na::{zero, DMatrix, SMatrix}; -use nl::QZ; -use num_complex::Complex; -use simba::scalar::ComplexField; +use na::DMatrix; +use nl::{GE, QZ}; use std::cmp; use crate::proptest::*; @@ -16,33 +14,28 @@ proptest! { let qz = QZ::new(a.clone(), b.clone()); let (vsl,s,t,vsr) = qz.clone().unpack(); - //let eigenvalues = qz.eigenvalues(); - //let a_c = a.clone().map(|x| Complex::new(x, zero::())); + let eigenvalues = qz.eigenvalues(); + + let ge = GE::new(a.clone(), b.clone()); + let eigenvalues2 = ge.eigenvalues(); prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a.clone(), epsilon = 1.0e-7)); prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b.clone(), epsilon = 1.0e-7)); - // spotty test that skips over the first eigenvalue which in some cases is extremely large relative to the other ones - // and fails the condition - //for i in 1..n { - // let b_c = b.clone().map(|x| eigenvalues[i]*Complex::new(x,zero::())); - // prop_assert!(relative_eq!((&a_c - &b_c).determinant().modulus(), 0.0, epsilon = 1.0e-6)); - //} + prop_assert!(eigenvalues == eigenvalues2); } #[test] fn qz_static(a in matrix4(), b in matrix4()) { let qz = QZ::new(a.clone(), b.clone()); + let ge = GE::new(a.clone(), b.clone()); let (vsl,s,t,vsr) = qz.unpack(); - //let eigenvalues = qz.eigenvalues(); - //let a_c = a.clone().map(|x| Complex::new(x, zero::())); + let eigenvalues = qz.eigenvalues(); + let eigenvalues2 = ge.eigenvalues(); prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7)); prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7)); - //for i in 0..4 { - // let b_c = b.clone().map(|x| eigenvalues[i]*Complex::new(x,zero::())); - // println!("{}",eigenvalues); - // prop_assert!(relative_eq!((&a_c - &b_c).determinant().modulus(), 0.0, epsilon = 1.0e-4)) - //} + prop_assert!(eigenvalues == eigenvalues2); + } } From ae35d1cf976b9d2779754fe8814f2289e66843b9 Mon Sep 17 00:00:00 2001 From: metric-space Date: Thu, 3 Feb 2022 06:36:10 -0500 Subject: [PATCH 09/31] New code and modified tests for generalized_eigenvalues --- .../src/generalized_eigenvalues.rs | 89 ++++++++++++++++--- .../tests/linalg/generalized_eigenvalues.rs | 63 ++++++++----- 2 files changed, 118 insertions(+), 34 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index 6332f2db..5c273e9b 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -4,7 +4,7 @@ use serde::{Deserialize, Serialize}; use num::Zero; use num_complex::Complex; -use simba::scalar:: RealField; +use simba::scalar::RealField; use crate::ComplexHelper; use na::allocator::Allocator; @@ -14,6 +14,19 @@ use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar}; use lapack; /// Generalized eigenvalues and generalized eigenvectors(left and right) of a pair of N*N square matrices. +/// +/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0 +/// +/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) +/// of (A,B) satisfies +/// +/// A * v(j) = lambda(j) * B * v(j). +/// +/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) +/// of (A,B) satisfies +/// +/// u(j)**H * A = lambda(j) * u(j)**H * B . +/// where u(j)**H is the conjugate-transpose of u(j). #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", @@ -55,11 +68,21 @@ impl GE where DefaultAllocator: Allocator + Allocator, { - /// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's - /// dggev and sggev routines + /// Attempts to compute the generalized eigenvalues, and left and right associated eigenvectors + /// via the raw returns from LAPACK's dggev and sggev routines /// - /// For each e in generalized eigenvalues and the associated eigenvectors e_l and e_r (left andf right) - /// it satisfies e_l*a = e*e_l*b and a*e_r = e*b*e_r + /// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0 + /// + /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) + /// of (A,B) satisfies + /// + /// A * v(j) = lambda(j) * B * v(j). + /// + /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) + /// of (A,B) satisfies + /// + /// u(j)**H * A = lambda(j) * u(j)**H * B . + /// where u(j)**H is the conjugate-transpose of u(j). /// /// Panics if the method did not converge. pub fn new(a: OMatrix, b: OMatrix) -> Self { @@ -69,8 +92,18 @@ where /// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's /// dggev and sggev routines /// - /// For each e in generalized eigenvalues and the associated eigenvectors e_l and e_r (left andf right) - /// it satisfies e_l*a = e*e_l*b and a*e_r = e*b*e_r + /// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0 + /// + /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) + /// of (A,B) satisfies + /// + /// A * v(j) = lambda(j) * B * v(j). + /// + /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) + /// of (A,B) satisfies + /// + /// u(j)**H * A = lambda(j) * u(j)**H * B . + /// where u(j)**H is the conjugate-transpose of u(j). /// /// Returns `None` if the method did not converge. pub fn try_new(mut a: OMatrix, mut b: OMatrix) -> Option { @@ -147,9 +180,24 @@ where } /// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues + /// Outputs two matrices, the first one containing the left eigenvectors of the generalized eigenvalues + /// as columns and the second matrix contains the right eigenvectors of the generalized eigenvalues + /// as columns + /// + /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) + /// of (A,B) satisfies + /// + /// A * v(j) = lambda(j) * B * v(j). + /// + /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) + /// of (A,B) satisfies + /// + /// u(j)**H * A = lambda(j) * u(j)**H * B . + /// where u(j)**H is the conjugate-transpose of u(j). pub fn eigenvectors(self) -> (OMatrix, D, D>, OMatrix, D, D>) where - DefaultAllocator: Allocator, D, D> + Allocator, D>, + DefaultAllocator: + Allocator, D, D> + Allocator, D> + Allocator<(Complex, T), D>, { let n = self.vsl.shape().0; let mut l = self @@ -199,9 +247,10 @@ where (l, r) } - /// computes the generalized eigenvalues + /// computes the generalized eigenvalues i.e values of lambda that satisfy the following equation + /// determinant(A - lambda* B) = 0 #[must_use] - pub fn eigenvalues(&self) -> OVector, D> + fn eigenvalues(&self) -> OVector, D> where DefaultAllocator: Allocator, D>, { @@ -233,6 +282,26 @@ where out } + + /// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alpai), beta) + /// straight from LAPACK + #[must_use] + pub fn raw_eigenvalues(&self) -> OVector<(Complex, T), D> + where + DefaultAllocator: Allocator<(Complex, T), D>, + { + let mut out = Matrix::from_element_generic( + self.vsl.shape_generic().0, + Const::<1>, + (Complex::zero(), T::RealField::zero()), + ); + + for i in 0..out.len() { + out[i] = (Complex::new(self.alphar[i], self.alphai[i]), self.beta[i]) + } + + out + } } /* diff --git a/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs b/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs index 275691c8..8da21b30 100644 --- a/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs +++ b/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs @@ -17,21 +17,29 @@ proptest! { let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); - if a_condition_no.unwrap_or(200000.0) < 10.0 && b_condition_no.unwrap_or(200000.0) < 10.0 { - let a_c =a.clone().map(|x| Complex::new(x, 0.0)); - let b_c = b.clone().map(|x| Complex::new(x, 0.0)); + if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 { + let a_c = a.clone().map(|x| Complex::new(x, 0.0)); + let b_c = b.clone().map(|x| Complex::new(x, 0.0)); - let ge = GE::new(a.clone(), b.clone()); - let (vsl,vsr) = ge.clone().eigenvectors(); - let eigenvalues = ge.clone().eigenvalues(); + let ge = GE::new(a.clone(), b.clone()); + let (vsl,vsr) = ge.clone().eigenvectors(); - for i in 0..n { - let left_eigenvector = &vsl.column(i); - prop_assert!(relative_eq!((left_eigenvector.transpose()*&a_c - left_eigenvector.transpose()*&b_c*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<1>,Dynamic::new(n)) ,epsilon = 1.0e-7)); + for (i,(alpha,beta)) in ge.raw_eigenvalues().iter().enumerate() { + let l_a = a_c.clone() * Complex::new(*beta, 0.0); + let l_b = b_c.clone() * *alpha; - let right_eigenvector = &vsr.column(i); - prop_assert!(relative_eq!((&a_c*right_eigenvector - &b_c*right_eigenvector*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Dynamic::new(n), Const::<1>) ,epsilon = 1.0e-7)); - }; + prop_assert!( + relative_eq!( + ((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()), + OMatrix::zeros_generic(Dynamic::new(n), Const::<1>), + epsilon = 1.0e-7)); + + prop_assert!( + relative_eq!( + (vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()), + OMatrix::zeros_generic(Const::<1>, Dynamic::new(n)), + epsilon = 1.0e-7)) + }; }; } @@ -40,20 +48,27 @@ proptest! { let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); - if a_condition_no.unwrap_or(200000.0) < 10.0 && b_condition_no.unwrap_or(200000.0) < 10.0{ - let ge = GE::new(a.clone(), b.clone()); - let a_c =a.clone().map(|x| Complex::new(x, 0.0)); - let b_c = b.clone().map(|x| Complex::new(x, 0.0)); - let (vsl,vsr) = ge.eigenvectors(); - let eigenvalues = ge.eigenvalues(); + if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 { + let ge = GE::new(a.clone(), b.clone()); + let a_c =a.clone().map(|x| Complex::new(x, 0.0)); + let b_c = b.clone().map(|x| Complex::new(x, 0.0)); + let (vsl,vsr) = ge.eigenvectors(); + let eigenvalues = ge.raw_eigenvalues(); - for i in 0..4 { - let left_eigenvector = &vsl.column(i); - prop_assert!(relative_eq!((left_eigenvector.transpose()*&a_c - left_eigenvector.transpose()*&b_c*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<1>,Const::<4>) ,epsilon = 1.0e-7)); + for (i,(alpha,beta)) in eigenvalues.iter().enumerate() { + let l_a = a_c.clone() * Complex::new(*beta, 0.0); + let l_b = b_c.clone() * *alpha; - let right_eigenvector = &vsr.column(i); - prop_assert!(relative_eq!((&a_c*right_eigenvector - &b_c*right_eigenvector*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<4>, Const::<1>) ,epsilon = 1.0e-7)); - }; + prop_assert!( + relative_eq!( + ((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()), + OMatrix::zeros_generic(Const::<4>, Const::<1>), + epsilon = 1.0e-7)); + prop_assert!( + relative_eq!((vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()), + OMatrix::zeros_generic(Const::<1>, Const::<4>), + epsilon = 1.0e-7)) + } }; } } From 162bb3218de2423648f82b52924a9c37aebaf27b Mon Sep 17 00:00:00 2001 From: metric-space Date: Thu, 3 Feb 2022 06:36:41 -0500 Subject: [PATCH 10/31] New code and modified tests for qz --- nalgebra-lapack/src/qz.rs | 43 +++++++---------------- nalgebra-lapack/tests/linalg/qz.rs | 55 ++++++++++++++++++++++++------ 2 files changed, 57 insertions(+), 41 deletions(-) diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs index ea775ea6..ee0e6208 100644 --- a/nalgebra-lapack/src/qz.rs +++ b/nalgebra-lapack/src/qz.rs @@ -42,11 +42,11 @@ where { alphar: OVector, alphai: OVector, - beta: OVector, - vsl: OMatrix, - s: OMatrix, - vsr: OMatrix, - t: OMatrix, + beta: OVector, + vsl: OMatrix, + s: OMatrix, + vsr: OMatrix, + t: OMatrix, } impl Copy for QZ @@ -176,36 +176,19 @@ where (self.vsl, self.s, self.t, self.vsr) } - /// computes the generalized eigenvalues + /// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alpai), beta) + /// straight from LAPACK #[must_use] - pub fn eigenvalues(&self) -> OVector, D> + pub fn raw_eigenvalues(&self) -> OVector<(Complex, T), D> where - DefaultAllocator: Allocator, D>, + DefaultAllocator: Allocator<(Complex, T), D>, { - let mut out = Matrix::zeros_generic(self.t.shape_generic().0, Const::<1>); + let mut out = Matrix::from_element_generic(self.vsl.shape_generic().0, Const::<1>, (Complex::zero(), T::RealField::zero())); for i in 0..out.len() { - out[i] = if self.beta[i].clone().abs() < T::RealField::default_epsilon() { - Complex::zero() - } else { - let mut cr = self.alphar[i].clone(); - let mut ci = self.alphai[i].clone(); - let b = self.beta[i].clone(); - - if cr.clone().abs() < T::RealField::default_epsilon() { - cr = T::RealField::zero() - } else { - cr = cr / b.clone() - }; - - if ci.clone().abs() < T::RealField::default_epsilon() { - ci = T::RealField::zero() - } else { - ci = ci / b - }; - - Complex::new(cr, ci) - } + out[i] = (Complex::new(self.alphar[i].clone(), + self.alphai[i].clone()), + self.beta[i].clone()) } out diff --git a/nalgebra-lapack/tests/linalg/qz.rs b/nalgebra-lapack/tests/linalg/qz.rs index d7fe4132..6f9cf7f8 100644 --- a/nalgebra-lapack/tests/linalg/qz.rs +++ b/nalgebra-lapack/tests/linalg/qz.rs @@ -1,5 +1,7 @@ -use na::DMatrix; -use nl::{GE, QZ}; +use na::{DMatrix, EuclideanNorm, Norm}; +use nl::QZ; +use num_complex::Complex; +use simba::scalar::ComplexField; use std::cmp; use crate::proptest::*; @@ -14,28 +16,59 @@ proptest! { let qz = QZ::new(a.clone(), b.clone()); let (vsl,s,t,vsr) = qz.clone().unpack(); - let eigenvalues = qz.eigenvalues(); - - let ge = GE::new(a.clone(), b.clone()); - let eigenvalues2 = ge.eigenvalues(); + let eigenvalues = qz.raw_eigenvalues(); prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a.clone(), epsilon = 1.0e-7)); prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b.clone(), epsilon = 1.0e-7)); - prop_assert!(eigenvalues == eigenvalues2); + + let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); + let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); + + if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 { + let a_c = a.clone().map(|x| Complex::new(x, 0.0)); + let b_c = b.clone().map(|x| Complex::new(x, 0.0)); + + + for (alpha,beta) in eigenvalues.iter() { + let l_a = a_c.clone() * Complex::new(*beta, 0.0); + let l_b = b_c.clone() * *alpha; + + prop_assert!( + relative_eq!( + (&l_a - &l_b).determinant().modulus(), + 0.0, + epsilon = 1.0e-7)); + + }; + }; } #[test] fn qz_static(a in matrix4(), b in matrix4()) { let qz = QZ::new(a.clone(), b.clone()); - let ge = GE::new(a.clone(), b.clone()); let (vsl,s,t,vsr) = qz.unpack(); - let eigenvalues = qz.eigenvalues(); - let eigenvalues2 = ge.eigenvalues(); + let eigenvalues = qz.raw_eigenvalues(); prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7)); prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7)); - prop_assert!(eigenvalues == eigenvalues2); + let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); + let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); + if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 { + let a_c =a.clone().map(|x| Complex::new(x, 0.0)); + let b_c = b.clone().map(|x| Complex::new(x, 0.0)); + + for (alpha,beta) in eigenvalues.iter() { + let l_a = a_c.clone() * Complex::new(*beta, 0.0); + let l_b = b_c.clone() * *alpha; + + prop_assert!( + relative_eq!( + (&l_a - &l_b).determinant().modulus(), + 0.0, + epsilon = 1.0e-7)); + } + }; } } From d88337efa95f167a82e9dc4958aceb225647be45 Mon Sep 17 00:00:00 2001 From: metric-space Date: Thu, 3 Feb 2022 06:43:41 -0500 Subject: [PATCH 11/31] Formatting --- nalgebra-lapack/src/qz.rs | 23 ++++++++++++++--------- nalgebra-lapack/tests/linalg/mod.rs | 2 +- 2 files changed, 15 insertions(+), 10 deletions(-) diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs index ee0e6208..a322f8fa 100644 --- a/nalgebra-lapack/src/qz.rs +++ b/nalgebra-lapack/src/qz.rs @@ -42,11 +42,11 @@ where { alphar: OVector, alphai: OVector, - beta: OVector, - vsl: OMatrix, - s: OMatrix, - vsr: OMatrix, - t: OMatrix, + beta: OVector, + vsl: OMatrix, + s: OMatrix, + vsr: OMatrix, + t: OMatrix, } impl Copy for QZ @@ -183,12 +183,17 @@ where where DefaultAllocator: Allocator<(Complex, T), D>, { - let mut out = Matrix::from_element_generic(self.vsl.shape_generic().0, Const::<1>, (Complex::zero(), T::RealField::zero())); + let mut out = Matrix::from_element_generic( + self.vsl.shape_generic().0, + Const::<1>, + (Complex::zero(), T::RealField::zero()), + ); for i in 0..out.len() { - out[i] = (Complex::new(self.alphar[i].clone(), - self.alphai[i].clone()), - self.beta[i].clone()) + out[i] = ( + Complex::new(self.alphar[i].clone(), self.alphai[i].clone()), + self.beta[i].clone(), + ) } out diff --git a/nalgebra-lapack/tests/linalg/mod.rs b/nalgebra-lapack/tests/linalg/mod.rs index 9fd539c4..251bbe7b 100644 --- a/nalgebra-lapack/tests/linalg/mod.rs +++ b/nalgebra-lapack/tests/linalg/mod.rs @@ -1,8 +1,8 @@ mod cholesky; +mod generalized_eigenvalues; mod lu; mod qr; mod qz; -mod generalized_eigenvalues; mod real_eigensystem; mod schur; mod svd; From 55fdd84e1d526e86846cb1a25badd12619833a8d Mon Sep 17 00:00:00 2001 From: metric-space Date: Thu, 3 Feb 2022 06:45:29 -0500 Subject: [PATCH 12/31] Formatting --- nalgebra-lapack/src/lib.rs | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/nalgebra-lapack/src/lib.rs b/nalgebra-lapack/src/lib.rs index dec4daac..1e6c396f 100644 --- a/nalgebra-lapack/src/lib.rs +++ b/nalgebra-lapack/src/lib.rs @@ -83,11 +83,11 @@ mod lapack_check; mod cholesky; mod eigen; +mod generalized_eigenvalues; mod hessenberg; mod lu; mod qr; mod qz; -mod generalized_eigenvalues; mod schur; mod svd; mod symmetric_eigen; @@ -96,11 +96,11 @@ use num_complex::Complex; pub use self::cholesky::{Cholesky, CholeskyScalar}; pub use self::eigen::Eigen; +pub use self::generalized_eigenvalues::GE; pub use self::hessenberg::Hessenberg; pub use self::lu::{LUScalar, LU}; pub use self::qr::QR; pub use self::qz::QZ; -pub use self::generalized_eigenvalues::GE; pub use self::schur::Schur; pub use self::svd::SVD; pub use self::symmetric_eigen::SymmetricEigen; From 4362f0004cee3acbecb3016a4e4004ac95eedcd8 Mon Sep 17 00:00:00 2001 From: metric-space Date: Fri, 4 Feb 2022 00:09:29 -0500 Subject: [PATCH 13/31] Added comment on logic --- nalgebra-lapack/src/generalized_eigenvalues.rs | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index 5c273e9b..4a2a293f 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -194,6 +194,11 @@ where /// /// u(j)**H * A = lambda(j) * u(j)**H * B . /// where u(j)**H is the conjugate-transpose of u(j). + /// + /// What is going on below? + /// If the j-th and (j+1)-th eigenvalues form a complex conjugate pair, + /// then v_l(j) = VSL(:,j)+i*VSL(:,j+1) and v_l(j+1) = VSL(:,j)-i*VSL(:,j+1). + /// and then v_r(j) = VSR(:,j)+i*VSR(:,j+1) and v_r(j+1) = VSR(:,j)-i*VSR(:,j+1). pub fn eigenvectors(self) -> (OMatrix, D, D>, OMatrix, D, D>) where DefaultAllocator: From 4038e6627aead7e0316e1f733a595b69ca5b76c8 Mon Sep 17 00:00:00 2001 From: metric-space Date: Fri, 4 Feb 2022 00:13:01 -0500 Subject: [PATCH 14/31] Correction to keep naming of left and right eigenvector matrices consistent --- nalgebra-lapack/src/generalized_eigenvalues.rs | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index 4a2a293f..c9fb0e57 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -197,8 +197,8 @@ where /// /// What is going on below? /// If the j-th and (j+1)-th eigenvalues form a complex conjugate pair, - /// then v_l(j) = VSL(:,j)+i*VSL(:,j+1) and v_l(j+1) = VSL(:,j)-i*VSL(:,j+1). - /// and then v_r(j) = VSR(:,j)+i*VSR(:,j+1) and v_r(j+1) = VSR(:,j)-i*VSR(:,j+1). + /// then u(j) = VSL(:,j)+i*VSL(:,j+1) and u(j+1) = VSL(:,j)-i*VSL(:,j+1). + /// and then v(j) = VSR(:,j)+i*VSR(:,j+1) and v(j+1) = VSR(:,j)-i*VSR(:,j+1). pub fn eigenvectors(self) -> (OMatrix, D, D>, OMatrix, D, D>) where DefaultAllocator: From d5069f318eb77f411090eda63c5b053f9dafd69d Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 5 Feb 2022 23:44:05 -0500 Subject: [PATCH 15/31] Removed extra memory allocation for buffer (now redundant) --- .../src/generalized_eigenvalues.rs | 26 +++++++++---------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index c9fb0e57..f60f9df2 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -205,10 +205,12 @@ where Allocator, D, D> + Allocator, D> + Allocator<(Complex, T), D>, { let n = self.vsl.shape().0; + let mut l = self .vsl .clone() .map(|x| Complex::new(x, T::RealField::zero())); + let mut r = self .vsr .clone() @@ -216,8 +218,8 @@ where let eigenvalues = &self.eigenvalues(); - let mut ll; let mut c = 0; + while c < n { if eigenvalues[c].im.abs() > T::RealField::default_epsilon() && c + 1 < n && { let e_conj = eigenvalues[c].conj(); @@ -225,22 +227,20 @@ where ((e_conj.re - e.re).abs() < T::RealField::default_epsilon()) && ((e_conj.im - e.im).abs() < T::RealField::default_epsilon()) } { - ll = l.column(c + 1).into_owned(); - l.column_mut(c).zip_apply(&ll, |r, i| { - *r = Complex::new(r.re.clone(), i.re); + // taking care of the left eigenvector matrix + l.column_mut(c).zip_apply(&self.vsl.column(c + 1), |r, i| { + *r = Complex::new(r.re.clone(), i.clone()); }); - ll.copy_from(&l.column(c)); - l.column_mut(c + 1).zip_apply(&ll, |r, i| { - *r = i.conj(); + l.column_mut(c + 1).zip_apply(&self.vsl.column(c), |i, r| { + *i = Complex::new(r.clone(), -i.re.clone()); }); - ll.copy_from(&r.column(c + 1)); - r.column_mut(c).zip_apply(&ll, |r, i| { - *r = Complex::new(r.re, i.re); + // taking care of the right eigenvector matrix + r.column_mut(c).zip_apply(&self.vsr.column(c + 1), |r, i| { + *r = Complex::new(r.re.clone(), i.clone()); }); - ll.copy_from(&r.column(c)); - r.column_mut(c + 1).zip_apply(&ll, |r, i| { - *r = i.conj(); + r.column_mut(c + 1).zip_apply(&self.vsr.column(c), |i, r| { + *i = Complex::new(r.clone(), -i.re.clone()); }); c += 2; From a4de6a83cca2a0562418e5feeaffef4756468503 Mon Sep 17 00:00:00 2001 From: metric-space Date: Wed, 9 Feb 2022 08:48:38 -0500 Subject: [PATCH 16/31] Corrected deserialization term in serialization impls --- nalgebra-lapack/src/generalized_eigenvalues.rs | 2 +- nalgebra-lapack/src/qz.rs | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index f60f9df2..a14420e6 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -40,7 +40,7 @@ use lapack; feature = "serde-serialize", serde( bound(deserialize = "DefaultAllocator: Allocator + Allocator, - OVector: Serialize, + OVector: Deserialize<'de>, OMatrix: Deserialize<'de>") ) )] diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs index a322f8fa..6004d68a 100644 --- a/nalgebra-lapack/src/qz.rs +++ b/nalgebra-lapack/src/qz.rs @@ -31,7 +31,7 @@ use lapack; feature = "serde-serialize", serde( bound(deserialize = "DefaultAllocator: Allocator + Allocator, - OVector: Serialize, + OVector: Deserialize<'de>, OMatrix: Deserialize<'de>") ) )] From 497a4d8bd97b0930919226902949ec0d1cd6a4f7 Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 12 Feb 2022 02:26:46 -0500 Subject: [PATCH 17/31] Correction in eigenvector matrices build up algorithm --- .../src/generalized_eigenvalues.rs | 28 +++++-------------- 1 file changed, 7 insertions(+), 21 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index a14420e6..e9057792 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -220,12 +220,13 @@ where let mut c = 0; + let epsilon = T::RealField::default_epsilon(); + while c < n { - if eigenvalues[c].im.abs() > T::RealField::default_epsilon() && c + 1 < n && { + if eigenvalues[c].im.abs() > epsilon && c + 1 < n && { let e_conj = eigenvalues[c].conj(); let e = eigenvalues[c + 1]; - ((e_conj.re - e.re).abs() < T::RealField::default_epsilon()) - && ((e_conj.im - e.im).abs() < T::RealField::default_epsilon()) + (&e_conj.re).ulps_eq(&e.re, epsilon, 6) && (&e_conj.im).ulps_eq(&e.im, epsilon, 6) } { // taking care of the left eigenvector matrix l.column_mut(c).zip_apply(&self.vsl.column(c + 1), |r, i| { @@ -255,7 +256,7 @@ where /// computes the generalized eigenvalues i.e values of lambda that satisfy the following equation /// determinant(A - lambda* B) = 0 #[must_use] - fn eigenvalues(&self) -> OVector, D> + pub fn eigenvalues(&self) -> OVector, D> where DefaultAllocator: Allocator, D>, { @@ -265,23 +266,8 @@ where out[i] = if self.beta[i].clone().abs() < T::RealField::default_epsilon() { Complex::zero() } else { - let mut cr = self.alphar[i].clone(); - let mut ci = self.alphai[i].clone(); - let b = self.beta[i].clone(); - - if cr.clone().abs() < T::RealField::default_epsilon() { - cr = T::RealField::zero() - } else { - cr = cr / b.clone() - }; - - if ci.clone().abs() < T::RealField::default_epsilon() { - ci = T::RealField::zero() - } else { - ci = ci / b - }; - - Complex::new(cr, ci) + Complex::new(self.alphar[i].clone(), self.alphai[i].clone()) + * (Complex::new(self.beta[i].clone(), T::RealField::zero()).inv()) } } From fb0cb513e729ba0c3f6a3ad0a9c9de4d6a2fdc57 Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 12 Feb 2022 02:27:29 -0500 Subject: [PATCH 18/31] Remove condition number, tests pass without. Add proper test generator for dynamic f64 type square matrices --- .../tests/linalg/generalized_eigenvalues.rs | 98 +++++++++---------- nalgebra-lapack/tests/linalg/qz.rs | 64 +++--------- 2 files changed, 58 insertions(+), 104 deletions(-) diff --git a/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs b/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs index 8da21b30..8b868fc9 100644 --- a/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs +++ b/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs @@ -1,74 +1,70 @@ -use na::dimension::{Const, Dynamic}; -use na::{DMatrix, EuclideanNorm, Norm, OMatrix}; +use na::dimension::Const; +use na::{DMatrix, OMatrix}; use nl::GE; use num_complex::Complex; use simba::scalar::ComplexField; -use std::cmp; use crate::proptest::*; -use proptest::{prop_assert, proptest}; +use proptest::{prop_assert, prop_compose, proptest}; + +prop_compose! { +fn f64_squares() (n in PROPTEST_MATRIX_DIM) (a in matrix(PROPTEST_F64,n,n), b in matrix(PROPTEST_F64,n,n)) -> (DMatrix, DMatrix){ + (a,b) +}} proptest! { #[test] - fn ge(n in PROPTEST_MATRIX_DIM) { - let n = cmp::max(1, cmp::min(n, 10)); - let a = DMatrix::::new_random(n, n); - let b = DMatrix::::new_random(n, n); - let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); - let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); + fn ge((a,b) in f64_squares()){ - if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 { - let a_c = a.clone().map(|x| Complex::new(x, 0.0)); - let b_c = b.clone().map(|x| Complex::new(x, 0.0)); + let a_c = a.clone().map(|x| Complex::new(x, 0.0)); + let b_c = b.clone().map(|x| Complex::new(x, 0.0)); + let n = a.shape_generic().0; - let ge = GE::new(a.clone(), b.clone()); - let (vsl,vsr) = ge.clone().eigenvectors(); + let ge = GE::new(a.clone(), b.clone()); + let (vsl,vsr) = ge.clone().eigenvectors(); - for (i,(alpha,beta)) in ge.raw_eigenvalues().iter().enumerate() { - let l_a = a_c.clone() * Complex::new(*beta, 0.0); - let l_b = b_c.clone() * *alpha; - prop_assert!( - relative_eq!( - ((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()), - OMatrix::zeros_generic(Dynamic::new(n), Const::<1>), - epsilon = 1.0e-7)); + for (i,(alpha,beta)) in ge.raw_eigenvalues().iter().enumerate() { + let l_a = a_c.clone() * Complex::new(*beta, 0.0); + let l_b = b_c.clone() * *alpha; - prop_assert!( - relative_eq!( - (vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()), - OMatrix::zeros_generic(Const::<1>, Dynamic::new(n)), - epsilon = 1.0e-7)) - }; + prop_assert!( + relative_eq!( + ((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()), + OMatrix::zeros_generic(n, Const::<1>), + epsilon = 1.0e-5)); + + prop_assert!( + relative_eq!( + (vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()), + OMatrix::zeros_generic(Const::<1>, n), + epsilon = 1.0e-5)) }; } #[test] fn ge_static(a in matrix4(), b in matrix4()) { - let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); - let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); - if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 { - let ge = GE::new(a.clone(), b.clone()); - let a_c =a.clone().map(|x| Complex::new(x, 0.0)); - let b_c = b.clone().map(|x| Complex::new(x, 0.0)); - let (vsl,vsr) = ge.eigenvectors(); - let eigenvalues = ge.raw_eigenvalues(); + let ge = GE::new(a.clone(), b.clone()); + let a_c =a.clone().map(|x| Complex::new(x, 0.0)); + let b_c = b.clone().map(|x| Complex::new(x, 0.0)); + let (vsl,vsr) = ge.eigenvectors(); + let eigenvalues = ge.raw_eigenvalues(); - for (i,(alpha,beta)) in eigenvalues.iter().enumerate() { - let l_a = a_c.clone() * Complex::new(*beta, 0.0); - let l_b = b_c.clone() * *alpha; + for (i,(alpha,beta)) in eigenvalues.iter().enumerate() { + let l_a = a_c.clone() * Complex::new(*beta, 0.0); + let l_b = b_c.clone() * *alpha; - prop_assert!( - relative_eq!( - ((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()), - OMatrix::zeros_generic(Const::<4>, Const::<1>), - epsilon = 1.0e-7)); - prop_assert!( - relative_eq!((vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()), - OMatrix::zeros_generic(Const::<1>, Const::<4>), - epsilon = 1.0e-7)) - } - }; + prop_assert!( + relative_eq!( + ((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()), + OMatrix::zeros_generic(Const::<4>, Const::<1>), + epsilon = 1.0e-5)); + prop_assert!( + relative_eq!((vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()), + OMatrix::zeros_generic(Const::<1>, Const::<4>), + epsilon = 1.0e-5)) + } } + } diff --git a/nalgebra-lapack/tests/linalg/qz.rs b/nalgebra-lapack/tests/linalg/qz.rs index 6f9cf7f8..f70f1c9e 100644 --- a/nalgebra-lapack/tests/linalg/qz.rs +++ b/nalgebra-lapack/tests/linalg/qz.rs @@ -1,74 +1,32 @@ -use na::{DMatrix, EuclideanNorm, Norm}; +use na::DMatrix; use nl::QZ; -use num_complex::Complex; -use simba::scalar::ComplexField; -use std::cmp; use crate::proptest::*; -use proptest::{prop_assert, proptest}; +use proptest::{prop_assert, prop_compose, proptest}; + +prop_compose! { +fn f64_squares() (n in PROPTEST_MATRIX_DIM) (a in matrix(PROPTEST_F64,n,n), b in matrix(PROPTEST_F64,n,n)) -> (DMatrix, DMatrix){ + (a,b) +}} proptest! { #[test] - fn qz(n in PROPTEST_MATRIX_DIM) { - let n = cmp::max(1, cmp::min(n, 10)); - let a = DMatrix::::new_random(n, n); - let b = DMatrix::::new_random(n, n); + fn qz((a,b) in f64_squares()) { - let qz = QZ::new(a.clone(), b.clone()); + let qz = QZ::new(a.clone(), b.clone()); let (vsl,s,t,vsr) = qz.clone().unpack(); - let eigenvalues = qz.raw_eigenvalues(); - prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a.clone(), epsilon = 1.0e-7)); - prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b.clone(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7)); - let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); - let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); - - if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 { - let a_c = a.clone().map(|x| Complex::new(x, 0.0)); - let b_c = b.clone().map(|x| Complex::new(x, 0.0)); - - - for (alpha,beta) in eigenvalues.iter() { - let l_a = a_c.clone() * Complex::new(*beta, 0.0); - let l_b = b_c.clone() * *alpha; - - prop_assert!( - relative_eq!( - (&l_a - &l_b).determinant().modulus(), - 0.0, - epsilon = 1.0e-7)); - - }; - }; } #[test] fn qz_static(a in matrix4(), b in matrix4()) { let qz = QZ::new(a.clone(), b.clone()); let (vsl,s,t,vsr) = qz.unpack(); - let eigenvalues = qz.raw_eigenvalues(); prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7)); prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7)); - - let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a))); - let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b))); - - if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 { - let a_c =a.clone().map(|x| Complex::new(x, 0.0)); - let b_c = b.clone().map(|x| Complex::new(x, 0.0)); - - for (alpha,beta) in eigenvalues.iter() { - let l_a = a_c.clone() * Complex::new(*beta, 0.0); - let l_b = b_c.clone() * *alpha; - - prop_assert!( - relative_eq!( - (&l_a - &l_b).determinant().modulus(), - 0.0, - epsilon = 1.0e-7)); - } - }; } } From b7fe6b9dc1fbd827c53e4dcf289460e97b91218d Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 12 Feb 2022 02:37:26 -0500 Subject: [PATCH 19/31] Name change --- nalgebra-lapack/src/generalized_eigenvalues.rs | 14 +++++++------- nalgebra-lapack/src/lib.rs | 2 +- .../tests/linalg/generalized_eigenvalues.rs | 6 +++--- 3 files changed, 11 insertions(+), 11 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index e9057792..467d24da 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -45,7 +45,7 @@ use lapack; ) )] #[derive(Clone, Debug)] -pub struct GE +pub struct GeneralizedEigen where DefaultAllocator: Allocator + Allocator, { @@ -56,7 +56,7 @@ where vsr: OMatrix, } -impl Copy for GE +impl Copy for GeneralizedEigen where DefaultAllocator: Allocator + Allocator, OMatrix: Copy, @@ -64,7 +64,7 @@ where { } -impl GE +impl GeneralizedEigen where DefaultAllocator: Allocator + Allocator, { @@ -170,7 +170,7 @@ where ); lapack_check!(info); - Some(GE { + Some(GeneralizedEigen { alphar, alphai, beta, @@ -300,8 +300,8 @@ where * Lapack functions dispatch. * */ -/// Trait implemented by scalars for which Lapack implements the RealField GE decomposition. -pub trait GEScalar: Scalar { +/// Trait implemented by scalars for which Lapack implements the RealField GeneralizedEigen decomposition. +pub trait GeneralizedEigenScalar: Scalar { #[allow(missing_docs)] fn xggev( jobvsl: u8, @@ -345,7 +345,7 @@ pub trait GEScalar: Scalar { macro_rules! real_eigensystem_scalar_impl ( ($N: ty, $xggev: path) => ( - impl GEScalar for $N { + impl GeneralizedEigenScalar for $N { #[inline] fn xggev(jobvsl: u8, jobvsr: u8, diff --git a/nalgebra-lapack/src/lib.rs b/nalgebra-lapack/src/lib.rs index 1e6c396f..ea2e2b53 100644 --- a/nalgebra-lapack/src/lib.rs +++ b/nalgebra-lapack/src/lib.rs @@ -96,7 +96,7 @@ use num_complex::Complex; pub use self::cholesky::{Cholesky, CholeskyScalar}; pub use self::eigen::Eigen; -pub use self::generalized_eigenvalues::GE; +pub use self::generalized_eigenvalues::GeneralizedEigen; pub use self::hessenberg::Hessenberg; pub use self::lu::{LUScalar, LU}; pub use self::qr::QR; diff --git a/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs b/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs index 8b868fc9..ab678bf3 100644 --- a/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs +++ b/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs @@ -1,6 +1,6 @@ use na::dimension::Const; use na::{DMatrix, OMatrix}; -use nl::GE; +use nl::GeneralizedEigen; use num_complex::Complex; use simba::scalar::ComplexField; @@ -20,7 +20,7 @@ proptest! { let b_c = b.clone().map(|x| Complex::new(x, 0.0)); let n = a.shape_generic().0; - let ge = GE::new(a.clone(), b.clone()); + let ge = GeneralizedEigen::new(a.clone(), b.clone()); let (vsl,vsr) = ge.clone().eigenvectors(); @@ -45,7 +45,7 @@ proptest! { #[test] fn ge_static(a in matrix4(), b in matrix4()) { - let ge = GE::new(a.clone(), b.clone()); + let ge = GeneralizedEigen::new(a.clone(), b.clone()); let a_c =a.clone().map(|x| Complex::new(x, 0.0)); let b_c = b.clone().map(|x| Complex::new(x, 0.0)); let (vsl,vsr) = ge.eigenvectors(); From 91b7e05072f2bf61cfa442c533d24f041952df78 Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 12 Feb 2022 02:42:13 -0500 Subject: [PATCH 20/31] Change name of test generator --- nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs | 6 ++++-- nalgebra-lapack/tests/linalg/qz.rs | 6 ++++-- 2 files changed, 8 insertions(+), 4 deletions(-) diff --git a/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs b/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs index ab678bf3..b0d9777c 100644 --- a/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs +++ b/nalgebra-lapack/tests/linalg/generalized_eigenvalues.rs @@ -8,13 +8,15 @@ use crate::proptest::*; use proptest::{prop_assert, prop_compose, proptest}; prop_compose! { -fn f64_squares() (n in PROPTEST_MATRIX_DIM) (a in matrix(PROPTEST_F64,n,n), b in matrix(PROPTEST_F64,n,n)) -> (DMatrix, DMatrix){ + fn f64_dynamic_dim_squares() + (n in PROPTEST_MATRIX_DIM) + (a in matrix(PROPTEST_F64,n,n), b in matrix(PROPTEST_F64,n,n)) -> (DMatrix, DMatrix){ (a,b) }} proptest! { #[test] - fn ge((a,b) in f64_squares()){ + fn ge((a,b) in f64_dynamic_dim_squares()){ let a_c = a.clone().map(|x| Complex::new(x, 0.0)); let b_c = b.clone().map(|x| Complex::new(x, 0.0)); diff --git a/nalgebra-lapack/tests/linalg/qz.rs b/nalgebra-lapack/tests/linalg/qz.rs index f70f1c9e..c7a702ca 100644 --- a/nalgebra-lapack/tests/linalg/qz.rs +++ b/nalgebra-lapack/tests/linalg/qz.rs @@ -5,13 +5,15 @@ use crate::proptest::*; use proptest::{prop_assert, prop_compose, proptest}; prop_compose! { -fn f64_squares() (n in PROPTEST_MATRIX_DIM) (a in matrix(PROPTEST_F64,n,n), b in matrix(PROPTEST_F64,n,n)) -> (DMatrix, DMatrix){ + fn f64_dynamic_dim_squares() + (n in PROPTEST_MATRIX_DIM) + (a in matrix(PROPTEST_F64,n,n), b in matrix(PROPTEST_F64,n,n)) -> (DMatrix, DMatrix){ (a,b) }} proptest! { #[test] - fn qz((a,b) in f64_squares()) { + fn qz((a,b) in f64_dynamic_dim_squares()) { let qz = QZ::new(a.clone(), b.clone()); let (vsl,s,t,vsr) = qz.clone().unpack(); From 7510d48673cbe2a437e3ef95f10cd37559389df4 Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 12 Feb 2022 02:52:18 -0500 Subject: [PATCH 21/31] Doc string corrections --- nalgebra-lapack/src/generalized_eigenvalues.rs | 2 +- nalgebra-lapack/src/qz.rs | 1 + 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index 467d24da..ff58abe4 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -13,7 +13,7 @@ use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar}; use lapack; -/// Generalized eigenvalues and generalized eigenvectors(left and right) of a pair of N*N square matrices. +/// Generalized eigenvalues and generalized eigenvectors (left and right) of a pair of N*N square matrices. /// /// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0 /// diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs index 6004d68a..c38af508 100644 --- a/nalgebra-lapack/src/qz.rs +++ b/nalgebra-lapack/src/qz.rs @@ -14,6 +14,7 @@ use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar}; use lapack; /// QZ decomposition of a pair of N*N square matrices. +/// /// Retrieves the left and right matrices of Schur Vectors (VSL and VSR) /// the upper-quasitriangular matrix `S` and upper triangular matrix `T` such that the /// decomposed input matrix `a` equals `VSL * S * VSL.transpose()` and From e52f11700f70b719fbc0c2df76dac36fde5af410 Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 12 Feb 2022 02:59:04 -0500 Subject: [PATCH 22/31] Change name of copied macro base --- nalgebra-lapack/src/generalized_eigenvalues.rs | 6 +++--- nalgebra-lapack/src/qz.rs | 6 +++--- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index ff58abe4..aede9e07 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -343,7 +343,7 @@ pub trait GeneralizedEigenScalar: Scalar { ) -> i32; } -macro_rules! real_eigensystem_scalar_impl ( +macro_rules! generalized_eigen_scalar_impl ( ($N: ty, $xggev: path) => ( impl GeneralizedEigenScalar for $N { #[inline] @@ -395,5 +395,5 @@ macro_rules! real_eigensystem_scalar_impl ( ) ); -real_eigensystem_scalar_impl!(f32, lapack::sggev); -real_eigensystem_scalar_impl!(f64, lapack::dggev); +generalized_eigen_scalar_impl!(f32, lapack::sggev); +generalized_eigen_scalar_impl!(f64, lapack::dggev); diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs index c38af508..17342a2e 100644 --- a/nalgebra-lapack/src/qz.rs +++ b/nalgebra-lapack/src/qz.rs @@ -257,7 +257,7 @@ pub trait QZScalar: Scalar { ) -> i32; } -macro_rules! real_eigensystem_scalar_impl ( +macro_rules! qz_scalar_impl ( ($N: ty, $xgges: path) => ( impl QZScalar for $N { #[inline] @@ -317,5 +317,5 @@ macro_rules! real_eigensystem_scalar_impl ( ) ); -real_eigensystem_scalar_impl!(f32, lapack::sgges); -real_eigensystem_scalar_impl!(f64, lapack::dgges); +qz_scalar_impl!(f32, lapack::sgges); +qz_scalar_impl!(f64, lapack::dgges); From 5e10ca46cbbf9e6b5c68b26d4b3570669650db7b Mon Sep 17 00:00:00 2001 From: metric-space Date: Tue, 15 Feb 2022 01:45:33 -0500 Subject: [PATCH 23/31] Add another case for when eigenvalues should be mapped to zero. Make method private --- nalgebra-lapack/src/generalized_eigenvalues.rs | 14 +++++++++----- 1 file changed, 9 insertions(+), 5 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index aede9e07..dac8004c 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -253,17 +253,21 @@ where (l, r) } - /// computes the generalized eigenvalues i.e values of lambda that satisfy the following equation - /// determinant(A - lambda* B) = 0 - #[must_use] - pub fn eigenvalues(&self) -> OVector, D> + // only used for internal calculation for assembling eigenvectors based on realness of + // eigenvalues and complex-conjugate checks of subsequent non-real eigenvalues + fn eigenvalues(&self) -> OVector, D> where DefaultAllocator: Allocator, D>, { let mut out = Matrix::zeros_generic(self.vsl.shape_generic().0, Const::<1>); + let epsilon = T::RealField::default_epsilon(); + for i in 0..out.len() { - out[i] = if self.beta[i].clone().abs() < T::RealField::default_epsilon() { + out[i] = if self.beta[i].clone().abs() < epsilon + || (self.alphai[i].clone().abs() < epsilon + && self.alphar[i].clone().abs() < epsilon) + { Complex::zero() } else { Complex::new(self.alphar[i].clone(), self.alphai[i].clone()) From c8a920ff2c0a0b433e04e039502eb9d951de742e Mon Sep 17 00:00:00 2001 From: metric-space Date: Sun, 27 Feb 2022 17:17:31 -0500 Subject: [PATCH 24/31] Minimal post-processing and fix to documentation --- .../src/generalized_eigenvalues.rs | 82 ++++++++----------- 1 file changed, 36 insertions(+), 46 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index dac8004c..132be1b7 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -180,25 +180,44 @@ where } /// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues - /// Outputs two matrices, the first one containing the left eigenvectors of the generalized eigenvalues - /// as columns and the second matrix contains the right eigenvectors of the generalized eigenvalues - /// as columns + /// Outputs two matrices. + /// The first output matix contains the left eigenvectors of the generalized eigenvalues + /// as columns. + /// The second matrix contains the right eigenvectors of the generalized eigenvalues + /// as columns. /// - /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies + /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) + /// of (A,B) satisfies /// - /// A * v(j) = lambda(j) * B * v(j). + /// A * v(j) = lambda(j) * B * v(j) /// - /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies + /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) + /// of (A,B) satisfies /// - /// u(j)**H * A = lambda(j) * u(j)**H * B . - /// where u(j)**H is the conjugate-transpose of u(j). + /// u(j)**H * A = lambda(j) * u(j)**H * B + /// where u(j)**H is the conjugate-transpose of u(j). + /// + /// How the eigenvectors are build up: + /// + /// Since the input entries are all real, the generalized eigenvalues if complex come in pairs + /// as a consequence of + /// The Lapack routine output reflects this by expecting the user to unpack the complex eigenvalues associated + /// eigenvectors from the real matrix output via the following procedure + /// + /// (Note: VL stands for the lapack real matrix output containing the left eigenvectors as columns, + /// VR stands for the lapack real matrix output containing the right eigenvectors as columns) + /// + /// If the j-th and (j+1)-th eigenvalues form a complex conjugate pair, + /// then + /// + /// u(j) = VL(:,j)+i*VL(:,j+1) + /// u(j+1) = VL(:,j)-i*VL(:,j+1) + /// + /// and + /// + /// u(j) = VR(:,j)+i*VR(:,j+1) + /// v(j+1) = VR(:,j)-i*VR(:,j+1). /// - /// What is going on below? - /// If the j-th and (j+1)-th eigenvalues form a complex conjugate pair, - /// then u(j) = VSL(:,j)+i*VSL(:,j+1) and u(j+1) = VSL(:,j)-i*VSL(:,j+1). - /// and then v(j) = VSR(:,j)+i*VSR(:,j+1) and v(j+1) = VSR(:,j)-i*VSR(:,j+1). pub fn eigenvectors(self) -> (OMatrix, D, D>, OMatrix, D, D>) where DefaultAllocator: @@ -216,18 +235,14 @@ where .clone() .map(|x| Complex::new(x, T::RealField::zero())); - let eigenvalues = &self.eigenvalues(); + let eigenvalues = &self.raw_eigenvalues(); let mut c = 0; let epsilon = T::RealField::default_epsilon(); while c < n { - if eigenvalues[c].im.abs() > epsilon && c + 1 < n && { - let e_conj = eigenvalues[c].conj(); - let e = eigenvalues[c + 1]; - (&e_conj.re).ulps_eq(&e.re, epsilon, 6) && (&e_conj.im).ulps_eq(&e.im, epsilon, 6) - } { + if eigenvalues[c].0.im.abs() > epsilon && c + 1 < n { // taking care of the left eigenvector matrix l.column_mut(c).zip_apply(&self.vsl.column(c + 1), |r, i| { *r = Complex::new(r.re.clone(), i.clone()); @@ -253,32 +268,7 @@ where (l, r) } - // only used for internal calculation for assembling eigenvectors based on realness of - // eigenvalues and complex-conjugate checks of subsequent non-real eigenvalues - fn eigenvalues(&self) -> OVector, D> - where - DefaultAllocator: Allocator, D>, - { - let mut out = Matrix::zeros_generic(self.vsl.shape_generic().0, Const::<1>); - - let epsilon = T::RealField::default_epsilon(); - - for i in 0..out.len() { - out[i] = if self.beta[i].clone().abs() < epsilon - || (self.alphai[i].clone().abs() < epsilon - && self.alphar[i].clone().abs() < epsilon) - { - Complex::zero() - } else { - Complex::new(self.alphar[i].clone(), self.alphai[i].clone()) - * (Complex::new(self.beta[i].clone(), T::RealField::zero()).inv()) - } - } - - out - } - - /// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alpai), beta) + /// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alphai), beta) /// straight from LAPACK #[must_use] pub fn raw_eigenvalues(&self) -> OVector<(Complex, T), D> From 3413ab7da82cc4fb7662952c6687817785d80f22 Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 5 Mar 2022 13:52:42 -0500 Subject: [PATCH 25/31] Correct typos, move doc portion to comment and fix borrow to clone --- .../src/generalized_eigenvalues.rs | 53 +++++++++---------- 1 file changed, 26 insertions(+), 27 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index 132be1b7..e365f96a 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -181,7 +181,7 @@ where /// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues /// Outputs two matrices. - /// The first output matix contains the left eigenvectors of the generalized eigenvalues + /// The first output matrix contains the left eigenvectors of the generalized eigenvalues /// as columns. /// The second matrix contains the right eigenvectors of the generalized eigenvalues /// as columns. @@ -196,46 +196,45 @@ where /// /// u(j)**H * A = lambda(j) * u(j)**H * B /// where u(j)**H is the conjugate-transpose of u(j). - /// - /// How the eigenvectors are build up: - /// - /// Since the input entries are all real, the generalized eigenvalues if complex come in pairs - /// as a consequence of - /// The Lapack routine output reflects this by expecting the user to unpack the complex eigenvalues associated - /// eigenvectors from the real matrix output via the following procedure - /// - /// (Note: VL stands for the lapack real matrix output containing the left eigenvectors as columns, - /// VR stands for the lapack real matrix output containing the right eigenvectors as columns) - /// - /// If the j-th and (j+1)-th eigenvalues form a complex conjugate pair, - /// then - /// - /// u(j) = VL(:,j)+i*VL(:,j+1) - /// u(j+1) = VL(:,j)-i*VL(:,j+1) - /// - /// and - /// - /// u(j) = VR(:,j)+i*VR(:,j+1) - /// v(j+1) = VR(:,j)-i*VR(:,j+1). - /// - pub fn eigenvectors(self) -> (OMatrix, D, D>, OMatrix, D, D>) + pub fn eigenvectors(&self) -> (OMatrix, D, D>, OMatrix, D, D>) where DefaultAllocator: Allocator, D, D> + Allocator, D> + Allocator<(Complex, T), D>, { + /* + How the eigenvectors are built up: + + Since the input entries are all real, the generalized eigenvalues if complex come in pairs + as a consequence of the [complex conjugate root thorem](https://en.wikipedia.org/wiki/Complex_conjugate_root_theorem) + The Lapack routine output reflects this by expecting the user to unpack the complex eigenvalues associated + eigenvectors from the real matrix output via the following procedure + + (Note: VL stands for the lapack real matrix output containing the left eigenvectors as columns, + VR stands for the lapack real matrix output containing the right eigenvectors as columns) + + If the j-th and (j+1)-th eigenvalues form a complex conjugate pair, + then + + u(j) = VL(:,j)+i*VL(:,j+1) + u(j+1) = VL(:,j)-i*VL(:,j+1) + + and + + u(j) = VR(:,j)+i*VR(:,j+1) + v(j+1) = VR(:,j)-i*VR(:,j+1). + */ + let n = self.vsl.shape().0; let mut l = self .vsl - .clone() .map(|x| Complex::new(x, T::RealField::zero())); let mut r = self .vsr - .clone() .map(|x| Complex::new(x, T::RealField::zero())); - let eigenvalues = &self.raw_eigenvalues(); + let eigenvalues = self.raw_eigenvalues(); let mut c = 0; From 4413a35a1c36f25108797516e5d8caddf8385abe Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 5 Mar 2022 14:39:22 -0500 Subject: [PATCH 26/31] Fix doc --- nalgebra-lapack/src/generalized_eigenvalues.rs | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index e365f96a..91b4e597 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -206,7 +206,7 @@ where Since the input entries are all real, the generalized eigenvalues if complex come in pairs as a consequence of the [complex conjugate root thorem](https://en.wikipedia.org/wiki/Complex_conjugate_root_theorem) - The Lapack routine output reflects this by expecting the user to unpack the complex eigenvalues associated + The Lapack routine output reflects this by expecting the user to unpack the real and complex eigenvalues associated eigenvectors from the real matrix output via the following procedure (Note: VL stands for the lapack real matrix output containing the left eigenvectors as columns, From adf50a617384ac33202f36df113c03326a1943de Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 5 Mar 2022 14:43:50 -0500 Subject: [PATCH 27/31] Fix formatting --- nalgebra-lapack/src/generalized_eigenvalues.rs | 8 ++------ 1 file changed, 2 insertions(+), 6 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index 91b4e597..95db3e18 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -226,13 +226,9 @@ where let n = self.vsl.shape().0; - let mut l = self - .vsl - .map(|x| Complex::new(x, T::RealField::zero())); + let mut l = self.vsl.map(|x| Complex::new(x, T::RealField::zero())); - let mut r = self - .vsr - .map(|x| Complex::new(x, T::RealField::zero())); + let mut r = self.vsr.map(|x| Complex::new(x, T::RealField::zero())); let eigenvalues = self.raw_eigenvalues(); From 2743eef87ec8bacb5bb2ea43fd92888062698ec7 Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 5 Mar 2022 15:01:22 -0500 Subject: [PATCH 28/31] Add in explicit type of matrix element to module overview docs --- nalgebra-lapack/src/generalized_eigenvalues.rs | 2 +- nalgebra-lapack/src/qz.rs | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index 95db3e18..db758332 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -13,7 +13,7 @@ use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar}; use lapack; -/// Generalized eigenvalues and generalized eigenvectors (left and right) of a pair of N*N square matrices. +/// Generalized eigenvalues and generalized eigenvectors (left and right) of a pair of N*N real square matrices. /// /// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0 /// diff --git a/nalgebra-lapack/src/qz.rs b/nalgebra-lapack/src/qz.rs index 17342a2e..99f3c374 100644 --- a/nalgebra-lapack/src/qz.rs +++ b/nalgebra-lapack/src/qz.rs @@ -62,7 +62,7 @@ impl QZ where DefaultAllocator: Allocator + Allocator, { - /// Attempts to compute the QZ decomposition of input square matrices `a` and `b`. + /// Attempts to compute the QZ decomposition of input real square matrices `a` and `b`. /// /// i.e retrieves the left and right matrices of Schur Vectors (VSL and VSR) /// the upper-quasitriangular matrix `S` and upper triangular matrix `T` such that the From 80a844a3bf7a2fd72eb2272b57f6a451c2fabee7 Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 16 Apr 2022 02:23:38 -0400 Subject: [PATCH 29/31] Update check for zero --- nalgebra-lapack/src/generalized_eigenvalues.rs | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index db758332..69e5e465 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -234,10 +234,8 @@ where let mut c = 0; - let epsilon = T::RealField::default_epsilon(); - while c < n { - if eigenvalues[c].0.im.abs() > epsilon && c + 1 < n { + if eigenvalues[c].0.im.abs() != T::RealField::zero() && c + 1 < n { // taking care of the left eigenvector matrix l.column_mut(c).zip_apply(&self.vsl.column(c + 1), |r, i| { *r = Complex::new(r.re.clone(), i.clone()); From bc31012c08105b3c6a3fb2337851be51d527b349 Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 16 Apr 2022 02:23:51 -0400 Subject: [PATCH 30/31] Add newline --- nalgebra-lapack/src/generalized_eigenvalues.rs | 1 + 1 file changed, 1 insertion(+) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index 69e5e465..f4f3bc49 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -180,6 +180,7 @@ where } /// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues + /// /// Outputs two matrices. /// The first output matrix contains the left eigenvectors of the generalized eigenvalues /// as columns. From ff2d431ed00049fbbd4c3d9cf8d1a3506b35f808 Mon Sep 17 00:00:00 2001 From: metric-space Date: Sat, 16 Apr 2022 02:37:02 -0400 Subject: [PATCH 31/31] Remove repeated docs --- .../src/generalized_eigenvalues.rs | 39 +------------------ 1 file changed, 1 insertion(+), 38 deletions(-) diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index f4f3bc49..5d1e3ace 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -71,19 +71,6 @@ where /// Attempts to compute the generalized eigenvalues, and left and right associated eigenvectors /// via the raw returns from LAPACK's dggev and sggev routines /// - /// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0 - /// - /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies - /// - /// A * v(j) = lambda(j) * B * v(j). - /// - /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies - /// - /// u(j)**H * A = lambda(j) * u(j)**H * B . - /// where u(j)**H is the conjugate-transpose of u(j). - /// /// Panics if the method did not converge. pub fn new(a: OMatrix, b: OMatrix) -> Self { Self::try_new(a, b).expect("Calculation of generalized eigenvalues failed.") @@ -92,19 +79,6 @@ where /// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's /// dggev and sggev routines /// - /// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0 - /// - /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies - /// - /// A * v(j) = lambda(j) * B * v(j). - /// - /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies - /// - /// u(j)**H * A = lambda(j) * u(j)**H * B . - /// where u(j)**H is the conjugate-transpose of u(j). - /// /// Returns `None` if the method did not converge. pub fn try_new(mut a: OMatrix, mut b: OMatrix) -> Option { assert!( @@ -186,17 +160,6 @@ where /// as columns. /// The second matrix contains the right eigenvectors of the generalized eigenvalues /// as columns. - /// - /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies - /// - /// A * v(j) = lambda(j) * B * v(j) - /// - /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies - /// - /// u(j)**H * A = lambda(j) * u(j)**H * B - /// where u(j)**H is the conjugate-transpose of u(j). pub fn eigenvectors(&self) -> (OMatrix, D, D>, OMatrix, D, D>) where DefaultAllocator: @@ -262,7 +225,7 @@ where (l, r) } - /// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alphai), beta) + /// Outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alphai), beta) /// straight from LAPACK #[must_use] pub fn raw_eigenvalues(&self) -> OVector<(Complex, T), D>