diff --git a/nalgebra-lapack/src/eigen.rs b/nalgebra-lapack/src/eigen.rs index 8eab62d8..594cb080 100644 --- a/nalgebra-lapack/src/eigen.rs +++ b/nalgebra-lapack/src/eigen.rs @@ -69,8 +69,8 @@ where "Unable to compute the eigenvalue decomposition of a non-square matrix." ); - let ljob = if left_eigenvectors { b'V' } else { b'T' }; - let rjob = if eigenvectors { b'V' } else { b'T' }; + let ljob = if left_eigenvectors { b'V' } else { b'N' }; + let rjob = if eigenvectors { b'V' } else { b'N' }; let (nrows, ncols) = m.shape_generic(); let n = nrows.value(); @@ -232,22 +232,27 @@ where /// The complex eigenvalues of the given matrix. /// /// Panics if the eigenvalue computation does not converge. - pub fn complex_eigenvalues(mut m: OMatrix) -> OVector, D> + pub fn complex_eigenvalues(mut m: OMatrix, left_eigenvectors: bool, eigenvectors: bool) + -> (OVector, D>, Option>, Option>) where - DefaultAllocator: Allocator, D>, + DefaultAllocator: Allocator, D> + Allocator, D, D>, { assert!( m.is_square(), "Unable to compute the eigenvalue decomposition of a non-square matrix." ); - let nrows = m.shape_generic().0; + let ljob = if left_eigenvectors { b'V' } else { b'N' }; + let rjob = if eigenvectors { b'V' } else { b'N' }; + + let (nrows, ncols) = m.shape_generic(); let n = nrows.value(); let lda = n as i32; // TODO: avoid the initialization? let mut wr = Matrix::zeros_generic(nrows, Const::<1>); + // TODO: Tap into the workspace. let mut wi = Matrix::zeros_generic(nrows, Const::<1>); let mut info = 0; @@ -255,8 +260,8 @@ where let mut placeholder2 = [T::zero()]; let lwork = T::xgeev_work_size( - b'T', - b'T', + ljob, + rjob, n as i32, m.as_mut_slice(), lda, @@ -273,31 +278,127 @@ where let mut work = vec![T::zero(); lwork as usize]; - T::xgeev( - b'T', - b'T', - n as i32, - m.as_mut_slice(), - lda, - wr.as_mut_slice(), - wi.as_mut_slice(), - &mut placeholder1, - 1 as i32, - &mut placeholder2, - 1 as i32, - &mut work, - lwork, - &mut info, - ); - lapack_panic!(info); + match (left_eigenvectors, eigenvectors) { + (true, true) => { + // TODO: avoid the initializations? + let mut vl = Matrix::zeros_generic(nrows, ncols); + let mut vr = Matrix::zeros_generic(nrows, ncols); - let mut res = Matrix::zeros_generic(nrows, Const::<1>); + T::xgeev( + ljob, + rjob, + n as i32, + m.as_mut_slice(), + lda, + wr.as_mut_slice(), + wi.as_mut_slice(), + &mut vl.as_mut_slice(), + n as i32, + &mut vr.as_mut_slice(), + n as i32, + &mut work, + lwork, + &mut info, + ); + lapack_panic!(info); - for i in 0..res.len() { - res[i] = Complex::new(wr[i].clone(), wi[i].clone()); + let mut res = Matrix::zeros_generic(nrows, Const::<1>); + + for i in 0..res.len() { + res[i] = Complex::new(wr[i].clone(), wi[i].clone()); + } + + return (res, Some(vl), Some(vr)) + } + (true, false) => { + // TODO: avoid the initialization? + let mut vl = Matrix::zeros_generic(nrows, ncols); + + T::xgeev( + ljob, + rjob, + n as i32, + m.as_mut_slice(), + lda, + wr.as_mut_slice(), + wi.as_mut_slice(), + &mut vl.as_mut_slice(), + n as i32, + &mut placeholder2, + 1 as i32, + &mut work, + lwork, + &mut info, + ); + lapack_panic!(info); + + let mut res = Matrix::zeros_generic(nrows, Const::<1>); + + for i in 0..res.len() { + res[i] = Complex::new(wr[i].clone(), wi[i].clone()); + } + + return (res, Some(vl), None) + } + (false, true) => { + // TODO: avoid the initialization? + let mut vr = Matrix::zeros_generic(nrows, ncols); + + T::xgeev( + ljob, + rjob, + n as i32, + m.as_mut_slice(), + lda, + wr.as_mut_slice(), + wi.as_mut_slice(), + &mut placeholder1, + 1 as i32, + &mut vr.as_mut_slice(), + n as i32, + &mut work, + lwork, + &mut info, + ); + lapack_panic!(info); + + let mut res = Matrix::zeros_generic(nrows, Const::<1>); + + for i in 0..res.len() { + res[i] = Complex::new(wr[i].clone(), wi[i].clone()); + } + + return (res, None, Some(vr)) + } + (false, false) => { + T::xgeev( + ljob, + rjob, + n as i32, + m.as_mut_slice(), + lda, + wr.as_mut_slice(), + wi.as_mut_slice(), + &mut placeholder1, + 1 as i32, + &mut placeholder2, + 1 as i32, + &mut work, + lwork, + &mut info, + ); + lapack_panic!(info); + + let mut res = Matrix::zeros_generic(nrows, Const::<1>); + + for i in 0..res.len() { + res[i] = Complex::new(wr[i].clone(), wi[i].clone()); + } + + return (res, None, None) + } } - res } /// The determinant of the decomposed matrix.