forked from M-Labs/nalgebra
Merge pull request #1050 from metric-space/polar-decomposition-take-2
Take-2 of polar-decomposition
This commit is contained in:
commit
99ac8c4032
@ -1,8 +1,8 @@
|
|||||||
use crate::storage::Storage;
|
use crate::storage::Storage;
|
||||||
use crate::{
|
use crate::{
|
||||||
Allocator, Bidiagonal, Cholesky, ColPivQR, ComplexField, DefaultAllocator, Dim, DimDiff,
|
Allocator, Bidiagonal, Cholesky, ColPivQR, ComplexField, DefaultAllocator, Dim, DimDiff,
|
||||||
DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, RealField, Schur, SymmetricEigen,
|
DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, OMatrix, RealField, Schur,
|
||||||
SymmetricTridiagonal, LU, QR, SVD, U1, UDU,
|
SymmetricEigen, SymmetricTridiagonal, LU, QR, SVD, U1, UDU,
|
||||||
};
|
};
|
||||||
|
|
||||||
/// # Rectangular matrix decomposition
|
/// # Rectangular matrix decomposition
|
||||||
@ -17,6 +17,7 @@ use crate::{
|
|||||||
/// | LU with partial pivoting | `P⁻¹ * L * U` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` is a permutation matrix. |
|
/// | LU with partial pivoting | `P⁻¹ * L * U` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` is a permutation matrix. |
|
||||||
/// | LU with full pivoting | `P⁻¹ * L * U * Q⁻¹` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` and `Q` are permutation matrices. |
|
/// | LU with full pivoting | `P⁻¹ * L * U * Q⁻¹` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` and `Q` are permutation matrices. |
|
||||||
/// | SVD | `U * Σ * Vᵀ` | `U` and `V` are two orthogonal matrices and `Σ` is a diagonal matrix containing the singular values. |
|
/// | SVD | `U * Σ * Vᵀ` | `U` and `V` are two orthogonal matrices and `Σ` is a diagonal matrix containing the singular values. |
|
||||||
|
/// | Polar (Left Polar) | `P' * U` | `U` is semi-unitary/unitary and `P'` is a positive semi-definite Hermitian Matrix
|
||||||
impl<T: ComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
impl<T: ComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||||
/// Computes the bidiagonalization using householder reflections.
|
/// Computes the bidiagonalization using householder reflections.
|
||||||
pub fn bidiagonalize(self) -> Bidiagonal<T, R, C>
|
pub fn bidiagonalize(self) -> Bidiagonal<T, R, C>
|
||||||
@ -186,6 +187,62 @@ impl<T: ComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
|||||||
{
|
{
|
||||||
SVD::try_new_unordered(self.into_owned(), compute_u, compute_v, eps, max_niter)
|
SVD::try_new_unordered(self.into_owned(), compute_u, compute_v, eps, max_niter)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Computes the Polar Decomposition of a `matrix` (indirectly uses SVD).
|
||||||
|
pub fn polar(self) -> (OMatrix<T, R, R>, OMatrix<T, R, C>)
|
||||||
|
where
|
||||||
|
R: DimMin<C>,
|
||||||
|
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
|
||||||
|
DefaultAllocator: Allocator<T, R, C>
|
||||||
|
+ Allocator<T, DimMinimum<R, C>, R>
|
||||||
|
+ Allocator<T, DimMinimum<R, C>>
|
||||||
|
+ Allocator<T, R, R>
|
||||||
|
+ Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>>
|
||||||
|
+ Allocator<T, C>
|
||||||
|
+ Allocator<T, R>
|
||||||
|
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
|
||||||
|
+ Allocator<T, DimMinimum<R, C>, C>
|
||||||
|
+ Allocator<T, R, DimMinimum<R, C>>
|
||||||
|
+ Allocator<T, DimMinimum<R, C>>
|
||||||
|
+ Allocator<T::RealField, DimMinimum<R, C>>
|
||||||
|
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
|
||||||
|
{
|
||||||
|
SVD::new_unordered(self.into_owned(), true, true)
|
||||||
|
.to_polar()
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Attempts to compute the Polar Decomposition of a `matrix` (indirectly uses SVD).
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `eps` − tolerance used to determine when a value converged to 0 when computing the SVD.
|
||||||
|
/// * `max_niter` − maximum total number of iterations performed by the SVD computation algorithm.
|
||||||
|
pub fn try_polar(
|
||||||
|
self,
|
||||||
|
eps: T::RealField,
|
||||||
|
max_niter: usize,
|
||||||
|
) -> Option<(OMatrix<T, R, R>, OMatrix<T, R, C>)>
|
||||||
|
where
|
||||||
|
R: DimMin<C>,
|
||||||
|
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
|
||||||
|
DefaultAllocator: Allocator<T, R, C>
|
||||||
|
+ Allocator<T, DimMinimum<R, C>, R>
|
||||||
|
+ Allocator<T, DimMinimum<R, C>>
|
||||||
|
+ Allocator<T, R, R>
|
||||||
|
+ Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>>
|
||||||
|
+ Allocator<T, C>
|
||||||
|
+ Allocator<T, R>
|
||||||
|
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
|
||||||
|
+ Allocator<T, DimMinimum<R, C>, C>
|
||||||
|
+ Allocator<T, R, DimMinimum<R, C>>
|
||||||
|
+ Allocator<T, DimMinimum<R, C>>
|
||||||
|
+ Allocator<T::RealField, DimMinimum<R, C>>
|
||||||
|
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
|
||||||
|
{
|
||||||
|
SVD::try_new_unordered(self.into_owned(), true, true, eps, max_niter)
|
||||||
|
.and_then(|svd| svd.to_polar())
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// # Square matrix decomposition
|
/// # Square matrix decomposition
|
||||||
|
@ -641,6 +641,28 @@ where
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// converts SVD results to Polar decomposition form of the original Matrix: `A = P' * U`.
|
||||||
|
///
|
||||||
|
/// The polar decomposition used here is Left Polar Decomposition (or Reverse Polar Decomposition)
|
||||||
|
/// Returns None if the singular vectors of the SVD haven't been calculated
|
||||||
|
pub fn to_polar(&self) -> Option<(OMatrix<T, R, R>, OMatrix<T, R, C>)>
|
||||||
|
where
|
||||||
|
DefaultAllocator: Allocator<T, R, C> //result
|
||||||
|
+ Allocator<T, DimMinimum<R, C>, R> // adjoint
|
||||||
|
+ Allocator<T, DimMinimum<R, C>> // mapped vals
|
||||||
|
+ Allocator<T, R, R> // result
|
||||||
|
+ Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>>, // square matrix
|
||||||
|
{
|
||||||
|
match (&self.u, &self.v_t) {
|
||||||
|
(Some(u), Some(v_t)) => Some((
|
||||||
|
u * OMatrix::from_diagonal(&self.singular_values.map(|e| T::from_real(e)))
|
||||||
|
* u.adjoint(),
|
||||||
|
u * v_t,
|
||||||
|
)),
|
||||||
|
_ => None,
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T: ComplexField, R: DimMin<C>, C: Dim> SVD<T, R, C>
|
impl<T: ComplexField, R: DimMin<C>, C: Dim> SVD<T, R, C>
|
||||||
|
@ -153,6 +153,25 @@ mod proptest_tests {
|
|||||||
prop_assert!(relative_eq!(&m * &sol2, b2, epsilon = 1.0e-6));
|
prop_assert!(relative_eq!(&m * &sol2, b2, epsilon = 1.0e-6));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn svd_polar_decomposition(m in dmatrix_($scalar)) {
|
||||||
|
let svd = m.clone().svd_unordered(true, true);
|
||||||
|
let (p, u) = svd.to_polar().unwrap();
|
||||||
|
|
||||||
|
assert_relative_eq!(m, &p* &u, epsilon = 1.0e-5);
|
||||||
|
// semi-unitary check
|
||||||
|
assert!(u.is_orthogonal(1.0e-5) || u.transpose().is_orthogonal(1.0e-5));
|
||||||
|
// hermitian check
|
||||||
|
assert_relative_eq!(p, p.adjoint(), epsilon = 1.0e-5);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Same thing, but using the method instead of calling the SVD explicitly.
|
||||||
|
*/
|
||||||
|
let (p2, u2) = m.clone().polar();
|
||||||
|
assert_eq!(p, p2);
|
||||||
|
assert_eq!(u, u2);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user