Add sections to the Rotation documentation

This commit is contained in:
Crozet Sébastien 2020-11-21 11:21:47 +01:00
parent 57723ef8fb
commit 99ac7a8e08
8 changed files with 372 additions and 297 deletions

View File

@ -30,10 +30,6 @@ use crate::geometry::{AbstractRotation, Point, Translation};
/// - A translation part of type [`Translation3`](crate::Translation3)
/// - A rotation part which can either be a [`UnitQuaternion`](crate::UnitQuaternion) or a [`Rotation3`](crate::Rotation3).
///
/// The [`Isometry2`](crate::Isometry2), [`Isometry3`](crate::Isometry3), [`IsometryMatrix2`](crate::IsometryMatrix2),
/// and [`IsometryMatrix3`](crate::IsometryMatrix3) type aliases are provided for convenience. All
/// their available methods are listed in this page and cant be grouped as follows.
///
/// Note that instead of using the [`Isometry`](crate::Isometry) type in your code directly, you should use one
/// of its aliases: [`Isometry2`](crate::Isometry2), [`Isometry3`](crate::Isometry3),
/// [`IsometryMatrix2`](crate::IsometryMatrix2), [`IsometryMatrix3`](crate::IsometryMatrix3). Though
@ -47,13 +43,12 @@ use crate::geometry::{AbstractRotation, Point, Translation};
/// * [From the translation and rotation parts <span style="float:right;">`from_parts`…</span>](#from-the-translation-and-rotation-parts)
///
/// # Transformation and composition
/// Note that transforming vectors and points can be done bu multiplication, e.g., `isometry * point`.
/// Note that transforming vectors and points can be done by multiplication, e.g., `isometry * point`.
/// Composing an isometry with another transformation can also be done by multiplication or division.
///
/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
/// * [Inversion and in-place composition <span style="float:right;">`inverse`, `append_rotation_wrt_point_mut`…</span>](#inversion-and-in-place-composition)
/// * [2D interpolation <span style="float:right;">`lerp_slerp`…</span>](#2d-interpolation)
/// * [3D interpolation <span style="float:right;">`lerp_slerp`…</span>](#3d-interpolation)
/// * [Interpolation <span style="float:right;">`lerp_slerp`…</span>](#interpolation)
///
/// # Conversion to a matrix
/// * [Conversion to a matrix <span style="float:right;">`to_matrix`…</span>](#conversion-to-a-matrix)

View File

@ -1,6 +1,6 @@
use crate::{Isometry2, Isometry3, IsometryMatrix2, IsometryMatrix3, RealField, SimdRealField};
/// # 3D interpolation
/// # Interpolation
impl<N: SimdRealField> Isometry3<N> {
/// Interpolates between two isometries using a linear interpolation for the translation part,
/// and a spherical interpolation for the rotation part.
@ -137,7 +137,6 @@ impl<N: SimdRealField> IsometryMatrix3<N> {
}
}
/// # 2D interpolation
impl<N: SimdRealField> Isometry2<N> {
/// Interpolates between two isometries using a linear interpolation for the translation part,
/// and a spherical interpolation for the rotation part.

View File

@ -21,6 +21,7 @@ mod rotation_alga;
mod rotation_alias;
mod rotation_construction;
mod rotation_conversion;
mod rotation_interpolation;
mod rotation_ops;
mod rotation_simba; // TODO: implement Rotation methods.
mod rotation_specialization;
@ -58,6 +59,7 @@ mod isometry_alga;
mod isometry_alias;
mod isometry_construction;
mod isometry_conversion;
mod isometry_interpolation;
mod isometry_ops;
mod isometry_simba;
@ -83,7 +85,6 @@ mod transform_simba;
mod reflection;
mod isometry_interpolation;
mod orthographic;
mod perspective;

View File

@ -23,6 +23,36 @@ use crate::base::{DefaultAllocator, MatrixN, Scalar, Unit, VectorN};
use crate::geometry::Point;
/// A rotation matrix.
///
/// This is also known as an element of a Special Orthogonal (SO) group.
/// The `Rotation` type can either represent a 2D or 3D rotation, represented as a matrix.
/// For a rotation based on quaternions, see [`UnitQuaternion`](crate::UnitQuaternion) instead.
///
/// Note that instead of using the [`Rotation`](crate::Rotation) type in your code directly, you should use one
/// of its aliases: [`Rotation2`](crate::Rotation2), or [`Rotation3`](crate::Rotation3). Though
/// keep in mind that all the documentation of all the methods of these aliases will also appears on
/// this page.
///
/// # Construction
/// * [Identity <span style="float:right;">`identity`</span>](#identity)
/// * [From a 2D rotation angle <span style="float:right;">`new`…</span>](#construction-from-a-2d-rotation-angle)
/// * [From an existing 2D matrix or rotations <span style="float:right;">`from_matrix`, `rotation_between`, `powf`…</span>](#construction-from-an-existing-2d-matrix-or-rotations)
/// * [From a 3D axis and/or angles <span style="float:right;">`new`, `from_euler_angles`, `from_axis_angle`…</span>](#construction-from-a-3d-axis-andor-angles)
/// * [From a 3D eye position and target point <span style="float:right;">`look_at`, `look_at_lh`, `rotation_between`…</span>](#construction-from-a-3d-eye-position-and-target-point)
/// * [From an existing 3D matrix or rotations <span style="float:right;">`from_matrix`, `rotation_between`, `powf`…</span>](#construction-from-an-existing-3d-matrix-or-rotations)
///
/// # Transformation and composition
/// Note that transforming vectors and points can be done by multiplication, e.g., `rotation * point`.
/// Composing an rotation with another transformation can also be done by multiplication or division.
/// * [3D axis and angle extraction <span style="float:right;">`angle`, `euler_angles`, `scaled_axis`, `angle_to`…</span>](#3d-axis-and-angle-extraction)
/// * [2D angle extraction <span style="float:right;">`angle`, `angle_to`…</span>](#2d-angle-extraction)
/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
/// * [Transposition and inversion <span style="float:right;">`transpose`, `inverse`…</span>](#transposition-and-inversion)
/// * [Interpolation <span style="float:right;">`slerp`…</span>](#interpolation)
///
/// # Conversion to a matrix
/// * [Conversion to a matrix <span style="float:right;">`matrix`, `to_homogeneous`…</span>](#conversion-to-a-matrix)
///
#[repr(C)]
#[derive(Debug)]
pub struct Rotation<N: Scalar, D: DimName>
@ -111,6 +141,44 @@ where
}
}
impl<N: Scalar, D: DimName> Rotation<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
{
/// Creates a new rotation from the given square matrix.
///
/// The matrix squareness is checked but not its orthonormality.
///
/// # Example
/// ```
/// # use nalgebra::{Rotation2, Rotation3, Matrix2, Matrix3};
/// # use std::f32;
/// let mat = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
/// let rot = Rotation3::from_matrix_unchecked(mat);
///
/// assert_eq!(*rot.matrix(), mat);
///
///
/// let mat = Matrix2::new(0.8660254, -0.5,
/// 0.5, 0.8660254);
/// let rot = Rotation2::from_matrix_unchecked(mat);
///
/// assert_eq!(*rot.matrix(), mat);
/// ```
#[inline]
pub fn from_matrix_unchecked(matrix: MatrixN<N, D>) -> Self {
assert!(
matrix.is_square(),
"Unable to create a rotation from a non-square matrix."
);
Self { matrix }
}
}
/// # Conversion to a matrix
impl<N: Scalar, D: DimName> Rotation<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
@ -225,39 +293,13 @@ where
res
}
/// Creates a new rotation from the given square matrix.
///
/// The matrix squareness is checked but not its orthonormality.
///
/// # Example
/// ```
/// # use nalgebra::{Rotation2, Rotation3, Matrix2, Matrix3};
/// # use std::f32;
/// let mat = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
/// let rot = Rotation3::from_matrix_unchecked(mat);
///
/// assert_eq!(*rot.matrix(), mat);
///
///
/// let mat = Matrix2::new(0.8660254, -0.5,
/// 0.5, 0.8660254);
/// let rot = Rotation2::from_matrix_unchecked(mat);
///
/// assert_eq!(*rot.matrix(), mat);
/// ```
#[inline]
pub fn from_matrix_unchecked(matrix: MatrixN<N, D>) -> Self {
assert!(
matrix.is_square(),
"Unable to create a rotation from a non-square matrix."
);
Self { matrix }
}
/// # Transposition and inversion
impl<N: Scalar, D: DimName> Rotation<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
{
/// Transposes `self`.
///
/// Same as `.inverse()` because the inverse of a rotation matrix is its transform.
@ -361,6 +403,7 @@ where
}
}
/// # Transformation of a vector or a point
impl<N: SimdRealField, D: DimName> Rotation<N, D>
where
N::Element: SimdRealField,

View File

@ -3,7 +3,11 @@ use crate::base::dimension::{U2, U3};
use crate::geometry::Rotation;
/// A 2-dimensional rotation matrix.
///
/// **Because this is an alias, not all its methods are listed here. See the [`Rotation`](crate::Rotation) type too.**
pub type Rotation2<N> = Rotation<N, U2>;
/// A 3-dimensional rotation matrix.
///
/// **Because this is an alias, not all its methods are listed here. See the [`Rotation`](crate::Rotation) type too.**
pub type Rotation3<N> = Rotation<N, U3>;

View File

@ -8,6 +8,7 @@ use crate::base::{DefaultAllocator, MatrixN, Scalar};
use crate::geometry::Rotation;
/// # Identity
impl<N, D: DimName> Rotation<N, D>
where
N: Scalar + Zero + One,

View File

@ -0,0 +1,78 @@
use crate::{RealField, Rotation2, Rotation3, SimdRealField, UnitComplex, UnitQuaternion};
/// # Interpolation
impl<N: SimdRealField> Rotation2<N> {
/// Spherical linear interpolation between two rotation matrices.
///
/// # Examples:
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::geometry::Rotation2;
///
/// let rot1 = Rotation2::new(std::f32::consts::FRAC_PI_4);
/// let rot2 = Rotation2::new(-std::f32::consts::PI);
///
/// let rot = rot1.slerp(&rot2, 1.0 / 3.0);
///
/// assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
/// ```
#[inline]
pub fn slerp(&self, other: &Self, t: N) -> Self
where
N::Element: SimdRealField,
{
let c1 = UnitComplex::from(*self);
let c2 = UnitComplex::from(*other);
c1.slerp(&c2, t).into()
}
}
impl<N: SimdRealField> Rotation3<N> {
/// Spherical linear interpolation between two rotation matrices.
///
/// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
/// is not well-defined). Use `.try_slerp` instead to avoid the panic.
///
/// # Examples:
///
/// ```
/// # use nalgebra::geometry::Rotation3;
///
/// let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
/// let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
///
/// let q = q1.slerp(&q2, 1.0 / 3.0);
///
/// assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
/// ```
#[inline]
pub fn slerp(&self, other: &Self, t: N) -> Self
where
N: RealField,
{
let q1 = UnitQuaternion::from(*self);
let q2 = UnitQuaternion::from(*other);
q1.slerp(&q2, t).into()
}
/// Computes the spherical linear interpolation between two rotation matrices or returns `None`
/// if both rotations are approximately 180 degrees apart (in which case the interpolation is
/// not well-defined).
///
/// # Arguments
/// * `self`: the first rotation to interpolate from.
/// * `other`: the second rotation to interpolate toward.
/// * `t`: the interpolation parameter. Should be between 0 and 1.
/// * `epsilon`: the value below which the sinus of the angle separating both rotations
/// must be to return `None`.
#[inline]
pub fn try_slerp(&self, other: &Self, t: N, epsilon: N) -> Option<Self>
where
N: RealField,
{
let q1 = Rotation3::from(*self);
let q2 = Rotation3::from(*other);
q1.try_slerp(&q2, t, epsilon).map(|q| q.into())
}
}

View File

@ -21,6 +21,7 @@ use crate::geometry::{Rotation2, Rotation3, UnitComplex, UnitQuaternion};
* 2D Rotation matrix.
*
*/
/// # Construction from a 2D rotation angle
impl<N: SimdRealField> Rotation2<N> {
/// Builds a 2 dimensional rotation matrix from an angle in radian.
///
@ -48,7 +49,10 @@ impl<N: SimdRealField> Rotation2<N> {
pub fn from_scaled_axis<SB: Storage<N, U1>>(axisangle: Vector<N, U1, SB>) -> Self {
Self::new(axisangle[0])
}
}
/// # Construction from an existing 2D matrix or rotations
impl<N: SimdRealField> Rotation2<N> {
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
///
/// This is an iterative method. See `.from_matrix_eps` to provide mover
@ -150,35 +154,6 @@ impl<N: SimdRealField> Rotation2<N> {
crate::convert(UnitComplex::scaled_rotation_between(a, b, s).to_rotation_matrix())
}
/// The rotation angle.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Rotation2;
/// let rot = Rotation2::new(1.78);
/// assert_relative_eq!(rot.angle(), 1.78);
/// ```
#[inline]
pub fn angle(&self) -> N {
self.matrix()[(1, 0)].simd_atan2(self.matrix()[(0, 0)])
}
/// The rotation angle needed to make `self` and `other` coincide.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Rotation2;
/// let rot1 = Rotation2::new(0.1);
/// let rot2 = Rotation2::new(1.7);
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
/// ```
#[inline]
pub fn angle_to(&self, other: &Self) -> N {
self.rotation_to(other).angle()
}
/// The rotation matrix needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
@ -227,6 +202,38 @@ impl<N: SimdRealField> Rotation2<N> {
pub fn powf(&self, n: N) -> Self {
Self::new(self.angle() * n)
}
}
/// # 2D angle extraction
impl<N: SimdRealField> Rotation2<N> {
/// The rotation angle.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Rotation2;
/// let rot = Rotation2::new(1.78);
/// assert_relative_eq!(rot.angle(), 1.78);
/// ```
#[inline]
pub fn angle(&self) -> N {
self.matrix()[(1, 0)].simd_atan2(self.matrix()[(0, 0)])
}
/// The rotation angle needed to make `self` and `other` coincide.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Rotation2;
/// let rot1 = Rotation2::new(0.1);
/// let rot2 = Rotation2::new(1.7);
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
/// ```
#[inline]
pub fn angle_to(&self, other: &Self) -> N {
self.rotation_to(other).angle()
}
/// The rotation angle returned as a 1-dimensional vector.
///
@ -236,31 +243,6 @@ impl<N: SimdRealField> Rotation2<N> {
pub fn scaled_axis(&self) -> VectorN<N, U1> {
Vector1::new(self.angle())
}
/// Spherical linear interpolation between two rotation matrices.
///
/// # Examples:
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::geometry::Rotation2;
///
/// let rot1 = Rotation2::new(std::f32::consts::FRAC_PI_4);
/// let rot2 = Rotation2::new(-std::f32::consts::PI);
///
/// let rot = rot1.slerp(&rot2, 1.0 / 3.0);
///
/// assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
/// ```
#[inline]
pub fn slerp(&self, other: &Self, t: N) -> Self
where
N::Element: SimdRealField,
{
let c1 = UnitComplex::from(*self);
let c2 = UnitComplex::from(*other);
c1.slerp(&c2, t).into()
}
}
impl<N: SimdRealField> Distribution<Rotation2<N>> for Standard
@ -292,6 +274,7 @@ where
* 3D Rotation matrix.
*
*/
/// # Construction from a 3D axis and/or angles
impl<N: SimdRealField> Rotation3<N>
where
N::Element: SimdRealField,
@ -325,60 +308,6 @@ where
Self::from_axis_angle(&axis, angle)
}
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
///
/// This is an iterative method. See `.from_matrix_eps` to provide mover
/// convergence parameters and starting solution.
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
pub fn from_matrix(m: &Matrix3<N>) -> Self
where
N: RealField,
{
Self::from_matrix_eps(m, N::default_epsilon(), 0, Self::identity())
}
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
///
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
///
/// # Parameters
///
/// * `m`: the matrix from which the rotational part is to be extracted.
/// * `eps`: the angular errors tolerated between the current rotation and the optimal one.
/// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`.
/// * `guess`: a guess of the solution. Convergence will be significantly faster if an initial solution close
/// to the actual solution is provided. Can be set to `Rotation3::identity()` if no other
/// guesses come to mind.
pub fn from_matrix_eps(m: &Matrix3<N>, eps: N, mut max_iter: usize, guess: Self) -> Self
where
N: RealField,
{
if max_iter == 0 {
max_iter = usize::max_value();
}
let mut rot = guess.into_inner();
for _ in 0..max_iter {
let axis = rot.column(0).cross(&m.column(0))
+ rot.column(1).cross(&m.column(1))
+ rot.column(2).cross(&m.column(2));
let denom = rot.column(0).dot(&m.column(0))
+ rot.column(1).dot(&m.column(1))
+ rot.column(2).dot(&m.column(2));
let axisangle = axis / (denom.abs() + N::default_epsilon());
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, eps) {
rot = Rotation3::from_axis_angle(&axis, angle) * rot;
} else {
break;
}
}
Self::from_matrix_unchecked(rot)
}
/// Builds a 3D rotation matrix from an axis scaled by the rotation angle.
///
/// This is the same as `Self::new(axisangle)`.
@ -488,67 +417,13 @@ where
cp * cr,
))
}
}
/// Creates Euler angles from a rotation.
///
/// The angles are produced in the form (roll, pitch, yaw).
#[deprecated(note = "This is renamed to use `.euler_angles()`.")]
pub fn to_euler_angles(&self) -> (N, N, N)
/// # Construction from a 3D eye position and target point
impl<N: SimdRealField> Rotation3<N>
where
N: RealField,
N::Element: SimdRealField,
{
self.euler_angles()
}
/// Euler angles corresponding to this rotation from a rotation.
///
/// The angles are produced in the form (roll, pitch, yaw).
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Rotation3;
/// let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3);
/// let euler = rot.euler_angles();
/// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
/// ```
pub fn euler_angles(&self) -> (N, N, N)
where
N: RealField,
{
// Implementation informed by "Computing Euler angles from a rotation matrix", by Gregory G. Slabaugh
// https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.371.6578
if self[(2, 0)].abs() < N::one() {
let yaw = -self[(2, 0)].asin();
let roll = (self[(2, 1)] / yaw.cos()).atan2(self[(2, 2)] / yaw.cos());
let pitch = (self[(1, 0)] / yaw.cos()).atan2(self[(0, 0)] / yaw.cos());
(roll, yaw, pitch)
} else if self[(2, 0)] <= -N::one() {
(self[(0, 1)].atan2(self[(0, 2)]), N::frac_pi_2(), N::zero())
} else {
(
-self[(0, 1)].atan2(-self[(0, 2)]),
-N::frac_pi_2(),
N::zero(),
)
}
}
/// Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated
/// computations might cause the matrix from progressively not being orthonormal anymore.
#[inline]
pub fn renormalize(&mut self)
where
N: RealField,
{
let mut c = UnitQuaternion::from(*self);
let _ = c.renormalize();
*self = Self::from_matrix_eps(self.matrix(), N::default_epsilon(), 0, c.into())
}
/// Creates a rotation that corresponds to the local frame of an observer standing at the
/// origin and looking toward `dir`.
///
@ -656,7 +531,13 @@ where
{
Self::face_towards(dir, up).inverse()
}
}
/// # Construction from an existing 3D matrix or rotations
impl<N: SimdRealField> Rotation3<N>
where
N::Element: SimdRealField,
{
/// The rotation matrix required to align `a` and `b` but with its angle.
///
/// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
@ -727,6 +608,123 @@ where
Some(Self::identity())
}
/// The rotation matrix needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation3, Vector3};
/// let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0);
/// let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1);
/// let rot_to = rot1.rotation_to(&rot2);
/// assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn rotation_to(&self, other: &Self) -> Self {
other * self.inverse()
}
/// Raise the quaternion to a given floating power, i.e., returns the rotation with the same
/// axis as `self` and an angle equal to `self.angle()` multiplied by `n`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation3, Vector3, Unit};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let angle = 1.2;
/// let rot = Rotation3::from_axis_angle(&axis, angle);
/// let pow = rot.powf(2.0);
/// assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);
/// assert_eq!(pow.angle(), 2.4);
/// ```
#[inline]
pub fn powf(&self, n: N) -> Self
where
N: RealField,
{
if let Some(axis) = self.axis() {
Self::from_axis_angle(&axis, self.angle() * n)
} else if self.matrix()[(0, 0)] < N::zero() {
let minus_id = MatrixN::<N, U3>::from_diagonal_element(-N::one());
Self::from_matrix_unchecked(minus_id)
} else {
Self::identity()
}
}
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
///
/// This is an iterative method. See `.from_matrix_eps` to provide mover
/// convergence parameters and starting solution.
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
pub fn from_matrix(m: &Matrix3<N>) -> Self
where
N: RealField,
{
Self::from_matrix_eps(m, N::default_epsilon(), 0, Self::identity())
}
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
///
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
///
/// # Parameters
///
/// * `m`: the matrix from which the rotational part is to be extracted.
/// * `eps`: the angular errors tolerated between the current rotation and the optimal one.
/// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`.
/// * `guess`: a guess of the solution. Convergence will be significantly faster if an initial solution close
/// to the actual solution is provided. Can be set to `Rotation3::identity()` if no other
/// guesses come to mind.
pub fn from_matrix_eps(m: &Matrix3<N>, eps: N, mut max_iter: usize, guess: Self) -> Self
where
N: RealField,
{
if max_iter == 0 {
max_iter = usize::max_value();
}
let mut rot = guess.into_inner();
for _ in 0..max_iter {
let axis = rot.column(0).cross(&m.column(0))
+ rot.column(1).cross(&m.column(1))
+ rot.column(2).cross(&m.column(2));
let denom = rot.column(0).dot(&m.column(0))
+ rot.column(1).dot(&m.column(1))
+ rot.column(2).dot(&m.column(2));
let axisangle = axis / (denom.abs() + N::default_epsilon());
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, eps) {
rot = Rotation3::from_axis_angle(&axis, angle) * rot;
} else {
break;
}
}
Self::from_matrix_unchecked(rot)
}
/// Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated
/// computations might cause the matrix from progressively not being orthonormal anymore.
#[inline]
pub fn renormalize(&mut self)
where
N: RealField,
{
let mut c = UnitQuaternion::from(*self);
let _ = c.renormalize();
*self = Self::from_matrix_eps(self.matrix(), N::default_epsilon(), 0, c.into())
}
}
/// # 3D axis and angle extraction
impl<N: SimdRealField> Rotation3<N> {
/// The rotation angle in [0; pi].
///
/// # Example
@ -837,103 +835,59 @@ where
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn angle_to(&self, other: &Self) -> N {
pub fn angle_to(&self, other: &Self) -> N
where
N::Element: SimdRealField,
{
self.rotation_to(other).angle()
}
/// The rotation matrix needed to make `self` and `other` coincide.
/// Creates Euler angles from a rotation.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation3, Vector3};
/// let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0);
/// let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1);
/// let rot_to = rot1.rotation_to(&rot2);
/// assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn rotation_to(&self, other: &Self) -> Self {
other * self.inverse()
}
/// Raise the quaternion to a given floating power, i.e., returns the rotation with the same
/// axis as `self` and an angle equal to `self.angle()` multiplied by `n`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation3, Vector3, Unit};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let angle = 1.2;
/// let rot = Rotation3::from_axis_angle(&axis, angle);
/// let pow = rot.powf(2.0);
/// assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);
/// assert_eq!(pow.angle(), 2.4);
/// ```
#[inline]
pub fn powf(&self, n: N) -> Self
/// The angles are produced in the form (roll, pitch, yaw).
#[deprecated(note = "This is renamed to use `.euler_angles()`.")]
pub fn to_euler_angles(&self) -> (N, N, N)
where
N: RealField,
{
if let Some(axis) = self.axis() {
Self::from_axis_angle(&axis, self.angle() * n)
} else if self.matrix()[(0, 0)] < N::zero() {
let minus_id = MatrixN::<N, U3>::from_diagonal_element(-N::one());
Self::from_matrix_unchecked(minus_id)
self.euler_angles()
}
/// Euler angles corresponding to this rotation from a rotation.
///
/// The angles are produced in the form (roll, pitch, yaw).
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Rotation3;
/// let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3);
/// let euler = rot.euler_angles();
/// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
/// ```
pub fn euler_angles(&self) -> (N, N, N)
where
N: RealField,
{
// Implementation informed by "Computing Euler angles from a rotation matrix", by Gregory G. Slabaugh
// https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.371.6578
if self[(2, 0)].abs() < N::one() {
let yaw = -self[(2, 0)].asin();
let roll = (self[(2, 1)] / yaw.cos()).atan2(self[(2, 2)] / yaw.cos());
let pitch = (self[(1, 0)] / yaw.cos()).atan2(self[(0, 0)] / yaw.cos());
(roll, yaw, pitch)
} else if self[(2, 0)] <= -N::one() {
(self[(0, 1)].atan2(self[(0, 2)]), N::frac_pi_2(), N::zero())
} else {
Self::identity()
(
-self[(0, 1)].atan2(-self[(0, 2)]),
-N::frac_pi_2(),
N::zero(),
)
}
}
/// Spherical linear interpolation between two rotation matrices.
///
/// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
/// is not well-defined). Use `.try_slerp` instead to avoid the panic.
///
/// # Examples:
///
/// ```
/// # use nalgebra::geometry::Rotation3;
///
/// let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
/// let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
///
/// let q = q1.slerp(&q2, 1.0 / 3.0);
///
/// assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
/// ```
#[inline]
pub fn slerp(&self, other: &Self, t: N) -> Self
where
N: RealField,
{
let q1 = UnitQuaternion::from(*self);
let q2 = UnitQuaternion::from(*other);
q1.slerp(&q2, t).into()
}
/// Computes the spherical linear interpolation between two rotation matrices or returns `None`
/// if both rotations are approximately 180 degrees apart (in which case the interpolation is
/// not well-defined).
///
/// # Arguments
/// * `self`: the first rotation to interpolate from.
/// * `other`: the second rotation to interpolate toward.
/// * `t`: the interpolation parameter. Should be between 0 and 1.
/// * `epsilon`: the value below which the sinus of the angle separating both rotations
/// must be to return `None`.
#[inline]
pub fn try_slerp(&self, other: &Self, t: N, epsilon: N) -> Option<Self>
where
N: RealField,
{
let q1 = Rotation3::from(*self);
let q2 = Rotation3::from(*other);
q1.try_slerp(&q2, t, epsilon).map(|q| q.into())
}
}
impl<N: SimdRealField> Distribution<Rotation3<N>> for Standard