forked from M-Labs/nalgebra
Adapted to new vec iterator api.
This commit is contained in:
parent
ec87e81426
commit
965601d4e0
@ -1,7 +1,8 @@
|
|||||||
use std::uint::iterate;
|
use std::uint::iterate;
|
||||||
use std::num::{One, Zero};
|
use std::num::{One, Zero};
|
||||||
use std::vec::{from_elem, swap, all, all2, len};
|
use std::vec::{from_elem, swap};
|
||||||
use std::cmp::ApproxEq;
|
use std::cmp::ApproxEq;
|
||||||
|
use std::iterator::IteratorUtil;
|
||||||
use traits::inv::Inv;
|
use traits::inv::Inv;
|
||||||
use traits::division_ring::DivisionRing;
|
use traits::division_ring::DivisionRing;
|
||||||
use traits::transpose::Transpose;
|
use traits::transpose::Transpose;
|
||||||
@ -19,7 +20,7 @@ pub fn zero_mat_with_dim<T: Zero + Copy>(dim: uint) -> DMat<T>
|
|||||||
{ DMat { dim: dim, mij: from_elem(dim * dim, Zero::zero()) } }
|
{ DMat { dim: dim, mij: from_elem(dim * dim, Zero::zero()) } }
|
||||||
|
|
||||||
pub fn is_zero_mat<T: Zero>(mat: &DMat<T>) -> bool
|
pub fn is_zero_mat<T: Zero>(mat: &DMat<T>) -> bool
|
||||||
{ all(mat.mij, |e| e.is_zero()) }
|
{ mat.mij.all(|e| e.is_zero()) }
|
||||||
|
|
||||||
pub fn one_mat_with_dim<T: Copy + One + Zero>(dim: uint) -> DMat<T>
|
pub fn one_mat_with_dim<T: Copy + One + Zero>(dim: uint) -> DMat<T>
|
||||||
{
|
{
|
||||||
@ -90,7 +91,7 @@ RMul<DVec<T>> for DMat<T>
|
|||||||
{
|
{
|
||||||
fn rmul(&self, other: &DVec<T>) -> DVec<T>
|
fn rmul(&self, other: &DVec<T>) -> DVec<T>
|
||||||
{
|
{
|
||||||
assert!(self.dim == len(other.at));
|
assert!(self.dim == other.at.len());
|
||||||
|
|
||||||
let dim = self.dim;
|
let dim = self.dim;
|
||||||
let mut res : DVec<T> = zero_vec_with_dim(dim);
|
let mut res : DVec<T> = zero_vec_with_dim(dim);
|
||||||
@ -110,7 +111,7 @@ LMul<DVec<T>> for DMat<T>
|
|||||||
{
|
{
|
||||||
fn lmul(&self, other: &DVec<T>) -> DVec<T>
|
fn lmul(&self, other: &DVec<T>) -> DVec<T>
|
||||||
{
|
{
|
||||||
assert!(self.dim == len(other.at));
|
assert!(self.dim == other.at.len());
|
||||||
|
|
||||||
let dim = self.dim;
|
let dim = self.dim;
|
||||||
let mut res : DVec<T> = zero_vec_with_dim(dim);
|
let mut res : DVec<T> = zero_vec_with_dim(dim);
|
||||||
@ -248,8 +249,16 @@ impl<T: ApproxEq<T>> ApproxEq<T> for DMat<T>
|
|||||||
{ ApproxEq::approx_epsilon::<T, T>() }
|
{ ApproxEq::approx_epsilon::<T, T>() }
|
||||||
|
|
||||||
fn approx_eq(&self, other: &DMat<T>) -> bool
|
fn approx_eq(&self, other: &DMat<T>) -> bool
|
||||||
{ all2(self.mij, other.mij, |a, b| a.approx_eq(b)) }
|
{
|
||||||
|
let mut zip = self.mij.iter().zip(other.mij.iter());
|
||||||
|
|
||||||
|
do zip.all |(a, b)| { a.approx_eq(b) }
|
||||||
|
}
|
||||||
|
|
||||||
fn approx_eq_eps(&self, other: &DMat<T>, epsilon: &T) -> bool
|
fn approx_eq_eps(&self, other: &DMat<T>, epsilon: &T) -> bool
|
||||||
{ all2(self.mij, other.mij, |a, b| a.approx_eq_eps(b, epsilon)) }
|
{
|
||||||
|
let mut zip = self.mij.iter().zip(other.mij.iter());
|
||||||
|
|
||||||
|
do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) }
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
use std::uint::iterate;
|
use std::uint::iterate;
|
||||||
use std::num::{Zero, One, Algebraic};
|
use std::num::{Zero, One, Algebraic};
|
||||||
use std::vec::{map_zip, map, all2, len, from_elem, all};
|
use std::vec::{map_zip, map, from_elem};
|
||||||
use std::cmp::ApproxEq;
|
use std::cmp::ApproxEq;
|
||||||
|
use std::iterator::IteratorUtil;
|
||||||
use traits::ring::Ring;
|
use traits::ring::Ring;
|
||||||
use traits::division_ring::DivisionRing;
|
use traits::division_ring::DivisionRing;
|
||||||
use traits::dot::Dot;
|
use traits::dot::Dot;
|
||||||
@ -20,7 +21,7 @@ pub fn zero_vec_with_dim<T: Zero + Copy>(dim: uint) -> DVec<T>
|
|||||||
{ DVec { at: from_elem(dim, Zero::zero::<T>()) } }
|
{ DVec { at: from_elem(dim, Zero::zero::<T>()) } }
|
||||||
|
|
||||||
pub fn is_zero_vec<T: Zero>(vec: &DVec<T>) -> bool
|
pub fn is_zero_vec<T: Zero>(vec: &DVec<T>) -> bool
|
||||||
{ all(vec.at, |e| e.is_zero()) }
|
{ vec.at.all(|e| e.is_zero()) }
|
||||||
|
|
||||||
// FIXME: is Clone needed?
|
// FIXME: is Clone needed?
|
||||||
impl<T: Copy + DivisionRing + Algebraic + Clone + ApproxEq<T>> DVec<T>
|
impl<T: Copy + DivisionRing + Algebraic + Clone + ApproxEq<T>> DVec<T>
|
||||||
@ -45,12 +46,12 @@ impl<T: Copy + DivisionRing + Algebraic + Clone + ApproxEq<T>> DVec<T>
|
|||||||
{
|
{
|
||||||
// compute the basis of the orthogonal subspace using Gram-Schmidt
|
// compute the basis of the orthogonal subspace using Gram-Schmidt
|
||||||
// orthogonalization algorithm
|
// orthogonalization algorithm
|
||||||
let dim = len(self.at);
|
let dim = self.at.len();
|
||||||
let mut res : ~[DVec<T>] = ~[];
|
let mut res : ~[DVec<T>] = ~[];
|
||||||
|
|
||||||
for iterate(0u, dim) |i|
|
for iterate(0u, dim) |i|
|
||||||
{
|
{
|
||||||
let mut basis_element : DVec<T> = zero_vec_with_dim(len(self.at));
|
let mut basis_element : DVec<T> = zero_vec_with_dim(self.at.len());
|
||||||
|
|
||||||
basis_element.at[i] = One::one();
|
basis_element.at[i] = One::one();
|
||||||
|
|
||||||
@ -78,7 +79,7 @@ impl<T: Copy + Add<T,T>> Add<DVec<T>, DVec<T>> for DVec<T>
|
|||||||
{
|
{
|
||||||
fn add(&self, other: &DVec<T>) -> DVec<T>
|
fn add(&self, other: &DVec<T>) -> DVec<T>
|
||||||
{
|
{
|
||||||
assert!(len(self.at) == len(other.at));
|
assert!(self.at.len() == other.at.len());
|
||||||
DVec { at: map_zip(self.at, other.at, | a, b | { *a + *b }) }
|
DVec { at: map_zip(self.at, other.at, | a, b | { *a + *b }) }
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -87,7 +88,7 @@ impl<T: Copy + Sub<T,T>> Sub<DVec<T>, DVec<T>> for DVec<T>
|
|||||||
{
|
{
|
||||||
fn sub(&self, other: &DVec<T>) -> DVec<T>
|
fn sub(&self, other: &DVec<T>) -> DVec<T>
|
||||||
{
|
{
|
||||||
assert!(len(self.at) == len(other.at));
|
assert!(self.at.len() == other.at.len());
|
||||||
DVec { at: map_zip(self.at, other.at, | a, b | *a - *b) }
|
DVec { at: map_zip(self.at, other.at, | a, b | *a - *b) }
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -103,11 +104,11 @@ Dot<T> for DVec<T>
|
|||||||
{
|
{
|
||||||
fn dot(&self, other: &DVec<T>) -> T
|
fn dot(&self, other: &DVec<T>) -> T
|
||||||
{
|
{
|
||||||
assert!(len(self.at) == len(other.at));
|
assert!(self.at.len() == other.at.len());
|
||||||
|
|
||||||
let mut res = Zero::zero::<T>();
|
let mut res = Zero::zero::<T>();
|
||||||
|
|
||||||
for iterate(0u, len(self.at)) |i|
|
for iterate(0u, self.at.len()) |i|
|
||||||
{ res += self.at[i] * other.at[i]; }
|
{ res += self.at[i] * other.at[i]; }
|
||||||
|
|
||||||
res
|
res
|
||||||
@ -120,7 +121,7 @@ impl<T: Copy + Ring> SubDot<T> for DVec<T>
|
|||||||
{
|
{
|
||||||
let mut res = Zero::zero::<T>();
|
let mut res = Zero::zero::<T>();
|
||||||
|
|
||||||
for iterate(0u, len(self.at)) |i|
|
for iterate(0u, self.at.len()) |i|
|
||||||
{ res += (self.at[i] - a.at[i]) * b.at[i]; }
|
{ res += (self.at[i] - a.at[i]) * b.at[i]; }
|
||||||
|
|
||||||
res
|
res
|
||||||
@ -135,7 +136,7 @@ ScalarMul<T> for DVec<T>
|
|||||||
|
|
||||||
fn scalar_mul_inplace(&mut self, s: &T)
|
fn scalar_mul_inplace(&mut self, s: &T)
|
||||||
{
|
{
|
||||||
for iterate(0u, len(self.at)) |i|
|
for iterate(0u, self.at.len()) |i|
|
||||||
{ self.at[i] *= *s; }
|
{ self.at[i] *= *s; }
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -149,7 +150,7 @@ ScalarDiv<T> for DVec<T>
|
|||||||
|
|
||||||
fn scalar_div_inplace(&mut self, s: &T)
|
fn scalar_div_inplace(&mut self, s: &T)
|
||||||
{
|
{
|
||||||
for iterate(0u, len(self.at)) |i|
|
for iterate(0u, self.at.len()) |i|
|
||||||
{ self.at[i] /= *s; }
|
{ self.at[i] /= *s; }
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -162,7 +163,7 @@ ScalarAdd<T> for DVec<T>
|
|||||||
|
|
||||||
fn scalar_add_inplace(&mut self, s: &T)
|
fn scalar_add_inplace(&mut self, s: &T)
|
||||||
{
|
{
|
||||||
for iterate(0u, len(self.at)) |i|
|
for iterate(0u, self.at.len()) |i|
|
||||||
{ self.at[i] += *s; }
|
{ self.at[i] += *s; }
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -175,7 +176,7 @@ ScalarSub<T> for DVec<T>
|
|||||||
|
|
||||||
fn scalar_sub_inplace(&mut self, s: &T)
|
fn scalar_sub_inplace(&mut self, s: &T)
|
||||||
{
|
{
|
||||||
for iterate(0u, len(self.at)) |i|
|
for iterate(0u, self.at.len()) |i|
|
||||||
{ self.at[i] -= *s; }
|
{ self.at[i] -= *s; }
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -214,7 +215,7 @@ Norm<T> for DVec<T>
|
|||||||
{
|
{
|
||||||
let l = self.norm();
|
let l = self.norm();
|
||||||
|
|
||||||
for iterate(0u, len(self.at)) |i|
|
for iterate(0u, self.at.len()) |i|
|
||||||
{ self.at[i] /= l; }
|
{ self.at[i] /= l; }
|
||||||
|
|
||||||
l
|
l
|
||||||
@ -227,8 +228,16 @@ impl<T: ApproxEq<T>> ApproxEq<T> for DVec<T>
|
|||||||
{ ApproxEq::approx_epsilon::<T, T>() }
|
{ ApproxEq::approx_epsilon::<T, T>() }
|
||||||
|
|
||||||
fn approx_eq(&self, other: &DVec<T>) -> bool
|
fn approx_eq(&self, other: &DVec<T>) -> bool
|
||||||
{ all2(self.at, other.at, |a, b| a.approx_eq(b)) }
|
{
|
||||||
|
let mut zip = self.at.iter().zip(other.at.iter());
|
||||||
|
|
||||||
|
do zip.all |(a, b)| { a.approx_eq(b) }
|
||||||
|
}
|
||||||
|
|
||||||
fn approx_eq_eps(&self, other: &DVec<T>, epsilon: &T) -> bool
|
fn approx_eq_eps(&self, other: &DVec<T>, epsilon: &T) -> bool
|
||||||
{ all2(self.at, other.at, |a, b| a.approx_eq_eps(b, epsilon)) }
|
{
|
||||||
|
let mut zip = self.at.iter().zip(other.at.iter());
|
||||||
|
|
||||||
|
do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) }
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,10 +1,10 @@
|
|||||||
#[test]
|
#[test]
|
||||||
|
use std::iterator::IteratorUtil;
|
||||||
|
#[test]
|
||||||
use std::num::{Zero, One};
|
use std::num::{Zero, One};
|
||||||
#[test]
|
#[test]
|
||||||
use std::rand::{random};
|
use std::rand::{random};
|
||||||
#[test]
|
#[test]
|
||||||
use std::vec::{all, all2};
|
|
||||||
#[test]
|
|
||||||
use std::cmp::ApproxEq;
|
use std::cmp::ApproxEq;
|
||||||
#[test]
|
#[test]
|
||||||
use dim3::vec3::Vec3;
|
use dim3::vec3::Vec3;
|
||||||
@ -44,9 +44,14 @@ macro_rules! test_basis_impl(
|
|||||||
let basis = Basis::canonical_basis::<$t>();
|
let basis = Basis::canonical_basis::<$t>();
|
||||||
|
|
||||||
// check vectors form an ortogonal basis
|
// check vectors form an ortogonal basis
|
||||||
assert!(all2(basis, basis, |e1, e2| e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero())));
|
assert!(
|
||||||
|
do basis.iter().zip(basis.iter()).all
|
||||||
|
|(e1, e2)| { e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero()) }
|
||||||
|
);
|
||||||
// check vectors form an orthonormal basis
|
// check vectors form an orthonormal basis
|
||||||
assert!(all(basis, |e| e.norm().approx_eq(&One::one())));
|
assert!(
|
||||||
|
do basis.iter().all |e| { e.norm().approx_eq(&One::one()) }
|
||||||
|
);
|
||||||
}
|
}
|
||||||
);
|
);
|
||||||
)
|
)
|
||||||
@ -60,11 +65,18 @@ macro_rules! test_subspace_basis_impl(
|
|||||||
let subbasis = v1.orthogonal_subspace_basis();
|
let subbasis = v1.orthogonal_subspace_basis();
|
||||||
|
|
||||||
// check vectors are orthogonal to v1
|
// check vectors are orthogonal to v1
|
||||||
assert!(all(subbasis, |e| v1.dot(e).approx_eq(&Zero::zero())));
|
assert!(
|
||||||
|
do subbasis.iter().all |e| { v1.dot(e).approx_eq(&Zero::zero()) }
|
||||||
|
);
|
||||||
// check vectors form an ortogonal basis
|
// check vectors form an ortogonal basis
|
||||||
assert!(all2(subbasis, subbasis, |e1, e2| e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero())));
|
assert!(
|
||||||
|
do subbasis.iter().zip(subbasis.iter()).all
|
||||||
|
|(e1, e2)| { e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero()) }
|
||||||
|
);
|
||||||
// check vectors form an orthonormal basis
|
// check vectors form an orthonormal basis
|
||||||
assert!(all(subbasis, |e| e.norm().approx_eq(&One::one())));
|
assert!(
|
||||||
|
do subbasis.iter().all |e| { e.norm().approx_eq(&One::one()) }
|
||||||
|
);
|
||||||
}
|
}
|
||||||
);
|
);
|
||||||
)
|
)
|
||||||
|
Loading…
Reference in New Issue
Block a user