forked from M-Labs/nalgebra
Fix syntax error.
This commit is contained in:
parent
4ce6555b96
commit
92d9f82caf
@ -1,4 +1,5 @@
|
|||||||
t
|
#![cfg_attr(rustfmt, rustfmt_skip)]
|
||||||
|
|
||||||
use na::DMatrix;
|
use na::DMatrix;
|
||||||
|
|
||||||
#[cfg(feature = "arbitrary")]
|
#[cfg(feature = "arbitrary")]
|
||||||
@ -103,89 +104,3 @@ fn symmetric_eigen_singular_24x24() {
|
|||||||
epsilon = 1.0e-5
|
epsilon = 1.0e-5
|
||||||
));
|
));
|
||||||
}
|
}
|
||||||
|
|
||||||
// #[cfg(feature = "arbitrary")]
|
|
||||||
// quickcheck! {
|
|
||||||
// FIXME: full eigendecomposition is not implemented yet because of its complexity when some
|
|
||||||
// eigenvalues have multiplicity > 1.
|
|
||||||
//
|
|
||||||
// /*
|
|
||||||
// * NOTE: for the following tests, we use only upper-triangular matrices.
|
|
||||||
// * Thes ensures the schur decomposition will work, and allows use to test the eigenvector
|
|
||||||
// * computation.
|
|
||||||
// */
|
|
||||||
// fn eigen(n: usize) -> bool {
|
|
||||||
// let n = cmp::max(1, cmp::min(n, 10));
|
|
||||||
// let m = DMatrix::<f64>::new_random(n, n).upper_triangle();
|
|
||||||
//
|
|
||||||
// let eig = RealEigen::new(m.clone()).unwrap();
|
|
||||||
// verify_eigenvectors(m, eig)
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// fn eigen_with_adjascent_duplicate_diagonals(n: usize) -> bool {
|
|
||||||
// let n = cmp::max(1, cmp::min(n, 10));
|
|
||||||
// let mut m = DMatrix::<f64>::new_random(n, n).upper_triangle();
|
|
||||||
//
|
|
||||||
// // Suplicate some adjascent diagonal elements.
|
|
||||||
// for i in 0 .. n / 2 {
|
|
||||||
// m[(i * 2 + 1, i * 2 + 1)] = m[(i * 2, i * 2)];
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// let eig = RealEigen::new(m.clone()).unwrap();
|
|
||||||
// verify_eigenvectors(m, eig)
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// fn eigen_with_nonadjascent_duplicate_diagonals(n: usize) -> bool {
|
|
||||||
// let n = cmp::max(3, cmp::min(n, 10));
|
|
||||||
// let mut m = DMatrix::<f64>::new_random(n, n).upper_triangle();
|
|
||||||
//
|
|
||||||
// // Suplicate some diagonal elements.
|
|
||||||
// for i in n / 2 .. n {
|
|
||||||
// m[(i, i)] = m[(i - n / 2, i - n / 2)];
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// let eig = RealEigen::new(m.clone()).unwrap();
|
|
||||||
// verify_eigenvectors(m, eig)
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// fn eigen_static_square_4x4(m: Matrix4<f64>) -> bool {
|
|
||||||
// let m = m.upper_triangle();
|
|
||||||
// let eig = RealEigen::new(m.clone()).unwrap();
|
|
||||||
// verify_eigenvectors(m, eig)
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// fn eigen_static_square_3x3(m: Matrix3<f64>) -> bool {
|
|
||||||
// let m = m.upper_triangle();
|
|
||||||
// let eig = RealEigen::new(m.clone()).unwrap();
|
|
||||||
// verify_eigenvectors(m, eig)
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// fn eigen_static_square_2x2(m: Matrix2<f64>) -> bool {
|
|
||||||
// let m = m.upper_triangle();
|
|
||||||
// println!("{}", m);
|
|
||||||
// let eig = RealEigen::new(m.clone()).unwrap();
|
|
||||||
// verify_eigenvectors(m, eig)
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// fn verify_eigenvectors<D: Dim>(m: MatrixN<f64, D>, mut eig: RealEigen<f64, D>) -> bool
|
|
||||||
// where DefaultAllocator: Allocator<f64, D, D> +
|
|
||||||
// Allocator<f64, D> +
|
|
||||||
// Allocator<usize, D, D> +
|
|
||||||
// Allocator<usize, D>,
|
|
||||||
// MatrixN<f64, D>: Display,
|
|
||||||
// VectorN<f64, D>: Display {
|
|
||||||
// let mv = &m * &eig.eigenvectors;
|
|
||||||
//
|
|
||||||
// println!("eigenvalues: {}eigenvectors: {}", eig.eigenvalues, eig.eigenvectors);
|
|
||||||
//
|
|
||||||
// let dim = m.nrows();
|
|
||||||
// for i in 0 .. dim {
|
|
||||||
// let mut col = eig.eigenvectors.column_mut(i);
|
|
||||||
// col *= eig.eigenvalues[i];
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// println!("{}{:.5}{:.5}", m, mv, eig.eigenvectors);
|
|
||||||
//
|
|
||||||
// relative_eq!(eig.eigenvectors, mv, epsilon = 1.0e-5)
|
|
||||||
// }
|
|
||||||
|
Loading…
Reference in New Issue
Block a user