forked from M-Labs/nalgebra
Implement to_euler_angles for Rotation3 and UnitQuaternion
Resolves sebcrozet/nalgebra#243.
This commit is contained in:
parent
9066ce484d
commit
922b339fb0
@ -541,6 +541,14 @@ impl<N: Real> UnitQuaternion<N> {
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts this unit quaternion into its equivalent Euler angles.
|
||||
///
|
||||
/// The angles are produced in the form (roll, yaw, pitch).
|
||||
#[inline]
|
||||
pub fn to_euler_angles(&self) -> (N, N, N) {
|
||||
self.to_rotation_matrix().to_euler_angles()
|
||||
}
|
||||
|
||||
/// Converts this unit quaternion into its equivalent homogeneous transformation matrix.
|
||||
#[inline]
|
||||
pub fn to_homogeneous(&self) -> MatrixN<N, U4> {
|
||||
|
@ -177,6 +177,24 @@ impl<N: Real> Rotation3<N> {
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates Euler angles from a rotation.
|
||||
///
|
||||
/// The angles are produced in the form (roll, yaw, pitch).
|
||||
pub fn to_euler_angles(&self) -> (N, N, N) {
|
||||
// Implementation informed by "Computing Euler angles from a rotation matrix", by Gregory G. Slabaugh
|
||||
// http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.371.6578
|
||||
if self[(2,0)].abs() != N::one() {
|
||||
let yaw = -self[(2,0)].asin();
|
||||
let roll = (self[(2,1)] / yaw.cos()).atan2(self[(2,2)] / yaw.cos());
|
||||
let pitch = (self[(1,0)] / yaw.cos()).atan2(self[(0,0)] / yaw.cos());
|
||||
(roll, yaw, pitch)
|
||||
} else if self[(2,0)] == -N::one() {
|
||||
(self[(0,1)].atan2(self[(0,2)]), N::frac_pi_2(), N::zero())
|
||||
} else {
|
||||
(-self[(0,1)].atan2(-self[(0,2)]), -N::frac_pi_2(), N::zero())
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a rotation that corresponds to the local frame of an observer standing at the
|
||||
/// origin and looking toward `dir`.
|
||||
///
|
||||
|
@ -26,6 +26,12 @@ quickcheck!(
|
||||
relative_eq!(yaw * pitch * roll, rpy, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn to_euler_angles(r: f64, p: f64, y: f64) -> bool {
|
||||
let rpy = UnitQuaternion::from_euler_angles(r, p, y);
|
||||
let (roll, pitch, yaw) = rpy.to_euler_angles();
|
||||
relative_eq!(UnitQuaternion::from_euler_angles(roll, pitch, yaw), rpy, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
|
@ -37,6 +37,21 @@ quickcheck!(
|
||||
yaw * pitch * roll == rpy
|
||||
}
|
||||
|
||||
fn to_euler_angles(r: f64, p: f64, y: f64) -> bool {
|
||||
let rpy = Rotation3::from_euler_angles(r, p, y);
|
||||
let (roll, pitch, yaw) = rpy.to_euler_angles();
|
||||
relative_eq!(Rotation3::from_euler_angles(roll, pitch, yaw), rpy, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn to_euler_angles_gimble_lock(r: f64, y: f64) -> bool {
|
||||
let pos = Rotation3::from_euler_angles(r, f64::frac_pi_2(), y);
|
||||
let neg = Rotation3::from_euler_angles(r, -f64::frac_pi_2(), y);
|
||||
let (pos_r, pos_p, pos_y) = pos.to_euler_angles();
|
||||
let (neg_r, neg_p, neg_y) = neg.to_euler_angles();
|
||||
relative_eq!(Rotation3::from_euler_angles(pos_r, pos_p, pos_y), pos, epsilon = 1.0e-7) &&
|
||||
relative_eq!(Rotation3::from_euler_angles(neg_r, neg_p, neg_y), neg, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Inversion is transposition.
|
||||
|
Loading…
Reference in New Issue
Block a user