forked from M-Labs/nalgebra
commit
8fbd2b6d7e
2
.circleci/Xargo.toml
Normal file
2
.circleci/Xargo.toml
Normal file
@ -0,0 +1,2 @@
|
||||
[target.x86_64-unknown-linux-gnu.dependencies]
|
||||
alloc = {}
|
108
.circleci/config.yml
Normal file
108
.circleci/config.yml
Normal file
@ -0,0 +1,108 @@
|
||||
version: 2.1
|
||||
|
||||
executors:
|
||||
rust-nightly-executor:
|
||||
docker:
|
||||
- image: rustlang/rust:nightly
|
||||
rust-executor:
|
||||
docker:
|
||||
- image: rust:latest
|
||||
|
||||
|
||||
jobs:
|
||||
check-fmt:
|
||||
executor: rust-executor
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: install rustfmt
|
||||
command: rustup component add rustfmt
|
||||
- run:
|
||||
name: check formatting
|
||||
command: cargo fmt -- --check
|
||||
build-native:
|
||||
executor: rust-executor
|
||||
steps:
|
||||
- checkout
|
||||
- run: apt-get update
|
||||
- run: apt-get install -y cmake gfortran libblas-dev liblapack-dev
|
||||
- run:
|
||||
name: build --no-default-feature
|
||||
command: cargo build --no-default-features;
|
||||
- run:
|
||||
name: build (default features)
|
||||
command: cargo build;
|
||||
- run:
|
||||
name: build --all-features
|
||||
command: cargo build --all-features
|
||||
- run:
|
||||
name: build nalgebra-glm
|
||||
command: cargo build -p nalgebra-glm --all-features
|
||||
- run:
|
||||
name: build nalgebra-lapack
|
||||
command: cd nalgebra-lapack; cargo build
|
||||
test-native:
|
||||
executor: rust-executor
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: test
|
||||
command: cargo test --all-features
|
||||
- run:
|
||||
name: test nalgebra-glm
|
||||
command: cargo test -p nalgebra-glm --all-features
|
||||
build-wasm:
|
||||
executor: rust-executor
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: install cargo-web
|
||||
command: cargo install -f cargo-web;
|
||||
- run:
|
||||
name: build --all-features
|
||||
command: cargo web build --verbose --target wasm32-unknown-unknown;
|
||||
- run:
|
||||
name: build nalgebra-glm
|
||||
command: cargo build -p nalgebra-glm --all-features
|
||||
build-no-std:
|
||||
executor: rust-nightly-executor
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: install xargo
|
||||
command: cp .circleci/Xargo.toml .; rustup component add rust-src; cargo install -f xargo;
|
||||
- run:
|
||||
name: build
|
||||
command: xargo build --verbose --no-default-features --target=x86_64-unknown-linux-gnu;
|
||||
- run:
|
||||
name: build --features alloc
|
||||
command: xargo build --verbose --no-default-features --features alloc --target=x86_64-unknown-linux-gnu;
|
||||
build-nightly:
|
||||
executor: rust-nightly-executor
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: build --all-features
|
||||
command: cargo build --all-features
|
||||
|
||||
|
||||
workflows:
|
||||
version: 2
|
||||
build:
|
||||
jobs:
|
||||
- check-fmt
|
||||
- build-native:
|
||||
requires:
|
||||
- check-fmt
|
||||
- build-wasm:
|
||||
requires:
|
||||
- check-fmt
|
||||
- build-no-std:
|
||||
requires:
|
||||
- check-fmt
|
||||
- build-nightly:
|
||||
requires:
|
||||
- check-fmt
|
||||
- test-native:
|
||||
requires:
|
||||
- build-native
|
45
CHANGELOG.md
45
CHANGELOG.md
@ -4,9 +4,52 @@ documented here.
|
||||
|
||||
This project adheres to [Semantic Versioning](https://semver.org/).
|
||||
|
||||
## [0.19.0] - WIP
|
||||
|
||||
## [0.21.0]
|
||||
In this release, we are no longer relying on traits from the __alga__ crate for our generic code.
|
||||
Instead, we use traits from the new [simba](https://crates.io/crates/simba) crate which are both
|
||||
simpler, and allow for significant optimizations like AoSoA SIMD.
|
||||
|
||||
Refer to the [monthly Rustsim blogpost](https://www.rustsim.org/blog/2020/04/01/this-month-in-rustsim/)
|
||||
for details about this switch and its benefits.
|
||||
|
||||
### Added
|
||||
* It is now possible to use SIMD types like `simba::f32x4` as scalar types for nalgebra's matrices and
|
||||
geometric types.
|
||||
### Modified
|
||||
* Use of traits like `alga::general::{RealField, ComplexField}` have now been replaced by
|
||||
`simba::scalar::{RealField, ComplexField}`.
|
||||
* The implementation of traits from the __alga__ crate (and well as the dependency to _alga__) are now
|
||||
omitted unless the `alga` cargo feature is activated.
|
||||
### Removed
|
||||
* The `Neg` unary operator is no longer implemented for `UnitComplex` and `UnitQuaternion`. This caused
|
||||
hard-to-track errors when we mistakenly write, e.g., `-q * v` instead of `-(q * v)`.
|
||||
* The `na::convert_unchecked` is no longer marked as unsafe.
|
||||
|
||||
## [0.20.0]
|
||||
### Added
|
||||
* `cholesky.rank_one_update(...)` which performs a rank-one update on the cholesky decomposition of a matrix.
|
||||
* `From<&Matrix>` is now implemented for matrix slices.
|
||||
* `.try_set_magnitude(...)` which sets the magnitude of a vector, while keeping its direction.
|
||||
* Implementations of `From` and `Into` for the conversion between matrix slices and standard (`&[N]` `&mut [N]`) slices.
|
||||
|
||||
### Modified
|
||||
* We started some major changes in order to allow non-Copy types to be used as scalar types inside of matrices/vectors.
|
||||
|
||||
## [0.19.0]
|
||||
### Added
|
||||
* `.remove_rows_at` and `remove_columns_at` which removes a set of rows or columns (specified by indices) from a matrix.
|
||||
* Several formatting traits have been implemented for all matrices/vectors: `LowerExp`, `UpperExp`, `Octal`, `LowerHex`,
|
||||
`UpperHex`, `Binary`, `Pointer`.
|
||||
* `UnitQuaternion::quaternions_mean(...)` which computes the mean rotation of a set of unit quaternions. This implements
|
||||
the algorithm from _Oshman, Yaakov, and Avishy Carmi, "Attitude estimation from vector observations using a genetic-algorithm-embedded quaternion particle filter."
|
||||
|
||||
### Modified
|
||||
* It is now possible to get the `min/max` element of unsigned integer matrices.
|
||||
|
||||
### Added to nalgebra-glm
|
||||
* Some infinite and reversed perspectives: `::infinite_perspective_rh_no`, `::infinite_perspective_rh_zo`,
|
||||
`::reversed_perspective_rh_zo`, and `::reversed_infinite_perspective_rh_zo`.
|
||||
|
||||
## [0.18.0]
|
||||
This release adds full complex number support to nalgebra. This includes all common vector/matrix operations as well
|
||||
|
13
Cargo.toml
13
Cargo.toml
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "nalgebra"
|
||||
version = "0.20.0"
|
||||
version = "0.21.0"
|
||||
authors = [ "Sébastien Crozet <developer@crozet.re>" ]
|
||||
|
||||
description = "Linear algebra library with transformations and statically-sized or dynamically-sized matrices."
|
||||
@ -21,7 +21,7 @@ path = "src/lib.rs"
|
||||
|
||||
[features]
|
||||
default = [ "std" ]
|
||||
std = [ "matrixmultiply", "rand/std", "rand_distr", "alga/std" ]
|
||||
std = [ "matrixmultiply", "rand/std", "rand_distr", "simba/std" ]
|
||||
stdweb = [ "rand/stdweb" ]
|
||||
arbitrary = [ "quickcheck" ]
|
||||
serde-serialize = [ "serde", "serde_derive", "num-complex/serde" ]
|
||||
@ -39,7 +39,8 @@ num-traits = { version = "0.2", default-features = false }
|
||||
num-complex = { version = "0.2", default-features = false }
|
||||
num-rational = { version = "0.2", default-features = false }
|
||||
approx = { version = "0.3", default-features = false }
|
||||
alga = { version = "0.9", default-features = false }
|
||||
simba = { version = "0.1", default-features = false }
|
||||
alga = { version = "0.9", default-features = false, optional = true }
|
||||
rand_distr = { version = "0.2", optional = true }
|
||||
matrixmultiply = { version = "0.2", optional = true }
|
||||
serde = { version = "1.0", optional = true }
|
||||
@ -50,9 +51,6 @@ quickcheck = { version = "0.9", optional = true }
|
||||
pest = { version = "2.0", optional = true }
|
||||
pest_derive = { version = "2.0", optional = true }
|
||||
|
||||
#[patch.crates-io]
|
||||
#alga = { git = "https://github.com/rustsim/alga", branch = "dev" }
|
||||
|
||||
[dev-dependencies]
|
||||
serde_json = "1.0"
|
||||
rand_xorshift = "0.2"
|
||||
@ -73,3 +71,6 @@ path = "benches/lib.rs"
|
||||
|
||||
[profile.bench]
|
||||
lto = true
|
||||
|
||||
#[patch.crates-io]
|
||||
#simba = { path = "../simba" }
|
@ -50,11 +50,13 @@ fn mat_div_scalar(b: &mut criterion::Criterion) {
|
||||
let a = DMatrix::from_row_slice(1000, 1000, &vec![2.0; 1000000]);
|
||||
let n = 42.0;
|
||||
|
||||
b.bench_function("mat_div_scalar", move |bh| bh.iter(|| {
|
||||
b.bench_function("mat_div_scalar", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut aa = a.clone();
|
||||
let mut b = aa.slice_mut((0, 0), (1000, 1000));
|
||||
b /= n
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn mat100_add_mat100(bench: &mut criterion::Criterion) {
|
||||
@ -138,9 +140,11 @@ fn copy_from(bench: &mut criterion::Criterion) {
|
||||
let a = DMatrix::<f64>::new_random(1000, 1000);
|
||||
let mut b = DMatrix::<f64>::new_random(1000, 1000);
|
||||
|
||||
bench.bench_function("copy_from", move |bh| bh.iter(|| {
|
||||
bench.bench_function("copy_from", move |bh| {
|
||||
bh.iter(|| {
|
||||
b.copy_from(&a);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn axpy(bench: &mut criterion::Criterion) {
|
||||
@ -148,9 +152,11 @@ fn axpy(bench: &mut criterion::Criterion) {
|
||||
let mut y = DVector::<f64>::from_element(100000, 3.0);
|
||||
let a = 42.0;
|
||||
|
||||
bench.bench_function("axpy", move |bh| bh.iter(|| {
|
||||
bench.bench_function("axpy", move |bh| {
|
||||
bh.iter(|| {
|
||||
y.axpy(a, &x, 1.0);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn tr_mul_to(bench: &mut criterion::Criterion) {
|
||||
@ -166,60 +172,57 @@ fn mat_mul_mat(bench: &mut criterion::Criterion) {
|
||||
let b = DMatrix::<f64>::new_random(100, 100);
|
||||
let mut ab = DMatrix::<f64>::from_element(100, 100, 0.0);
|
||||
|
||||
bench.bench_function("mat_mul_mat", move |bh| bh.iter(|| {
|
||||
bench.bench_function("mat_mul_mat", move |bh| {
|
||||
bh.iter(|| {
|
||||
test::black_box(a.mul_to(&b, &mut ab));
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn mat100_from_fn(bench: &mut criterion::Criterion) {
|
||||
bench.bench_function("mat100_from_fn", move |bh| bh.iter(|| DMatrix::from_fn(100, 100, |a, b| a + b)));
|
||||
bench.bench_function("mat100_from_fn", move |bh| {
|
||||
bh.iter(|| DMatrix::from_fn(100, 100, |a, b| a + b))
|
||||
});
|
||||
}
|
||||
|
||||
fn mat500_from_fn(bench: &mut criterion::Criterion) {
|
||||
bench.bench_function("mat500_from_fn", move |bh| bh.iter(|| DMatrix::from_fn(500, 500, |a, b| a + b)));
|
||||
bench.bench_function("mat500_from_fn", move |bh| {
|
||||
bh.iter(|| DMatrix::from_fn(500, 500, |a, b| a + b))
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(matrix,
|
||||
criterion_group!(
|
||||
matrix,
|
||||
mat2_mul_m,
|
||||
mat3_mul_m,
|
||||
mat4_mul_m,
|
||||
|
||||
mat2_tr_mul_m,
|
||||
mat3_tr_mul_m,
|
||||
mat4_tr_mul_m,
|
||||
|
||||
mat2_add_m,
|
||||
mat3_add_m,
|
||||
mat4_add_m,
|
||||
|
||||
mat2_sub_m,
|
||||
mat3_sub_m,
|
||||
mat4_sub_m,
|
||||
|
||||
mat2_mul_v,
|
||||
mat3_mul_v,
|
||||
mat4_mul_v,
|
||||
|
||||
mat2_tr_mul_v,
|
||||
mat3_tr_mul_v,
|
||||
mat4_tr_mul_v,
|
||||
|
||||
mat2_mul_s,
|
||||
mat3_mul_s,
|
||||
mat4_mul_s,
|
||||
|
||||
mat2_div_s,
|
||||
mat3_div_s,
|
||||
mat4_div_s,
|
||||
|
||||
mat2_inv,
|
||||
mat3_inv,
|
||||
mat4_inv,
|
||||
|
||||
mat2_transpose,
|
||||
mat3_transpose,
|
||||
mat4_transpose,
|
||||
|
||||
mat_div_scalar,
|
||||
mat100_add_mat100,
|
||||
mat4_mul_mat4,
|
||||
|
@ -55,7 +55,9 @@ fn vec10000_axpy_f64(bh: &mut criterion::Criterion) {
|
||||
let b = DVector::new_random(10000);
|
||||
let n = rng.gen::<f64>();
|
||||
|
||||
bh.bench_function("vec10000_axpy_f64", move |bh| bh.iter(|| a.axpy(n, &b, 1.0)));
|
||||
bh.bench_function("vec10000_axpy_f64", move |bh| {
|
||||
bh.iter(|| a.axpy(n, &b, 1.0))
|
||||
});
|
||||
}
|
||||
|
||||
fn vec10000_axpy_beta_f64(bh: &mut criterion::Criterion) {
|
||||
@ -66,7 +68,9 @@ fn vec10000_axpy_beta_f64(bh: &mut criterion::Criterion) {
|
||||
let n = rng.gen::<f64>();
|
||||
let beta = rng.gen::<f64>();
|
||||
|
||||
bh.bench_function("vec10000_axpy_beta_f64", move |bh| bh.iter(|| a.axpy(n, &b, beta)));
|
||||
bh.bench_function("vec10000_axpy_beta_f64", move |bh| {
|
||||
bh.iter(|| a.axpy(n, &b, beta))
|
||||
});
|
||||
}
|
||||
|
||||
fn vec10000_axpy_f64_slice(bh: &mut criterion::Criterion) {
|
||||
@ -76,12 +80,14 @@ fn vec10000_axpy_f64_slice(bh: &mut criterion::Criterion) {
|
||||
let b = DVector::new_random(10000);
|
||||
let n = rng.gen::<f64>();
|
||||
|
||||
bh.bench_function("vec10000_axpy_f64_slice", move |bh| bh.iter(|| {
|
||||
bh.bench_function("vec10000_axpy_f64_slice", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut a = a.fixed_rows_mut::<U10000>(0);
|
||||
let b = b.fixed_rows::<U10000>(0);
|
||||
|
||||
a.axpy(n, &b, 1.0)
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn vec10000_axpy_f64_static(bh: &mut criterion::Criterion) {
|
||||
@ -92,7 +98,9 @@ fn vec10000_axpy_f64_static(bh: &mut criterion::Criterion) {
|
||||
let n = rng.gen::<f64>();
|
||||
|
||||
// NOTE: for some reasons, it is much faster if the arument are boxed (Box::new(VectorN...)).
|
||||
bh.bench_function("vec10000_axpy_f64_static", move |bh| bh.iter(|| a.axpy(n, &b, 1.0)));
|
||||
bh.bench_function("vec10000_axpy_f64_static", move |bh| {
|
||||
bh.iter(|| a.axpy(n, &b, 1.0))
|
||||
});
|
||||
}
|
||||
|
||||
fn vec10000_axpy_f32(bh: &mut criterion::Criterion) {
|
||||
@ -102,7 +110,9 @@ fn vec10000_axpy_f32(bh: &mut criterion::Criterion) {
|
||||
let b = DVector::new_random(10000);
|
||||
let n = rng.gen::<f32>();
|
||||
|
||||
bh.bench_function("vec10000_axpy_f32", move |bh| bh.iter(|| a.axpy(n, &b, 1.0)));
|
||||
bh.bench_function("vec10000_axpy_f32", move |bh| {
|
||||
bh.iter(|| a.axpy(n, &b, 1.0))
|
||||
});
|
||||
}
|
||||
|
||||
fn vec10000_axpy_beta_f32(bh: &mut criterion::Criterion) {
|
||||
@ -113,51 +123,43 @@ fn vec10000_axpy_beta_f32(bh: &mut criterion::Criterion) {
|
||||
let n = rng.gen::<f32>();
|
||||
let beta = rng.gen::<f32>();
|
||||
|
||||
bh.bench_function("vec10000_axpy_beta_f32", move |bh| bh.iter(|| a.axpy(n, &b, beta)));
|
||||
bh.bench_function("vec10000_axpy_beta_f32", move |bh| {
|
||||
bh.iter(|| a.axpy(n, &b, beta))
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(vector,
|
||||
criterion_group!(
|
||||
vector,
|
||||
vec2_add_v_f32,
|
||||
vec3_add_v_f32,
|
||||
vec4_add_v_f32,
|
||||
|
||||
vec2_add_v_f64,
|
||||
vec3_add_v_f64,
|
||||
vec4_add_v_f64,
|
||||
|
||||
vec2_sub_v,
|
||||
vec3_sub_v,
|
||||
vec4_sub_v,
|
||||
|
||||
vec2_mul_s,
|
||||
vec3_mul_s,
|
||||
vec4_mul_s,
|
||||
|
||||
vec2_div_s,
|
||||
vec3_div_s,
|
||||
vec4_div_s,
|
||||
|
||||
vec2_dot_f32,
|
||||
vec3_dot_f32,
|
||||
vec4_dot_f32,
|
||||
|
||||
vec2_dot_f64,
|
||||
vec3_dot_f64,
|
||||
vec4_dot_f64,
|
||||
|
||||
vec3_cross,
|
||||
|
||||
vec2_norm,
|
||||
vec3_norm,
|
||||
vec4_norm,
|
||||
|
||||
vec2_normalize,
|
||||
vec3_normalize,
|
||||
vec4_normalize,
|
||||
|
||||
vec10000_dot_f64,
|
||||
vec10000_dot_f32,
|
||||
|
||||
vec10000_axpy_f64,
|
||||
vec10000_axpy_beta_f64,
|
||||
vec10000_axpy_f64_slice,
|
||||
|
@ -26,7 +26,8 @@ bench_unop!(unit_quaternion_inv, UnitQuaternion<f32>, inverse);
|
||||
// bench_unop_self!(quaternion_conjugate, Quaternion<f32>, conjugate);
|
||||
// bench_unop!(quaternion_normalize, Quaternion<f32>, normalize);
|
||||
|
||||
criterion_group!(quaternion,
|
||||
criterion_group!(
|
||||
quaternion,
|
||||
quaternion_add_q,
|
||||
quaternion_sub_q,
|
||||
quaternion_mul_q,
|
||||
|
@ -6,70 +6,89 @@ mod macros;
|
||||
// Without unpack.
|
||||
fn bidiagonalize_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("bidiagonalize_100x100", move |bh| bh.iter(|| test::black_box(Bidiagonal::new(m.clone()))));
|
||||
bh.bench_function("bidiagonalize_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(Bidiagonal::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_100x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 500);
|
||||
bh.bench_function("bidiagonalize_100x500", move |bh| bh.iter(|| test::black_box(Bidiagonal::new(m.clone()))));
|
||||
bh.bench_function("bidiagonalize_100x500", move |bh| {
|
||||
bh.iter(|| test::black_box(Bidiagonal::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("bidiagonalize_4x4", move |bh| bh.iter(|| test::black_box(Bidiagonal::new(m.clone()))));
|
||||
bh.bench_function("bidiagonalize_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(Bidiagonal::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_500x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 100);
|
||||
bh.bench_function("bidiagonalize_500x100", move |bh| bh.iter(|| test::black_box(Bidiagonal::new(m.clone()))));
|
||||
bh.bench_function("bidiagonalize_500x100", move |bh| {
|
||||
bh.iter(|| test::black_box(Bidiagonal::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("bidiagonalize_500x500", move |bh| bh.iter(|| test::black_box(Bidiagonal::new(m.clone()))));
|
||||
bh.bench_function("bidiagonalize_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(Bidiagonal::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
// With unpack.
|
||||
fn bidiagonalize_unpack_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("bidiagonalize_unpack_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("bidiagonalize_unpack_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let bidiag = Bidiagonal::new(m.clone());
|
||||
let _ = bidiag.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_unpack_100x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 500);
|
||||
bh.bench_function("bidiagonalize_unpack_100x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("bidiagonalize_unpack_100x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let bidiag = Bidiagonal::new(m.clone());
|
||||
let _ = bidiag.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_unpack_500x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 100);
|
||||
bh.bench_function("bidiagonalize_unpack_500x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("bidiagonalize_unpack_500x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let bidiag = Bidiagonal::new(m.clone());
|
||||
let _ = bidiag.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_unpack_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("bidiagonalize_unpack_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("bidiagonalize_unpack_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let bidiag = Bidiagonal::new(m.clone());
|
||||
let _ = bidiag.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(bidiagonal,
|
||||
criterion_group!(
|
||||
bidiagonal,
|
||||
bidiagonalize_100x100,
|
||||
bidiagonalize_100x500,
|
||||
bidiagonalize_4x4,
|
||||
bidiagonalize_500x100,
|
||||
// bidiagonalize_500x500, // too long
|
||||
// bidiagonalize_500x500, // too long
|
||||
bidiagonalize_unpack_100x100,
|
||||
bidiagonalize_unpack_100x500,
|
||||
bidiagonalize_unpack_500x100,
|
||||
// bidiagonalize_unpack_500x500 // too long
|
||||
// bidiagonalize_unpack_500x500 // too long
|
||||
);
|
@ -4,14 +4,18 @@ fn cholesky_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let m = &m * m.transpose();
|
||||
|
||||
bh.bench_function("cholesky_100x100", move |bh| bh.iter(|| test::black_box(Cholesky::new(m.clone()))));
|
||||
bh.bench_function("cholesky_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(Cholesky::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn cholesky_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let m = &m * m.transpose();
|
||||
|
||||
bh.bench_function("cholesky_500x500", move |bh| bh.iter(|| test::black_box(Cholesky::new(m.clone()))));
|
||||
bh.bench_function("cholesky_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(Cholesky::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
// With unpack.
|
||||
@ -19,19 +23,23 @@ fn cholesky_decompose_unpack_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let m = &m * m.transpose();
|
||||
|
||||
bh.bench_function("cholesky_decompose_unpack_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_decompose_unpack_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
let _ = chol.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
fn cholesky_decompose_unpack_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let m = &m * m.transpose();
|
||||
|
||||
bh.bench_function("cholesky_decompose_unpack_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_decompose_unpack_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
let _ = chol.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn cholesky_solve_10x10(bh: &mut criterion::Criterion) {
|
||||
@ -40,9 +48,11 @@ fn cholesky_solve_10x10(bh: &mut criterion::Criterion) {
|
||||
let v = DVector::<f64>::new_random(10);
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
|
||||
bh.bench_function("cholesky_solve_10x10", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_solve_10x10", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = chol.solve(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn cholesky_solve_100x100(bh: &mut criterion::Criterion) {
|
||||
@ -51,9 +61,11 @@ fn cholesky_solve_100x100(bh: &mut criterion::Criterion) {
|
||||
let v = DVector::<f64>::new_random(100);
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
|
||||
bh.bench_function("cholesky_solve_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_solve_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = chol.solve(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn cholesky_solve_500x500(bh: &mut criterion::Criterion) {
|
||||
@ -62,20 +74,23 @@ fn cholesky_solve_500x500(bh: &mut criterion::Criterion) {
|
||||
let v = DVector::<f64>::new_random(500);
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
|
||||
bh.bench_function("cholesky_solve_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_solve_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = chol.solve(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
fn cholesky_inverse_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let m = &m * m.transpose();
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
|
||||
bh.bench_function("cholesky_inverse_10x10", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_inverse_10x10", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = chol.inverse();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn cholesky_inverse_100x100(bh: &mut criterion::Criterion) {
|
||||
@ -83,9 +98,11 @@ fn cholesky_inverse_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = &m * m.transpose();
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
|
||||
bh.bench_function("cholesky_inverse_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_inverse_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = chol.inverse();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn cholesky_inverse_500x500(bh: &mut criterion::Criterion) {
|
||||
@ -93,12 +110,15 @@ fn cholesky_inverse_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = &m * m.transpose();
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
|
||||
bh.bench_function("cholesky_inverse_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_inverse_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = chol.inverse();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(cholesky,
|
||||
criterion_group!(
|
||||
cholesky,
|
||||
cholesky_100x100,
|
||||
cholesky_500x500,
|
||||
cholesky_decompose_unpack_100x100,
|
||||
|
@ -3,103 +3,127 @@ use na::{DMatrix, DVector, FullPivLU};
|
||||
// Without unpack.
|
||||
fn full_piv_lu_decompose_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
bh.bench_function("full_piv_lu_decompose_10x10", move |bh| bh.iter(|| test::black_box(FullPivLU::new(m.clone()))));
|
||||
bh.bench_function("full_piv_lu_decompose_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(FullPivLU::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("full_piv_lu_decompose_100x100", move |bh| bh.iter(|| test::black_box(FullPivLU::new(m.clone()))));
|
||||
bh.bench_function("full_piv_lu_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(FullPivLU::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_decompose_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("full_piv_lu_decompose_500x500", move |bh| bh.iter(|| test::black_box(FullPivLU::new(m.clone()))));
|
||||
bh.bench_function("full_piv_lu_decompose_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(FullPivLU::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_solve_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_solve_10x10", move |bh| bh.iter(|| {
|
||||
bh.bench_function("full_piv_lu_solve_10x10", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(10, 1.0);
|
||||
lu.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_solve_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_solve_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("full_piv_lu_solve_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(100, 1.0);
|
||||
lu.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_solve_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_solve_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("full_piv_lu_solve_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(500, 1.0);
|
||||
lu.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_inverse_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_inverse_10x10", move |bh| bh.iter(|| test::black_box(lu.try_inverse())));
|
||||
bh.bench_function("full_piv_lu_inverse_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_inverse_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_inverse_100x100", move |bh| bh.iter(|| test::black_box(lu.try_inverse())));
|
||||
bh.bench_function("full_piv_lu_inverse_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_inverse_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_inverse_500x500", move |bh| bh.iter(|| test::black_box(lu.try_inverse())));
|
||||
bh.bench_function("full_piv_lu_inverse_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_determinant_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_determinant_10x10", move |bh| bh.iter(|| test::black_box(lu.determinant())));
|
||||
bh.bench_function("full_piv_lu_determinant_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.determinant()))
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
fn full_piv_lu_determinant_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_determinant_100x100", move |bh| bh.iter(|| test::black_box(lu.determinant())));
|
||||
bh.bench_function("full_piv_lu_determinant_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.determinant()))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_determinant_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_determinant_500x500", move |bh| bh.iter(|| test::black_box(lu.determinant())));
|
||||
bh.bench_function("full_piv_lu_determinant_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.determinant()))
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(full_piv_lu,
|
||||
criterion_group!(
|
||||
full_piv_lu,
|
||||
full_piv_lu_decompose_10x10,
|
||||
full_piv_lu_decompose_100x100,
|
||||
// full_piv_lu_decompose_500x500,
|
||||
// full_piv_lu_decompose_500x500,
|
||||
full_piv_lu_solve_10x10,
|
||||
full_piv_lu_solve_100x100,
|
||||
// full_piv_lu_solve_500x500,
|
||||
// full_piv_lu_solve_500x500,
|
||||
full_piv_lu_inverse_10x10,
|
||||
full_piv_lu_inverse_100x100,
|
||||
// full_piv_lu_inverse_500x500,
|
||||
// full_piv_lu_inverse_500x500,
|
||||
full_piv_lu_determinant_10x10,
|
||||
full_piv_lu_determinant_100x100,
|
||||
// full_piv_lu_determinant_500x500
|
||||
// full_piv_lu_determinant_500x500
|
||||
);
|
@ -6,55 +6,70 @@ mod macros;
|
||||
// Without unpack.
|
||||
fn hessenberg_decompose_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("hessenberg_decompose_4x4", move |bh| bh.iter(|| test::black_box(Hessenberg::new(m.clone()))));
|
||||
bh.bench_function("hessenberg_decompose_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(Hessenberg::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn hessenberg_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("hessenberg_decompose_100x100", move |bh| bh.iter(|| test::black_box(Hessenberg::new(m.clone()))));
|
||||
bh.bench_function("hessenberg_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(Hessenberg::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn hessenberg_decompose_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(200, 200);
|
||||
bh.bench_function("hessenberg_decompose_200x200", move |bh| bh.iter(|| test::black_box(Hessenberg::new(m.clone()))));
|
||||
bh.bench_function("hessenberg_decompose_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(Hessenberg::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn hessenberg_decompose_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("hessenberg_decompose_500x500", move |bh| bh.iter(|| test::black_box(Hessenberg::new(m.clone()))));
|
||||
bh.bench_function("hessenberg_decompose_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(Hessenberg::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
// With unpack.
|
||||
fn hessenberg_decompose_unpack_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("hessenberg_decompose_unpack_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("hessenberg_decompose_unpack_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let hess = Hessenberg::new(m.clone());
|
||||
let _ = hess.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn hessenberg_decompose_unpack_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(200, 200);
|
||||
bh.bench_function("hessenberg_decompose_unpack_200x200", move |bh| bh.iter(|| {
|
||||
bh.bench_function("hessenberg_decompose_unpack_200x200", move |bh| {
|
||||
bh.iter(|| {
|
||||
let hess = Hessenberg::new(m.clone());
|
||||
let _ = hess.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn hessenberg_decompose_unpack_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("hessenberg_decompose_unpack_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("hessenberg_decompose_unpack_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let hess = Hessenberg::new(m.clone());
|
||||
let _ = hess.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(hessenberg,
|
||||
criterion_group!(
|
||||
hessenberg,
|
||||
hessenberg_decompose_4x4,
|
||||
hessenberg_decompose_100x100,
|
||||
hessenberg_decompose_200x200,
|
||||
// hessenberg_decompose_500x500,
|
||||
// hessenberg_decompose_500x500,
|
||||
hessenberg_decompose_unpack_100x100,
|
||||
hessenberg_decompose_unpack_200x200,
|
||||
// hessenberg_decompose_unpack_500x500
|
||||
// hessenberg_decompose_unpack_500x500
|
||||
);
|
@ -3,82 +3,104 @@ use na::{DMatrix, DVector, LU};
|
||||
// Without unpack.
|
||||
fn lu_decompose_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
bh.bench_function("lu_decompose_10x10", move |bh| bh.iter(|| test::black_box(LU::new(m.clone()))));
|
||||
bh.bench_function("lu_decompose_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(LU::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("lu_decompose_100x100", move |bh| bh.iter(|| test::black_box(LU::new(m.clone()))));
|
||||
bh.bench_function("lu_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(LU::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_decompose_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("lu_decompose_500x500", move |bh| bh.iter(|| test::black_box(LU::new(m.clone()))));
|
||||
bh.bench_function("lu_decompose_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(LU::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_solve_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_solve_10x10", move |bh| bh.iter(|| {
|
||||
bh.bench_function("lu_solve_10x10", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(10, 1.0);
|
||||
lu.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_solve_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_solve_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("lu_solve_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(100, 1.0);
|
||||
lu.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_solve_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("", move |bh| bh.iter(|| {
|
||||
bh.bench_function("", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(500, 1.0);
|
||||
lu.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_inverse_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_inverse_10x10", move |bh| bh.iter(|| test::black_box(lu.try_inverse())));
|
||||
bh.bench_function("lu_inverse_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_inverse_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_inverse_100x100", move |bh| bh.iter(|| test::black_box(lu.try_inverse())));
|
||||
bh.bench_function("lu_inverse_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_inverse_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_inverse_500x500", move |bh| bh.iter(|| test::black_box(lu.try_inverse())));
|
||||
bh.bench_function("lu_inverse_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_determinant_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_determinant_10x10", move |bh| bh.iter(|| test::black_box(lu.determinant())));
|
||||
bh.bench_function("lu_determinant_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.determinant()))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_determinant_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_determinant_100x100", move |bh| bh.iter(|| test::black_box(lu.determinant())));
|
||||
bh.bench_function("lu_determinant_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.determinant()))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_determinant_500x500(bh: &mut criterion::Criterion) {
|
||||
@ -88,15 +110,16 @@ fn lu_determinant_500x500(bh: &mut criterion::Criterion) {
|
||||
bh.bench_function("", move |bh| bh.iter(|| test::black_box(lu.determinant())));
|
||||
}
|
||||
|
||||
criterion_group!(lu,
|
||||
criterion_group!(
|
||||
lu,
|
||||
lu_decompose_10x10,
|
||||
lu_decompose_100x100,
|
||||
// lu_decompose_500x500,
|
||||
// lu_decompose_500x500,
|
||||
lu_solve_10x10,
|
||||
lu_solve_100x100,
|
||||
lu_inverse_10x10,
|
||||
lu_inverse_100x100,
|
||||
// lu_inverse_500x500,
|
||||
// lu_inverse_500x500,
|
||||
lu_determinant_10x10,
|
||||
lu_determinant_100x100
|
||||
);
|
@ -6,128 +6,158 @@ mod macros;
|
||||
// Without unpack.
|
||||
fn qr_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("qr_decompose_100x100", move |bh| bh.iter(|| test::black_box(QR::new(m.clone()))));
|
||||
bh.bench_function("qr_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(QR::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_100x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 500);
|
||||
bh.bench_function("qr_decompose_100x500", move |bh| bh.iter(|| test::black_box(QR::new(m.clone()))));
|
||||
bh.bench_function("qr_decompose_100x500", move |bh| {
|
||||
bh.iter(|| test::black_box(QR::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("qr_decompose_4x4", move |bh| bh.iter(|| test::black_box(QR::new(m.clone()))));
|
||||
bh.bench_function("qr_decompose_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(QR::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_500x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 100);
|
||||
bh.bench_function("qr_decompose_500x100", move |bh| bh.iter(|| test::black_box(QR::new(m.clone()))));
|
||||
bh.bench_function("qr_decompose_500x100", move |bh| {
|
||||
bh.iter(|| test::black_box(QR::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("qr_decompose_500x500", move |bh| bh.iter(|| test::black_box(QR::new(m.clone()))));
|
||||
bh.bench_function("qr_decompose_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(QR::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
// With unpack.
|
||||
fn qr_decompose_unpack_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("qr_decompose_unpack_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_decompose_unpack_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let qr = QR::new(m.clone());
|
||||
let _ = qr.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_unpack_100x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 500);
|
||||
bh.bench_function("qr_decompose_unpack_100x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_decompose_unpack_100x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let qr = QR::new(m.clone());
|
||||
let _ = qr.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_unpack_500x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 100);
|
||||
bh.bench_function("qr_decompose_unpack_500x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_decompose_unpack_500x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let qr = QR::new(m.clone());
|
||||
let _ = qr.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_unpack_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("qr_decompose_unpack_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_decompose_unpack_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let qr = QR::new(m.clone());
|
||||
let _ = qr.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_solve_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let qr = QR::new(m.clone());
|
||||
|
||||
bh.bench_function("qr_solve_10x10", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_solve_10x10", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(10, 1.0);
|
||||
qr.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_solve_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let qr = QR::new(m.clone());
|
||||
|
||||
bh.bench_function("qr_solve_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_solve_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(100, 1.0);
|
||||
qr.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_solve_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let qr = QR::new(m.clone());
|
||||
|
||||
bh.bench_function("qr_solve_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_solve_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(500, 1.0);
|
||||
qr.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_inverse_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let qr = QR::new(m.clone());
|
||||
|
||||
bh.bench_function("qr_inverse_10x10", move |bh| bh.iter(|| test::black_box(qr.try_inverse())));
|
||||
bh.bench_function("qr_inverse_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(qr.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_inverse_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let qr = QR::new(m.clone());
|
||||
|
||||
bh.bench_function("qr_inverse_100x100", move |bh| bh.iter(|| test::black_box(qr.try_inverse())));
|
||||
bh.bench_function("qr_inverse_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(qr.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_inverse_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let qr = QR::new(m.clone());
|
||||
|
||||
bh.bench_function("qr_inverse_500x500", move |bh| bh.iter(|| test::black_box(qr.try_inverse())));
|
||||
bh.bench_function("qr_inverse_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(qr.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
criterion_group!(qr,
|
||||
criterion_group!(
|
||||
qr,
|
||||
qr_decompose_100x100,
|
||||
qr_decompose_100x500,
|
||||
qr_decompose_4x4,
|
||||
qr_decompose_500x100,
|
||||
// qr_decompose_500x500,
|
||||
// qr_decompose_500x500,
|
||||
qr_decompose_unpack_100x100,
|
||||
qr_decompose_unpack_100x500,
|
||||
qr_decompose_unpack_500x100,
|
||||
// qr_decompose_unpack_500x500,
|
||||
// qr_decompose_unpack_500x500,
|
||||
qr_solve_10x10,
|
||||
qr_solve_100x100,
|
||||
// qr_solve_500x500,
|
||||
// qr_solve_500x500,
|
||||
qr_inverse_10x10,
|
||||
qr_inverse_100x100,
|
||||
// qr_inverse_500x500
|
||||
// qr_inverse_500x500
|
||||
);
|
@ -2,45 +2,62 @@ use na::{Matrix4, Schur};
|
||||
|
||||
fn schur_decompose_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("schur_decompose_4x4", move |bh| bh.iter(|| test::black_box(Schur::new(m.clone()))));
|
||||
bh.bench_function("schur_decompose_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(Schur::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn schur_decompose_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("schur_decompose_10x10", move |bh| bh.iter(|| test::black_box(Schur::new(m.clone()))));
|
||||
bh.bench_function("schur_decompose_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(Schur::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn schur_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("schur_decompose_100x100", move |bh| bh.iter(|| test::black_box(Schur::new(m.clone()))));
|
||||
bh.bench_function("schur_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(Schur::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn schur_decompose_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("schur_decompose_200x200", move |bh| bh.iter(|| test::black_box(Schur::new(m.clone()))));
|
||||
bh.bench_function("schur_decompose_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(Schur::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn eigenvalues_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("eigenvalues_4x4", move |bh| bh.iter(|| test::black_box(m.complex_eigenvalues())));
|
||||
bh.bench_function("eigenvalues_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(m.complex_eigenvalues()))
|
||||
});
|
||||
}
|
||||
|
||||
fn eigenvalues_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("eigenvalues_10x10", move |bh| bh.iter(|| test::black_box(m.complex_eigenvalues())));
|
||||
bh.bench_function("eigenvalues_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(m.complex_eigenvalues()))
|
||||
});
|
||||
}
|
||||
|
||||
fn eigenvalues_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("eigenvalues_100x100", move |bh| bh.iter(|| test::black_box(m.complex_eigenvalues())));
|
||||
bh.bench_function("eigenvalues_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(m.complex_eigenvalues()))
|
||||
});
|
||||
}
|
||||
|
||||
fn eigenvalues_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("eigenvalues_200x200", move |bh| bh.iter(|| test::black_box(m.complex_eigenvalues())));
|
||||
bh.bench_function("eigenvalues_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(m.complex_eigenvalues()))
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(schur,
|
||||
criterion_group!(
|
||||
schur,
|
||||
schur_decompose_4x4,
|
||||
schur_decompose_10x10,
|
||||
schur_decompose_100x100,
|
||||
|
@ -4,76 +4,92 @@ fn solve_l_triangular_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let v = DVector::<f64>::new_random(100);
|
||||
|
||||
bh.bench_function("solve_l_triangular_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("solve_l_triangular_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.solve_lower_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn solve_l_triangular_1000x1000(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(1000, 1000);
|
||||
let v = DVector::<f64>::new_random(1000);
|
||||
|
||||
bh.bench_function("solve_l_triangular_1000x1000", move |bh| bh.iter(|| {
|
||||
bh.bench_function("solve_l_triangular_1000x1000", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.solve_lower_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn tr_solve_l_triangular_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let v = DVector::<f64>::new_random(100);
|
||||
|
||||
bh.bench_function("tr_solve_l_triangular_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("tr_solve_l_triangular_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.tr_solve_lower_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn tr_solve_l_triangular_1000x1000(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(1000, 1000);
|
||||
let v = DVector::<f64>::new_random(1000);
|
||||
|
||||
bh.bench_function("tr_solve_l_triangular_1000x1000", move |bh| bh.iter(|| {
|
||||
bh.bench_function("tr_solve_l_triangular_1000x1000", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.tr_solve_lower_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn solve_u_triangular_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let v = DVector::<f64>::new_random(100);
|
||||
|
||||
bh.bench_function("solve_u_triangular_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("solve_u_triangular_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.solve_upper_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn solve_u_triangular_1000x1000(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(1000, 1000);
|
||||
let v = DVector::<f64>::new_random(1000);
|
||||
|
||||
bh.bench_function("solve_u_triangular_1000x1000", move |bh| bh.iter(|| {
|
||||
bh.bench_function("solve_u_triangular_1000x1000", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.solve_upper_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn tr_solve_u_triangular_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let v = DVector::<f64>::new_random(100);
|
||||
|
||||
bh.bench_function("tr_solve_u_triangular_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("tr_solve_u_triangular_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.tr_solve_upper_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn tr_solve_u_triangular_1000x1000(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(1000, 1000);
|
||||
let v = DVector::<f64>::new_random(1000);
|
||||
|
||||
bh.bench_function("tr_solve_u_triangular_1000x1000", move |bh| bh.iter(|| {
|
||||
bh.bench_function("tr_solve_u_triangular_1000x1000", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.tr_solve_upper_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
criterion_group!(solve,
|
||||
criterion_group!(
|
||||
solve,
|
||||
solve_l_triangular_100x100,
|
||||
solve_l_triangular_1000x1000,
|
||||
tr_solve_l_triangular_100x100,
|
||||
|
@ -2,86 +2,118 @@ use na::{Matrix4, SVD};
|
||||
|
||||
fn svd_decompose_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("svd_decompose_4x4", move |bh| bh.iter(|| test::black_box(SVD::new(m.clone(), true, true))));
|
||||
bh.bench_function("svd_decompose_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(SVD::new(m.clone(), true, true)))
|
||||
});
|
||||
}
|
||||
|
||||
fn svd_decompose_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("svd_decompose_10x10", move |bh| bh.iter(|| test::black_box(SVD::new(m.clone(), true, true))));
|
||||
bh.bench_function("svd_decompose_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(SVD::new(m.clone(), true, true)))
|
||||
});
|
||||
}
|
||||
|
||||
fn svd_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("svd_decompose_100x100", move |bh| bh.iter(|| test::black_box(SVD::new(m.clone(), true, true))));
|
||||
bh.bench_function("svd_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(SVD::new(m.clone(), true, true)))
|
||||
});
|
||||
}
|
||||
|
||||
fn svd_decompose_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("svd_decompose_200x200", move |bh| bh.iter(|| test::black_box(SVD::new(m.clone(), true, true))));
|
||||
bh.bench_function("svd_decompose_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(SVD::new(m.clone(), true, true)))
|
||||
});
|
||||
}
|
||||
|
||||
fn rank_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("rank_4x4", move |bh| bh.iter(|| test::black_box(m.rank(1.0e-10))));
|
||||
bh.bench_function("rank_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(m.rank(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn rank_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("rank_10x10", move |bh| bh.iter(|| test::black_box(m.rank(1.0e-10))));
|
||||
bh.bench_function("rank_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(m.rank(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn rank_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("rank_100x100", move |bh| bh.iter(|| test::black_box(m.rank(1.0e-10))));
|
||||
bh.bench_function("rank_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(m.rank(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn rank_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("rank_200x200", move |bh| bh.iter(|| test::black_box(m.rank(1.0e-10))));
|
||||
bh.bench_function("rank_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(m.rank(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn singular_values_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("singular_values_4x4", move |bh| bh.iter(|| test::black_box(m.singular_values())));
|
||||
bh.bench_function("singular_values_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(m.singular_values()))
|
||||
});
|
||||
}
|
||||
|
||||
fn singular_values_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("singular_values_10x10", move |bh| bh.iter(|| test::black_box(m.singular_values())));
|
||||
bh.bench_function("singular_values_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(m.singular_values()))
|
||||
});
|
||||
}
|
||||
|
||||
fn singular_values_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("singular_values_100x100", move |bh| bh.iter(|| test::black_box(m.singular_values())));
|
||||
bh.bench_function("singular_values_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(m.singular_values()))
|
||||
});
|
||||
}
|
||||
|
||||
fn singular_values_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("singular_values_200x200", move |bh| bh.iter(|| test::black_box(m.singular_values())));
|
||||
bh.bench_function("singular_values_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(m.singular_values()))
|
||||
});
|
||||
}
|
||||
|
||||
fn pseudo_inverse_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("pseudo_inverse_4x4", move |bh| bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10))));
|
||||
bh.bench_function("pseudo_inverse_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn pseudo_inverse_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("pseudo_inverse_10x10", move |bh| bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10))));
|
||||
bh.bench_function("pseudo_inverse_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn pseudo_inverse_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("pseudo_inverse_100x100", move |bh| bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10))));
|
||||
bh.bench_function("pseudo_inverse_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn pseudo_inverse_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("pseudo_inverse_200x200", move |bh| bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10))));
|
||||
bh.bench_function("pseudo_inverse_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
criterion_group!(svd,
|
||||
criterion_group!(
|
||||
svd,
|
||||
svd_decompose_4x4,
|
||||
svd_decompose_10x10,
|
||||
svd_decompose_100x100,
|
||||
|
@ -2,25 +2,34 @@ use na::{Matrix4, SymmetricEigen};
|
||||
|
||||
fn symmetric_eigen_decompose_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("symmetric_eigen_decompose_4x4", move |bh| bh.iter(|| test::black_box(SymmetricEigen::new(m.clone()))));
|
||||
bh.bench_function("symmetric_eigen_decompose_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(SymmetricEigen::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn symmetric_eigen_decompose_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("symmetric_eigen_decompose_10x10", move |bh| bh.iter(|| test::black_box(SymmetricEigen::new(m.clone()))));
|
||||
bh.bench_function("symmetric_eigen_decompose_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(SymmetricEigen::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn symmetric_eigen_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("symmetric_eigen_decompose_100x100", move |bh| bh.iter(|| test::black_box(SymmetricEigen::new(m.clone()))));
|
||||
bh.bench_function("symmetric_eigen_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(SymmetricEigen::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn symmetric_eigen_decompose_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("symmetric_eigen_decompose_200x200", move |bh| bh.iter(|| test::black_box(SymmetricEigen::new(m.clone()))));
|
||||
bh.bench_function("symmetric_eigen_decompose_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(SymmetricEigen::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(symmetric_eigen,
|
||||
criterion_group!(
|
||||
symmetric_eigen,
|
||||
symmetric_eigen_decompose_4x4,
|
||||
symmetric_eigen_decompose_10x10,
|
||||
symmetric_eigen_decompose_100x100,
|
||||
|
@ -4,7 +4,7 @@ version = "0.0.0"
|
||||
authors = [ "You" ]
|
||||
|
||||
[dependencies]
|
||||
nalgebra = "0.20.0"
|
||||
nalgebra = "0.21.0"
|
||||
|
||||
[[bin]]
|
||||
name = "example"
|
||||
|
@ -1,18 +1,9 @@
|
||||
extern crate alga;
|
||||
extern crate nalgebra as na;
|
||||
|
||||
use alga::linear::FiniteDimInnerSpace;
|
||||
use na::allocator::Allocator;
|
||||
use na::dimension::Dim;
|
||||
use na::{DefaultAllocator, RealField, Unit, Vector2, Vector3, VectorN};
|
||||
|
||||
/// Reflects a vector wrt. the hyperplane with normal `plane_normal`.
|
||||
fn reflect_wrt_hyperplane_with_algebraic_genericity<V>(plane_normal: &Unit<V>, vector: &V) -> V
|
||||
where V: FiniteDimInnerSpace + Copy {
|
||||
let n = plane_normal.as_ref(); // Get the underlying vector of type `V`.
|
||||
*vector - *n * (n.dot(vector) * na::convert(2.0))
|
||||
}
|
||||
|
||||
/// Reflects a vector wrt. the hyperplane with normal `plane_normal`.
|
||||
fn reflect_wrt_hyperplane_with_dimensional_genericity<N: RealField, D: Dim>(
|
||||
plane_normal: &Unit<VectorN<N, D>>,
|
||||
@ -29,7 +20,9 @@ where
|
||||
|
||||
/// Reflects a 2D vector wrt. the 2D line with normal `plane_normal`.
|
||||
fn reflect_wrt_hyperplane2<N>(plane_normal: &Unit<Vector2<N>>, vector: &Vector2<N>) -> Vector2<N>
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
let n = plane_normal.as_ref(); // Get the underlying Vector2
|
||||
vector - n * (n.dot(vector) * na::convert(2.0))
|
||||
}
|
||||
@ -37,7 +30,9 @@ where N: RealField {
|
||||
/// Reflects a 3D vector wrt. the 3D plane with normal `plane_normal`.
|
||||
/// /!\ This is an exact replicate of `reflect_wrt_hyperplane2, but for 3D.
|
||||
fn reflect_wrt_hyperplane3<N>(plane_normal: &Unit<Vector3<N>>, vector: &Vector3<N>) -> Vector3<N>
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
let n = plane_normal.as_ref(); // Get the underlying Vector3
|
||||
vector - n * (n.dot(vector) * na::convert(2.0))
|
||||
}
|
||||
@ -50,15 +45,6 @@ fn main() {
|
||||
let v3 = Vector3::new(1.0, 2.0, 3.0); // 3D vector to be reflected.
|
||||
|
||||
// We can call the same function for 2D and 3D.
|
||||
assert_eq!(
|
||||
reflect_wrt_hyperplane_with_algebraic_genericity(&plane2, &v2).y,
|
||||
-2.0
|
||||
);
|
||||
assert_eq!(
|
||||
reflect_wrt_hyperplane_with_algebraic_genericity(&plane3, &v3).y,
|
||||
-2.0
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
reflect_wrt_hyperplane_with_dimensional_genericity(&plane2, &v2).y,
|
||||
-2.0
|
||||
|
@ -1,39 +0,0 @@
|
||||
extern crate alga;
|
||||
extern crate nalgebra as na;
|
||||
|
||||
use alga::linear::Transformation;
|
||||
use na::{Id, Isometry3, Point3, Vector3};
|
||||
|
||||
/*
|
||||
* Applies `n` times the transformation `t` to the vector `v` and sum each
|
||||
* intermediate value.
|
||||
*/
|
||||
fn complicated_algorithm<T>(v: &Vector3<f32>, t: &T, n: usize) -> Vector3<f32>
|
||||
where T: Transformation<Point3<f32>> {
|
||||
let mut result = *v;
|
||||
|
||||
// Do lots of operations involving t.
|
||||
for _ in 0..n {
|
||||
result = v + t.transform_vector(&result);
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
/*
|
||||
* The two following calls are equivalent in term of result.
|
||||
*/
|
||||
fn main() {
|
||||
let v = Vector3::new(1.0, 2.0, 3.0);
|
||||
|
||||
// The specialization generated by the compiler will do vector additions only.
|
||||
let result1 = complicated_algorithm(&v, &Id::new(), 100000);
|
||||
|
||||
// The specialization generated by the compiler will also include matrix multiplications.
|
||||
let iso = Isometry3::identity();
|
||||
let result2 = complicated_algorithm(&v, &iso, 100000);
|
||||
|
||||
// They both return the same result.
|
||||
assert!(result1 == Vector3::new(100001.0, 200002.0, 300003.0));
|
||||
assert!(result2 == Vector3::new(100001.0, 200002.0, 300003.0));
|
||||
}
|
@ -1,19 +1,12 @@
|
||||
extern crate alga;
|
||||
extern crate nalgebra as na;
|
||||
|
||||
use alga::general::{RealField, RingCommutative};
|
||||
use na::{Scalar, Vector3};
|
||||
use simba::scalar::RealField;
|
||||
|
||||
fn print_vector<N: Scalar>(m: &Vector3<N>) {
|
||||
println!("{:?}", m)
|
||||
}
|
||||
|
||||
fn print_squared_norm<N: Scalar + RingCommutative>(v: &Vector3<N>) {
|
||||
// NOTE: alternatively, nalgebra already defines `v.squared_norm()`.
|
||||
let sqnorm = v.dot(v);
|
||||
println!("{:?}", sqnorm);
|
||||
}
|
||||
|
||||
fn print_norm<N: RealField>(v: &Vector3<N>) {
|
||||
// NOTE: alternatively, nalgebra already defines `v.norm()`.
|
||||
let norm = v.dot(v).sqrt();
|
||||
@ -28,6 +21,5 @@ fn main() {
|
||||
let v2 = Vector3::new(1.0, 2.0, 3.0);
|
||||
|
||||
print_vector(&v1);
|
||||
print_squared_norm(&v1);
|
||||
print_norm(&v2);
|
||||
}
|
||||
|
@ -18,6 +18,6 @@ fn main() {
|
||||
assert!(iso_fail.is_none());
|
||||
|
||||
// Similarity -> Isometry conversion can be forced at your own risks.
|
||||
let iso_forced: Isometry2<f32> = unsafe { na::convert_unchecked(sim_with_scaling) };
|
||||
let iso_forced: Isometry2<f32> = na::convert_unchecked(sim_with_scaling);
|
||||
assert_eq!(iso_success.unwrap(), iso_forced);
|
||||
}
|
||||
|
@ -1,4 +1,3 @@
|
||||
extern crate alga;
|
||||
#[macro_use]
|
||||
extern crate approx;
|
||||
extern crate nalgebra as na;
|
||||
|
@ -1,4 +1,3 @@
|
||||
extern crate alga;
|
||||
extern crate nalgebra as na;
|
||||
|
||||
use na::{Matrix4, Point3, Vector3, Vector4};
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "nalgebra-glm"
|
||||
version = "0.6.0"
|
||||
version = "0.7.0"
|
||||
authors = ["sebcrozet <developer@crozet.re>"]
|
||||
|
||||
description = "A computer-graphics oriented API for nalgebra, inspired by the C++ GLM library."
|
||||
@ -15,7 +15,7 @@ edition = "2018"
|
||||
|
||||
[features]
|
||||
default = [ "std" ]
|
||||
std = [ "nalgebra/std", "alga/std" ]
|
||||
std = [ "nalgebra/std", "simba/std" ]
|
||||
stdweb = [ "nalgebra/stdweb" ]
|
||||
arbitrary = [ "nalgebra/arbitrary" ]
|
||||
serde-serialize = [ "nalgebra/serde-serialize" ]
|
||||
@ -24,5 +24,5 @@ abomonation-serialize = [ "nalgebra/abomonation-serialize" ]
|
||||
[dependencies]
|
||||
num-traits = { version = "0.2", default-features = false }
|
||||
approx = { version = "0.3", default-features = false }
|
||||
alga = { version = "0.9", default-features = false }
|
||||
nalgebra = { path = "..", version = "0.20", default-features = false }
|
||||
simba = { version = "0.1", default-features = false }
|
||||
nalgebra = { path = "..", version = "0.21", default-features = false }
|
||||
|
@ -1,6 +1,6 @@
|
||||
use core::mem;
|
||||
use na::{self, DefaultAllocator, RealField};
|
||||
use num::FromPrimitive;
|
||||
use core::mem;
|
||||
|
||||
use crate::aliases::{TMat, TVec};
|
||||
use crate::traits::{Alloc, Dimension, Number};
|
||||
@ -22,7 +22,9 @@ use crate::traits::{Alloc, Dimension, Number};
|
||||
///
|
||||
/// * [`sign`](fn.sign.html)
|
||||
pub fn abs<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N, R, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
x.abs()
|
||||
}
|
||||
|
||||
@ -44,7 +46,9 @@ where DefaultAllocator: Alloc<N, R, C> {
|
||||
/// * [`round`](fn.round.html)
|
||||
/// * [`trunc`](fn.trunc.html)
|
||||
pub fn ceil<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| x.ceil())
|
||||
}
|
||||
|
||||
@ -94,7 +98,9 @@ pub fn clamp_scalar<N: Number>(x: N, min_val: N, max_val: N) -> N {
|
||||
/// * [`clamp_scalar`](fn.clamp_scalar.html)
|
||||
/// * [`clamp_vec`](fn.clamp_vec.html)
|
||||
pub fn clamp<N: Number, D: Dimension>(x: &TVec<N, D>, min_val: N, max_val: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| na::clamp(x, min_val, max_val))
|
||||
}
|
||||
|
||||
@ -167,7 +173,9 @@ pub fn float_bits_to_int(v: f32) -> i32 {
|
||||
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
||||
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
||||
pub fn float_bits_to_int_vec<D: Dimension>(v: &TVec<f32, D>) -> TVec<i32, D>
|
||||
where DefaultAllocator: Alloc<f32, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<f32, D>,
|
||||
{
|
||||
v.map(float_bits_to_int)
|
||||
}
|
||||
|
||||
@ -202,7 +210,9 @@ pub fn float_bits_to_uint(v: f32) -> u32 {
|
||||
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
||||
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
||||
pub fn float_bits_to_uint_vec<D: Dimension>(v: &TVec<f32, D>) -> TVec<u32, D>
|
||||
where DefaultAllocator: Alloc<f32, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<f32, D>,
|
||||
{
|
||||
v.map(float_bits_to_uint)
|
||||
}
|
||||
|
||||
@ -223,7 +233,9 @@ where DefaultAllocator: Alloc<f32, D> {
|
||||
/// * [`round`](fn.round.html)
|
||||
/// * [`trunc`](fn.trunc.html)
|
||||
pub fn floor<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| x.floor())
|
||||
}
|
||||
|
||||
@ -250,7 +262,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`round`](fn.round.html)
|
||||
/// * [`trunc`](fn.trunc.html)
|
||||
pub fn fract<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| x.fract())
|
||||
}
|
||||
|
||||
@ -293,7 +307,9 @@ pub fn int_bits_to_float(v: i32) -> f32 {
|
||||
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
||||
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
||||
pub fn int_bits_to_float_vec<D: Dimension>(v: &TVec<i32, D>) -> TVec<f32, D>
|
||||
where DefaultAllocator: Alloc<f32, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<f32, D>,
|
||||
{
|
||||
v.map(int_bits_to_float)
|
||||
}
|
||||
|
||||
@ -352,7 +368,9 @@ pub fn mix_scalar<N: Number>(x: N, y: N, a: N) -> N {
|
||||
/// * [`mix_scalar`](fn.mix_scalar.html)
|
||||
/// * [`mix_vec`](fn.mix_vec.html)
|
||||
pub fn mix<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, a: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x * (N::one() - a) + y * a
|
||||
}
|
||||
|
||||
@ -425,7 +443,9 @@ pub fn lerp_scalar<N: Number>(x: N, y: N, a: N) -> N {
|
||||
/// * [`lerp_scalar`](fn.lerp_scalar.html)
|
||||
/// * [`lerp_vec`](fn.lerp_vec.html)
|
||||
pub fn lerp<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, a: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
mix(x, y, a)
|
||||
}
|
||||
|
||||
@ -468,7 +488,9 @@ where
|
||||
///
|
||||
/// * [`modf`](fn.modf.html)
|
||||
pub fn modf_vec<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x % y)
|
||||
}
|
||||
|
||||
@ -500,7 +522,9 @@ pub fn modf<N: Number>(x: N, i: N) -> N {
|
||||
/// * [`fract`](fn.fract.html)
|
||||
/// * [`trunc`](fn.trunc.html)
|
||||
pub fn round<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| x.round())
|
||||
}
|
||||
|
||||
@ -524,7 +548,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`abs`](fn.abs.html)
|
||||
///
|
||||
pub fn sign<N: Number, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| if x.is_zero() { N::zero() } else { x.signum() })
|
||||
}
|
||||
|
||||
@ -550,13 +576,17 @@ pub fn step_scalar<N: Number>(edge: N, x: N) -> N {
|
||||
|
||||
/// Returns 0.0 if `x[i] < edge`, otherwise it returns 1.0.
|
||||
pub fn step<N: Number, D: Dimension>(edge: N, x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| step_scalar(edge, x))
|
||||
}
|
||||
|
||||
/// Returns 0.0 if `x[i] < edge[i]`, otherwise it returns 1.0.
|
||||
pub fn step_vec<N: Number, D: Dimension>(edge: &TVec<N, D>, x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
edge.zip_map(x, step_scalar)
|
||||
}
|
||||
|
||||
@ -577,7 +607,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`fract`](fn.fract.html)
|
||||
/// * [`round`](fn.round.html)
|
||||
pub fn trunc<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| x.trunc())
|
||||
}
|
||||
|
||||
@ -612,6 +644,8 @@ pub fn uint_bits_to_float_scalar(v: u32) -> f32 {
|
||||
/// * [`int_bits_to_float_vec`](fn.int_bits_to_float_vec.html)
|
||||
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
||||
pub fn uint_bits_to_float<D: Dimension>(v: &TVec<u32, D>) -> TVec<f32, D>
|
||||
where DefaultAllocator: Alloc<f32, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<f32, D>,
|
||||
{
|
||||
v.map(uint_bits_to_float_scalar)
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
use crate::aliases::TVec;
|
||||
use na::{DefaultAllocator, RealField};
|
||||
use crate::traits::{Alloc, Dimension};
|
||||
use na::{DefaultAllocator, RealField};
|
||||
|
||||
/// Component-wise exponential.
|
||||
///
|
||||
@ -8,7 +8,9 @@ use crate::traits::{Alloc, Dimension};
|
||||
///
|
||||
/// * [`exp2`](fn.exp2.html)
|
||||
pub fn exp<N: RealField, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.exp())
|
||||
}
|
||||
|
||||
@ -18,7 +20,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
///
|
||||
/// * [`exp`](fn.exp.html)
|
||||
pub fn exp2<N: RealField, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.exp2())
|
||||
}
|
||||
|
||||
@ -28,7 +32,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
///
|
||||
/// * [`sqrt`](fn.sqrt.html)
|
||||
pub fn inversesqrt<N: RealField, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| N::one() / x.sqrt())
|
||||
}
|
||||
|
||||
@ -38,7 +44,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
///
|
||||
/// * [`log2`](fn.log2.html)
|
||||
pub fn log<N: RealField, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.ln())
|
||||
}
|
||||
|
||||
@ -48,13 +56,17 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
///
|
||||
/// * [`log`](fn.log.html)
|
||||
pub fn log2<N: RealField, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.log2())
|
||||
}
|
||||
|
||||
/// Component-wise power.
|
||||
pub fn pow<N: RealField, D: Dimension>(base: &TVec<N, D>, exponent: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
base.zip_map(exponent, |b, e| b.powf(e))
|
||||
}
|
||||
|
||||
@ -67,6 +79,8 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`inversesqrt`](fn.inversesqrt.html)
|
||||
/// * [`pow`](fn.pow.html)
|
||||
pub fn sqrt<N: RealField, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.sqrt())
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
use crate::aliases::TMat4;
|
||||
use na::{RealField};
|
||||
use na::RealField;
|
||||
|
||||
//pub fn frustum<N: RealField>(left: N, right: N, bottom: N, top: N, near: N, far: N) -> TMat4<N> {
|
||||
// unimplemented!()
|
||||
@ -90,13 +90,20 @@ pub fn ortho_lh<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N, zf
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_lh_no<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> TMat4<N> {
|
||||
let two : N = crate::convert(2.0);
|
||||
let mut mat : TMat4<N> = TMat4::<N>::identity();
|
||||
pub fn ortho_lh_no<N: RealField>(
|
||||
left: N,
|
||||
right: N,
|
||||
bottom: N,
|
||||
top: N,
|
||||
znear: N,
|
||||
zfar: N,
|
||||
) -> TMat4<N> {
|
||||
let two: N = crate::convert(2.0);
|
||||
let mut mat: TMat4<N> = TMat4::<N>::identity();
|
||||
|
||||
mat[(0, 0)] = two / (right - left);
|
||||
mat[(0, 3)] = -(right + left) / (right - left);
|
||||
mat[(1, 1)] = two / (top-bottom);
|
||||
mat[(1, 1)] = two / (top - bottom);
|
||||
mat[(1, 3)] = -(top + bottom) / (top - bottom);
|
||||
mat[(2, 2)] = two / (zfar - znear);
|
||||
mat[(2, 3)] = -(zfar + znear) / (zfar - znear);
|
||||
@ -115,17 +122,24 @@ pub fn ortho_lh_no<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N,
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_lh_zo<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> TMat4<N> {
|
||||
let one : N = N::one();
|
||||
let two : N = crate::convert(2.0);
|
||||
let mut mat : TMat4<N> = TMat4::<N>::identity();
|
||||
pub fn ortho_lh_zo<N: RealField>(
|
||||
left: N,
|
||||
right: N,
|
||||
bottom: N,
|
||||
top: N,
|
||||
znear: N,
|
||||
zfar: N,
|
||||
) -> TMat4<N> {
|
||||
let one: N = N::one();
|
||||
let two: N = crate::convert(2.0);
|
||||
let mut mat: TMat4<N> = TMat4::<N>::identity();
|
||||
|
||||
mat[(0, 0)] = two / (right - left);
|
||||
mat[(0, 3)] = - (right + left) / (right - left);
|
||||
mat[(0, 3)] = -(right + left) / (right - left);
|
||||
mat[(1, 1)] = two / (top - bottom);
|
||||
mat[(1, 3)] = - (top + bottom) / (top - bottom);
|
||||
mat[(1, 3)] = -(top + bottom) / (top - bottom);
|
||||
mat[(2, 2)] = one / (zfar - znear);
|
||||
mat[(2, 3)] = - znear / (zfar - znear);
|
||||
mat[(2, 3)] = -znear / (zfar - znear);
|
||||
|
||||
mat
|
||||
}
|
||||
@ -171,16 +185,23 @@ pub fn ortho_rh<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N, zf
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_rh_no<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> TMat4<N> {
|
||||
let two : N = crate::convert(2.0);
|
||||
let mut mat : TMat4<N> = TMat4::<N>::identity();
|
||||
pub fn ortho_rh_no<N: RealField>(
|
||||
left: N,
|
||||
right: N,
|
||||
bottom: N,
|
||||
top: N,
|
||||
znear: N,
|
||||
zfar: N,
|
||||
) -> TMat4<N> {
|
||||
let two: N = crate::convert(2.0);
|
||||
let mut mat: TMat4<N> = TMat4::<N>::identity();
|
||||
|
||||
mat[(0, 0)] = two / (right - left);
|
||||
mat[(0, 3)] = - (right + left) / (right - left);
|
||||
mat[(1, 1)] = two/(top-bottom);
|
||||
mat[(1, 3)] = - (top + bottom) / (top - bottom);
|
||||
mat[(2, 2)] = - two / (zfar - znear);
|
||||
mat[(2, 3)] = - (zfar + znear) / (zfar - znear);
|
||||
mat[(0, 3)] = -(right + left) / (right - left);
|
||||
mat[(1, 1)] = two / (top - bottom);
|
||||
mat[(1, 3)] = -(top + bottom) / (top - bottom);
|
||||
mat[(2, 2)] = -two / (zfar - znear);
|
||||
mat[(2, 3)] = -(zfar + znear) / (zfar - znear);
|
||||
|
||||
mat
|
||||
}
|
||||
@ -196,17 +217,24 @@ pub fn ortho_rh_no<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N,
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_rh_zo<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> TMat4<N> {
|
||||
let one : N = N::one();
|
||||
let two : N = crate::convert(2.0);
|
||||
let mut mat : TMat4<N> = TMat4::<N>::identity();
|
||||
pub fn ortho_rh_zo<N: RealField>(
|
||||
left: N,
|
||||
right: N,
|
||||
bottom: N,
|
||||
top: N,
|
||||
znear: N,
|
||||
zfar: N,
|
||||
) -> TMat4<N> {
|
||||
let one: N = N::one();
|
||||
let two: N = crate::convert(2.0);
|
||||
let mut mat: TMat4<N> = TMat4::<N>::identity();
|
||||
|
||||
mat[(0, 0)] = two / (right - left);
|
||||
mat[(0, 3)] = - (right + left) / (right - left);
|
||||
mat[(1, 1)] = two/(top-bottom);
|
||||
mat[(1, 3)] = - (top + bottom) / (top - bottom);
|
||||
mat[(2, 2)] = - one / (zfar - znear);
|
||||
mat[(2, 3)] = - znear / (zfar - znear);
|
||||
mat[(0, 3)] = -(right + left) / (right - left);
|
||||
mat[(1, 1)] = two / (top - bottom);
|
||||
mat[(1, 3)] = -(top + bottom) / (top - bottom);
|
||||
mat[(2, 2)] = -one / (zfar - znear);
|
||||
mat[(2, 3)] = -znear / (zfar - znear);
|
||||
|
||||
mat
|
||||
}
|
||||
@ -264,19 +292,16 @@ pub fn perspective_fov_lh<N: RealField>(fov: N, width: N, height: N, near: N, fa
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_lh_no<N: RealField>(fov: N, width: N, height: N, near: N, far: N) -> TMat4<N> {
|
||||
assert!(
|
||||
width > N::zero(),
|
||||
"The width must be greater than zero"
|
||||
);
|
||||
assert!(
|
||||
height > N::zero(),
|
||||
"The height must be greater than zero."
|
||||
);
|
||||
assert!(
|
||||
fov > N::zero(),
|
||||
"The fov must be greater than zero"
|
||||
);
|
||||
pub fn perspective_fov_lh_no<N: RealField>(
|
||||
fov: N,
|
||||
width: N,
|
||||
height: N,
|
||||
near: N,
|
||||
far: N,
|
||||
) -> TMat4<N> {
|
||||
assert!(width > N::zero(), "The width must be greater than zero");
|
||||
assert!(height > N::zero(), "The height must be greater than zero.");
|
||||
assert!(fov > N::zero(), "The fov must be greater than zero");
|
||||
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
@ -287,7 +312,7 @@ pub fn perspective_fov_lh_no<N: RealField>(fov: N, width: N, height: N, near: N,
|
||||
mat[(0, 0)] = w;
|
||||
mat[(1, 1)] = h;
|
||||
mat[(2, 2)] = (far + near) / (far - near);
|
||||
mat[(2, 3)] = - (far * near * crate::convert(2.0)) / (far - near);
|
||||
mat[(2, 3)] = -(far * near * crate::convert(2.0)) / (far - near);
|
||||
mat[(3, 2)] = N::one();
|
||||
|
||||
mat
|
||||
@ -303,19 +328,16 @@ pub fn perspective_fov_lh_no<N: RealField>(fov: N, width: N, height: N, near: N,
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_lh_zo<N: RealField>(fov: N, width: N, height: N, near: N, far: N) -> TMat4<N> {
|
||||
assert!(
|
||||
width > N::zero(),
|
||||
"The width must be greater than zero"
|
||||
);
|
||||
assert!(
|
||||
height > N::zero(),
|
||||
"The height must be greater than zero."
|
||||
);
|
||||
assert!(
|
||||
fov > N::zero(),
|
||||
"The fov must be greater than zero"
|
||||
);
|
||||
pub fn perspective_fov_lh_zo<N: RealField>(
|
||||
fov: N,
|
||||
width: N,
|
||||
height: N,
|
||||
near: N,
|
||||
far: N,
|
||||
) -> TMat4<N> {
|
||||
assert!(width > N::zero(), "The width must be greater than zero");
|
||||
assert!(height > N::zero(), "The height must be greater than zero.");
|
||||
assert!(fov > N::zero(), "The fov must be greater than zero");
|
||||
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
@ -370,19 +392,16 @@ pub fn perspective_fov_rh<N: RealField>(fov: N, width: N, height: N, near: N, fa
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_rh_no<N: RealField>(fov: N, width: N, height: N, near: N, far: N) -> TMat4<N> {
|
||||
assert!(
|
||||
width > N::zero(),
|
||||
"The width must be greater than zero"
|
||||
);
|
||||
assert!(
|
||||
height > N::zero(),
|
||||
"The height must be greater than zero."
|
||||
);
|
||||
assert!(
|
||||
fov > N::zero(),
|
||||
"The fov must be greater than zero"
|
||||
);
|
||||
pub fn perspective_fov_rh_no<N: RealField>(
|
||||
fov: N,
|
||||
width: N,
|
||||
height: N,
|
||||
near: N,
|
||||
far: N,
|
||||
) -> TMat4<N> {
|
||||
assert!(width > N::zero(), "The width must be greater than zero");
|
||||
assert!(height > N::zero(), "The height must be greater than zero.");
|
||||
assert!(fov > N::zero(), "The fov must be greater than zero");
|
||||
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
@ -392,8 +411,8 @@ pub fn perspective_fov_rh_no<N: RealField>(fov: N, width: N, height: N, near: N,
|
||||
|
||||
mat[(0, 0)] = w;
|
||||
mat[(1, 1)] = h;
|
||||
mat[(2, 2)] = - (far + near) / (far - near);
|
||||
mat[(2, 3)] = - (far * near * crate::convert(2.0)) / (far - near);
|
||||
mat[(2, 2)] = -(far + near) / (far - near);
|
||||
mat[(2, 3)] = -(far * near * crate::convert(2.0)) / (far - near);
|
||||
mat[(3, 2)] = -N::one();
|
||||
|
||||
mat
|
||||
@ -409,19 +428,16 @@ pub fn perspective_fov_rh_no<N: RealField>(fov: N, width: N, height: N, near: N,
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_rh_zo<N: RealField>(fov: N, width: N, height: N, near: N, far: N) -> TMat4<N> {
|
||||
assert!(
|
||||
width > N::zero(),
|
||||
"The width must be greater than zero"
|
||||
);
|
||||
assert!(
|
||||
height > N::zero(),
|
||||
"The height must be greater than zero."
|
||||
);
|
||||
assert!(
|
||||
fov > N::zero(),
|
||||
"The fov must be greater than zero"
|
||||
);
|
||||
pub fn perspective_fov_rh_zo<N: RealField>(
|
||||
fov: N,
|
||||
width: N,
|
||||
height: N,
|
||||
near: N,
|
||||
far: N,
|
||||
) -> TMat4<N> {
|
||||
assert!(width > N::zero(), "The width must be greater than zero");
|
||||
assert!(height > N::zero(), "The height must be greater than zero.");
|
||||
assert!(fov > N::zero(), "The fov must be greater than zero");
|
||||
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
@ -518,8 +534,8 @@ pub fn perspective_lh_no<N: RealField>(aspect: N, fovy: N, near: N, far: N) -> T
|
||||
);
|
||||
|
||||
let one = N::one();
|
||||
let two: N = crate::convert( 2.0);
|
||||
let mut mat : TMat4<N> = TMat4::zeros();
|
||||
let two: N = crate::convert(2.0);
|
||||
let mut mat: TMat4<N> = TMat4::zeros();
|
||||
|
||||
let tan_half_fovy = (fovy / two).tan();
|
||||
|
||||
@ -554,7 +570,7 @@ pub fn perspective_lh_zo<N: RealField>(aspect: N, fovy: N, near: N, far: N) -> T
|
||||
);
|
||||
|
||||
let one = N::one();
|
||||
let two: N = crate::convert( 2.0);
|
||||
let two: N = crate::convert(2.0);
|
||||
let mut mat: TMat4<N> = TMat4::zeros();
|
||||
|
||||
let tan_half_fovy = (fovy / two).tan();
|
||||
@ -621,14 +637,14 @@ pub fn perspective_rh_no<N: RealField>(aspect: N, fovy: N, near: N, far: N) -> T
|
||||
|
||||
let negone = -N::one();
|
||||
let one = N::one();
|
||||
let two: N = crate::convert( 2.0);
|
||||
let two: N = crate::convert(2.0);
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
let tan_half_fovy = (fovy / two).tan();
|
||||
|
||||
mat[(0, 0)] = one / (aspect * tan_half_fovy);
|
||||
mat[(1, 1)] = one / tan_half_fovy;
|
||||
mat[(2, 2)] = - (far + near) / (far - near);
|
||||
mat[(2, 2)] = -(far + near) / (far - near);
|
||||
mat[(2, 3)] = -(two * far * near) / (far - near);
|
||||
mat[(3, 2)] = negone;
|
||||
|
||||
@ -658,7 +674,7 @@ pub fn perspective_rh_zo<N: RealField>(aspect: N, fovy: N, near: N, far: N) -> T
|
||||
|
||||
let negone = -N::one();
|
||||
let one = N::one();
|
||||
let two = crate::convert( 2.0);
|
||||
let two = crate::convert(2.0);
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
let tan_half_fovy = (fovy / two).tan();
|
||||
|
@ -9,7 +9,11 @@ use crate::aliases::{TMat4, TVec2, TVec3, TVec4};
|
||||
/// * `center` - Specify the center of a picking region in window coordinates.
|
||||
/// * `delta` - Specify the width and height, respectively, of the picking region in window coordinates.
|
||||
/// * `viewport` - Rendering viewport.
|
||||
pub fn pick_matrix<N: RealField>(center: &TVec2<N>, delta: &TVec2<N>, viewport: &TVec4<N>) -> TMat4<N> {
|
||||
pub fn pick_matrix<N: RealField>(
|
||||
center: &TVec2<N>,
|
||||
delta: &TVec2<N>,
|
||||
viewport: &TVec4<N>,
|
||||
) -> TMat4<N> {
|
||||
let shift = TVec3::new(
|
||||
(viewport.z - (center.x - viewport.x) * na::convert(2.0)) / delta.x,
|
||||
(viewport.w - (center.y - viewport.y) * na::convert(2.0)) / delta.y,
|
||||
@ -46,8 +50,7 @@ pub fn project<N: RealField>(
|
||||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N>
|
||||
{
|
||||
) -> TVec3<N> {
|
||||
project_no(obj, model, proj, viewport)
|
||||
}
|
||||
|
||||
@ -74,8 +77,7 @@ pub fn project_no<N: RealField>(
|
||||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N>
|
||||
{
|
||||
) -> TVec3<N> {
|
||||
let proj = project_zo(obj, model, proj, viewport);
|
||||
TVec3::new(proj.x, proj.y, proj.z * na::convert(0.5) + na::convert(0.5))
|
||||
}
|
||||
@ -103,8 +105,7 @@ pub fn project_zo<N: RealField>(
|
||||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N>
|
||||
{
|
||||
) -> TVec3<N> {
|
||||
let normalized = proj * model * TVec4::new(obj.x, obj.y, obj.z, N::one());
|
||||
let scale = N::one() / normalized.w;
|
||||
|
||||
@ -137,8 +138,7 @@ pub fn unproject<N: RealField>(
|
||||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N>
|
||||
{
|
||||
) -> TVec3<N> {
|
||||
unproject_no(win, model, proj, viewport)
|
||||
}
|
||||
|
||||
@ -165,8 +165,7 @@ pub fn unproject_no<N: RealField>(
|
||||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N>
|
||||
{
|
||||
) -> TVec3<N> {
|
||||
let _2: N = na::convert(2.0);
|
||||
let transform = (proj * model).try_inverse().unwrap_or_else(TMat4::zeros);
|
||||
let pt = TVec4::new(
|
||||
@ -203,8 +202,7 @@ pub fn unproject_zo<N: RealField>(
|
||||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N>
|
||||
{
|
||||
) -> TVec3<N> {
|
||||
let _2: N = na::convert(2.0);
|
||||
let transform = (proj * model).try_inverse().unwrap_or_else(TMat4::zeros);
|
||||
let pt = TVec4::new(
|
||||
|
@ -5,7 +5,9 @@ use crate::traits::{Alloc, Dimension, Number};
|
||||
|
||||
/// The identity matrix.
|
||||
pub fn identity<N: Number, D: Dimension>() -> TMat<N, D, D>
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
TMat::<N, D, D>::identity()
|
||||
}
|
||||
|
||||
|
@ -1,19 +1,13 @@
|
||||
//! (Reexported) Additional features not specified by GLSL specification
|
||||
|
||||
pub use self::matrix_clip_space::{
|
||||
ortho, ortho_lh, ortho_lh_no, ortho_lh_zo, ortho_no, ortho_rh, ortho_rh_no, ortho_rh_zo,
|
||||
ortho_zo,
|
||||
|
||||
perspective, perspective_lh, perspective_lh_no, perspective_lh_zo, perspective_no,
|
||||
perspective_rh, perspective_rh_no, perspective_rh_zo, perspective_zo,
|
||||
|
||||
perspective_fov, perspective_fov_lh,perspective_fov_lh_no, perspective_fov_lh_zo,
|
||||
infinite_perspective_rh_no, infinite_perspective_rh_zo, ortho, ortho_lh, ortho_lh_no,
|
||||
ortho_lh_zo, ortho_no, ortho_rh, ortho_rh_no, ortho_rh_zo, ortho_zo, perspective,
|
||||
perspective_fov, perspective_fov_lh, perspective_fov_lh_no, perspective_fov_lh_zo,
|
||||
perspective_fov_no, perspective_fov_rh, perspective_fov_rh_no, perspective_fov_rh_zo,
|
||||
perspective_fov_zo,
|
||||
|
||||
infinite_perspective_rh_no, infinite_perspective_rh_zo,
|
||||
|
||||
reversed_perspective_rh_zo, reversed_infinite_perspective_rh_zo,
|
||||
perspective_fov_zo, perspective_lh, perspective_lh_no, perspective_lh_zo, perspective_no,
|
||||
perspective_rh, perspective_rh_no, perspective_rh_zo, perspective_zo,
|
||||
reversed_infinite_perspective_rh_zo, reversed_perspective_rh_zo,
|
||||
};
|
||||
pub use self::matrix_projection::{
|
||||
pick_matrix, project, project_no, project_zo, unproject, unproject_no, unproject_zo,
|
||||
@ -35,7 +29,9 @@ pub use self::quaternion_relational::{
|
||||
};
|
||||
pub use self::quaternion_transform::{quat_exp, quat_log, quat_pow, quat_rotate};
|
||||
pub use self::quaternion_trigonometric::{quat_angle, quat_angle_axis, quat_axis};
|
||||
pub use self::scalar_common::{max3_scalar, max4_scalar, min3_scalar, min4_scalar};
|
||||
pub use self::scalar_common::{
|
||||
max2_scalar, max3_scalar, max4_scalar, min2_scalar, min3_scalar, min4_scalar,
|
||||
};
|
||||
pub use self::scalar_constants::{epsilon, pi};
|
||||
pub use self::vector_common::{max, max2, max3, max4, min, min2, min3, min4};
|
||||
pub use self::vector_relational::{equal_eps, equal_eps_vec, not_equal_eps, not_equal_eps_vec};
|
||||
|
@ -1,7 +1,51 @@
|
||||
use na;
|
||||
|
||||
use crate::traits::Number;
|
||||
|
||||
/// Returns the maximum among two values.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra_glm as glm;
|
||||
/// assert_eq!(2.0, glm::max2_scalar(1.0, 2.0));
|
||||
/// assert_eq!(1, glm::max2_scalar(0, 1));
|
||||
/// ```
|
||||
///
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`max4_scalar`](fn.max4_scalar.html)
|
||||
/// * [`min3_scalar`](fn.min3_scalar.html)
|
||||
/// * [`min4_scalar`](fn.min4_scalar.html)
|
||||
pub fn max2_scalar<N: Number>(a: N, b: N) -> N {
|
||||
if a >= b {
|
||||
a
|
||||
} else {
|
||||
b
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the maximum among two values.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra_glm as glm;
|
||||
/// assert_eq!(1.0, glm::min2_scalar(1.0, 2.0));
|
||||
/// assert_eq!(0, glm::min2_scalar(0, 1));
|
||||
/// ```
|
||||
///
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`max4_scalar`](fn.max4_scalar.html)
|
||||
/// * [`min3_scalar`](fn.min3_scalar.html)
|
||||
/// * [`min4_scalar`](fn.min4_scalar.html)
|
||||
pub fn min2_scalar<N: Number>(a: N, b: N) -> N {
|
||||
if a <= b {
|
||||
a
|
||||
} else {
|
||||
b
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the maximum among three values.
|
||||
///
|
||||
/// # Examples:
|
||||
@ -18,7 +62,7 @@ use crate::traits::Number;
|
||||
/// * [`min3_scalar`](fn.min3_scalar.html)
|
||||
/// * [`min4_scalar`](fn.min4_scalar.html)
|
||||
pub fn max3_scalar<N: Number>(a: N, b: N, c: N) -> N {
|
||||
na::sup(&na::sup(&a, &b), &c)
|
||||
max2_scalar(max2_scalar(a, b), c)
|
||||
}
|
||||
|
||||
/// Returns the maximum among four values.
|
||||
@ -37,7 +81,7 @@ pub fn max3_scalar<N: Number>(a: N, b: N, c: N) -> N {
|
||||
/// * [`min3_scalar`](fn.min3_scalar.html)
|
||||
/// * [`min4_scalar`](fn.min4_scalar.html)
|
||||
pub fn max4_scalar<N: Number>(a: N, b: N, c: N, d: N) -> N {
|
||||
na::sup(&na::sup(&a, &b), &na::sup(&c, &d))
|
||||
max2_scalar(max2_scalar(a, b), max2_scalar(c, d))
|
||||
}
|
||||
|
||||
/// Returns the minimum among three values.
|
||||
@ -56,7 +100,7 @@ pub fn max4_scalar<N: Number>(a: N, b: N, c: N, d: N) -> N {
|
||||
/// * [`max4_scalar`](fn.max4_scalar.html)
|
||||
/// * [`min4_scalar`](fn.min4_scalar.html)
|
||||
pub fn min3_scalar<N: Number>(a: N, b: N, c: N) -> N {
|
||||
na::inf(&na::inf(&a, &b), &c)
|
||||
min2_scalar(min2_scalar(a, b), c)
|
||||
}
|
||||
|
||||
/// Returns the minimum among four values.
|
||||
@ -75,5 +119,5 @@ pub fn min3_scalar<N: Number>(a: N, b: N, c: N) -> N {
|
||||
/// * [`max4_scalar`](fn.max4_scalar.html)
|
||||
/// * [`min3_scalar`](fn.min3_scalar.html)
|
||||
pub fn min4_scalar<N: Number>(a: N, b: N, c: N, d: N) -> N {
|
||||
na::inf(&na::inf(&a, &b), &na::inf(&c, &d))
|
||||
min2_scalar(min2_scalar(a, b), min2_scalar(c, d))
|
||||
}
|
||||
|
@ -17,8 +17,10 @@ use crate::traits::{Alloc, Dimension, Number};
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn max<N: Number, D: Dimension>(a: &TVec<N, D>, b: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
a.map(|a| na::sup(&a, &b))
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
a.map(|a| crate::max2_scalar(a, b))
|
||||
}
|
||||
|
||||
/// Component-wise maximum between two vectors.
|
||||
@ -35,8 +37,10 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn max2<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
na::sup(a, b)
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
a.zip_map(b, |a, b| crate::max2_scalar(a, b))
|
||||
}
|
||||
|
||||
/// Component-wise maximum between three vectors.
|
||||
@ -53,7 +57,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn max3<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
max2(&max2(a, b), c)
|
||||
}
|
||||
|
||||
@ -96,8 +102,10 @@ where
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn min<N: Number, D: Dimension>(x: &TVec<N, D>, y: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
x.map(|x| na::inf(&x, &y))
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| crate::min2_scalar(x, y))
|
||||
}
|
||||
|
||||
/// Component-wise minimum between two vectors.
|
||||
@ -114,8 +122,10 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn min2<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
na::inf(x, y)
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |a, b| crate::min2_scalar(a, b))
|
||||
}
|
||||
|
||||
/// Component-wise minimum between three vectors.
|
||||
@ -132,7 +142,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`min2`](fn.min2.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn min3<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
min2(&min2(a, b), c)
|
||||
}
|
||||
|
||||
|
@ -14,13 +14,17 @@ pub fn cross<N: Number>(x: &TVec3<N>, y: &TVec3<N>) -> TVec3<N> {
|
||||
///
|
||||
/// * [`distance2`](fn.distance2.html)
|
||||
pub fn distance<N: RealField, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
(p1 - p0).norm()
|
||||
}
|
||||
|
||||
/// The dot product of two vectors.
|
||||
pub fn dot<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.dot(y)
|
||||
}
|
||||
|
||||
@ -50,7 +54,9 @@ where
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn length<N: RealField, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm()
|
||||
}
|
||||
|
||||
@ -64,26 +70,34 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
/// * [`nalgebra::norm`](../nalgebra/fn.norm.html)
|
||||
pub fn magnitude<N: RealField, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm()
|
||||
}
|
||||
|
||||
/// Normalizes a vector.
|
||||
pub fn normalize<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.normalize()
|
||||
}
|
||||
|
||||
/// For the incident vector `i` and surface orientation `n`, returns the reflection direction : `result = i - 2.0 * dot(n, i) * n`.
|
||||
pub fn reflect_vec<N: Number, D: Dimension>(i: &TVec<N, D>, n: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
let _2 = N::one() + N::one();
|
||||
i - n * (n.dot(i) * _2)
|
||||
}
|
||||
|
||||
/// For the incident vector `i` and surface normal `n`, and the ratio of indices of refraction `eta`, return the refraction vector.
|
||||
pub fn refract_vec<N: RealField, D: Dimension>(i: &TVec<N, D>, n: &TVec<N, D>, eta: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
let ni = n.dot(i);
|
||||
let k = N::one() - eta * eta * (N::one() - ni * ni);
|
||||
|
||||
|
@ -10,10 +10,7 @@ use crate::traits::{Alloc, Dimension};
|
||||
/// * [`row`](fn.row.html)
|
||||
/// * [`set_column`](fn.set_column.html)
|
||||
/// * [`set_row`](fn.set_row.html)
|
||||
pub fn column<N: Scalar, R: Dimension, C: Dimension>(
|
||||
m: &TMat<N, R, C>,
|
||||
index: usize,
|
||||
) -> TVec<N, R>
|
||||
pub fn column<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize) -> TVec<N, R>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
@ -48,7 +45,9 @@ where
|
||||
/// * [`set_column`](fn.set_column.html)
|
||||
/// * [`set_row`](fn.set_row.html)
|
||||
pub fn row<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize) -> TVec<N, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
m.row(index).into_owned().transpose()
|
||||
}
|
||||
|
||||
|
@ -5,14 +5,18 @@ use crate::traits::{Alloc, Dimension};
|
||||
|
||||
/// Fast matrix inverse for affine matrix.
|
||||
pub fn affine_inverse<N: RealField, D: Dimension>(m: TMat<N, D, D>) -> TMat<N, D, D>
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
// FIXME: this should be optimized.
|
||||
m.try_inverse().unwrap_or_else(TMat::<_, D, D>::zeros)
|
||||
}
|
||||
|
||||
/// Compute the transpose of the inverse of a matrix.
|
||||
pub fn inverse_transpose<N: RealField, D: Dimension>(m: TMat<N, D, D>) -> TMat<N, D, D>
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
m.try_inverse()
|
||||
.unwrap_or_else(TMat::<_, D, D>::zeros)
|
||||
.transpose()
|
||||
|
@ -76,7 +76,12 @@ pub fn mat2_to_mat3<N: Number>(m: &TMat2<N>) -> TMat3<N> {
|
||||
|
||||
/// Converts a 3x3 matrix to a 2x2 matrix.
|
||||
pub fn mat3_to_mat2<N: Scalar>(m: &TMat3<N>) -> TMat2<N> {
|
||||
TMat2::new(m.m11.inlined_clone(), m.m12.inlined_clone(), m.m21.inlined_clone(), m.m22.inlined_clone())
|
||||
TMat2::new(
|
||||
m.m11.inlined_clone(),
|
||||
m.m12.inlined_clone(),
|
||||
m.m21.inlined_clone(),
|
||||
m.m22.inlined_clone(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts a 3x3 matrix to a 4x4 matrix.
|
||||
@ -92,9 +97,15 @@ pub fn mat3_to_mat4<N: Number>(m: &TMat3<N>) -> TMat4<N> {
|
||||
/// Converts a 4x4 matrix to a 3x3 matrix.
|
||||
pub fn mat4_to_mat3<N: Scalar>(m: &TMat4<N>) -> TMat3<N> {
|
||||
TMat3::new(
|
||||
m.m11.inlined_clone(), m.m12.inlined_clone(), m.m13.inlined_clone(),
|
||||
m.m21.inlined_clone(), m.m22.inlined_clone(), m.m23.inlined_clone(),
|
||||
m.m31.inlined_clone(), m.m32.inlined_clone(), m.m33.inlined_clone(),
|
||||
m.m11.inlined_clone(),
|
||||
m.m12.inlined_clone(),
|
||||
m.m13.inlined_clone(),
|
||||
m.m21.inlined_clone(),
|
||||
m.m22.inlined_clone(),
|
||||
m.m23.inlined_clone(),
|
||||
m.m31.inlined_clone(),
|
||||
m.m32.inlined_clone(),
|
||||
m.m33.inlined_clone(),
|
||||
)
|
||||
}
|
||||
|
||||
@ -110,7 +121,12 @@ pub fn mat2_to_mat4<N: Number>(m: &TMat2<N>) -> TMat4<N> {
|
||||
|
||||
/// Converts a 4x4 matrix to a 2x2 matrix.
|
||||
pub fn mat4_to_mat2<N: Scalar>(m: &TMat4<N>) -> TMat2<N> {
|
||||
TMat2::new(m.m11.inlined_clone(), m.m12.inlined_clone(), m.m21.inlined_clone(), m.m22.inlined_clone())
|
||||
TMat2::new(
|
||||
m.m11.inlined_clone(),
|
||||
m.m12.inlined_clone(),
|
||||
m.m21.inlined_clone(),
|
||||
m.m22.inlined_clone(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates a quaternion from a slice arranged as `[x, y, z, w]`.
|
||||
@ -297,7 +313,11 @@ pub fn vec3_to_vec3<N: Scalar>(v: &TVec3<N>) -> TVec3<N> {
|
||||
/// * [`vec3_to_vec2`](fn.vec3_to_vec2.html)
|
||||
/// * [`vec3_to_vec4`](fn.vec3_to_vec4.html)
|
||||
pub fn vec4_to_vec3<N: Scalar>(v: &TVec4<N>) -> TVec3<N> {
|
||||
TVec3::new(v.x.inlined_clone(), v.y.inlined_clone(), v.z.inlined_clone())
|
||||
TVec3::new(
|
||||
v.x.inlined_clone(),
|
||||
v.y.inlined_clone(),
|
||||
v.z.inlined_clone(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates a 3D vector from another vector.
|
||||
@ -386,12 +406,16 @@ pub fn make_vec4<N: Scalar>(ptr: &[N]) -> TVec4<N> {
|
||||
|
||||
/// Converts a matrix or vector to a slice arranged in column-major order.
|
||||
pub fn value_ptr<N: Scalar, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> &[N]
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
x.as_slice()
|
||||
}
|
||||
|
||||
/// Converts a matrix or vector to a mutable slice arranged in column-major order.
|
||||
pub fn value_ptr_mut<N: Scalar, R: Dimension, C: Dimension>(x: &mut TMat<N, R, C>) -> &mut [N]
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
x.as_mut_slice()
|
||||
}
|
||||
|
@ -22,7 +22,9 @@ use crate::traits::{Alloc, Dimension, Number};
|
||||
/// * [`comp_min`](fn.comp_min.html)
|
||||
/// * [`comp_mul`](fn.comp_mul.html)
|
||||
pub fn comp_add<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
m.iter().fold(N::zero(), |x, y| x + *y)
|
||||
}
|
||||
|
||||
@ -49,8 +51,11 @@ where DefaultAllocator: Alloc<N, R, C> {
|
||||
/// * [`max3`](fn.max3.html)
|
||||
/// * [`max4`](fn.max4.html)
|
||||
pub fn comp_max<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
m.iter().fold(N::min_value(), |x, y| na::sup(&x, y))
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
m.iter()
|
||||
.fold(N::min_value(), |x, y| crate::max2_scalar(x, *y))
|
||||
}
|
||||
|
||||
/// The minimum of every component of the given matrix or vector.
|
||||
@ -76,8 +81,11 @@ where DefaultAllocator: Alloc<N, R, C> {
|
||||
/// * [`min3`](fn.min3.html)
|
||||
/// * [`min4`](fn.min4.html)
|
||||
pub fn comp_min<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
m.iter().fold(N::max_value(), |x, y| na::inf(&x, y))
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
m.iter()
|
||||
.fold(N::max_value(), |x, y| crate::min2_scalar(x, *y))
|
||||
}
|
||||
|
||||
/// The product of every component of the given matrix or vector.
|
||||
@ -99,7 +107,9 @@ where DefaultAllocator: Alloc<N, R, C> {
|
||||
/// * [`comp_max`](fn.comp_max.html)
|
||||
/// * [`comp_min`](fn.comp_min.html)
|
||||
pub fn comp_mul<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
m.iter().fold(N::one(), |x, y| x * *y)
|
||||
}
|
||||
|
||||
|
@ -9,7 +9,9 @@ use crate::traits::{Alloc, Dimension};
|
||||
///
|
||||
/// * [`distance`](fn.distance.html)
|
||||
pub fn distance2<N: RealField, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
(p1 - p0).norm_squared()
|
||||
}
|
||||
|
||||
@ -21,7 +23,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`l2_distance`](fn.l2_distance.html)
|
||||
/// * [`l2_norm`](fn.l2_norm.html)
|
||||
pub fn l1_distance<N: RealField, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
l1_norm(&(y - x))
|
||||
}
|
||||
|
||||
@ -36,7 +40,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`l2_distance`](fn.l2_distance.html)
|
||||
/// * [`l2_norm`](fn.l2_norm.html)
|
||||
pub fn l1_norm<N: RealField, D: Dimension>(v: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
crate::comp_add(&v.abs())
|
||||
}
|
||||
|
||||
@ -55,7 +61,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn l2_distance<N: RealField, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
l2_norm(&(y - x))
|
||||
}
|
||||
|
||||
@ -76,7 +84,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn l2_norm<N: RealField, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm()
|
||||
}
|
||||
|
||||
@ -92,7 +102,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn length2<N: RealField, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm_squared()
|
||||
}
|
||||
|
||||
@ -108,7 +120,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`nalgebra::norm_squared`](../nalgebra/fn.norm_squared.html)
|
||||
pub fn magnitude2<N: RealField, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm_squared()
|
||||
}
|
||||
|
||||
|
@ -11,7 +11,9 @@ use crate::traits::{Alloc, Dimension};
|
||||
///
|
||||
/// * [`normalize_dot`](fn.normalize_dot.html`)
|
||||
pub fn fast_normalize_dot<N: RealField, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
// XXX: improve those.
|
||||
x.normalize().dot(&y.normalize())
|
||||
}
|
||||
@ -22,7 +24,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
///
|
||||
/// * [`fast_normalize_dot`](fn.fast_normalize_dot.html`)
|
||||
pub fn normalize_dot<N: RealField, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
// XXX: improve those.
|
||||
x.normalize().dot(&y.normalize())
|
||||
}
|
||||
|
@ -5,7 +5,9 @@ use crate::traits::{Alloc, Dimension};
|
||||
|
||||
/// The angle between two vectors.
|
||||
pub fn angle<N: RealField, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.angle(y)
|
||||
}
|
||||
|
||||
|
@ -22,11 +22,7 @@ pub fn are_collinear2d<N: Number>(v0: &TVec2<N>, v1: &TVec2<N>, epsilon: N) -> b
|
||||
}
|
||||
|
||||
/// Returns `true` if two vectors are orthogonal (up to an epsilon).
|
||||
pub fn are_orthogonal<N: Number, D: Dimension>(
|
||||
v0: &TVec<N, D>,
|
||||
v1: &TVec<N, D>,
|
||||
epsilon: N,
|
||||
) -> bool
|
||||
pub fn are_orthogonal<N: Number, D: Dimension>(v0: &TVec<N, D>, v1: &TVec<N, D>, epsilon: N) -> bool
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
@ -40,18 +36,24 @@ where
|
||||
|
||||
/// Returns `true` if all the components of `v` are zero (up to an epsilon).
|
||||
pub fn is_comp_null<N: Number, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| abs_diff_eq!(x, N::zero(), epsilon = epsilon))
|
||||
}
|
||||
|
||||
/// Returns `true` if `v` has a magnitude of 1 (up to an epsilon).
|
||||
pub fn is_normalized<N: RealField, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> bool
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
abs_diff_eq!(v.norm_squared(), N::one(), epsilon = epsilon * epsilon)
|
||||
}
|
||||
|
||||
/// Returns `true` if `v` is zero (up to an epsilon).
|
||||
pub fn is_null<N: Number, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> bool
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
abs_diff_eq!(*v, TVec::<N, D>::zeros(), epsilon = epsilon)
|
||||
}
|
||||
|
@ -116,10 +116,10 @@
|
||||
extern crate num_traits as num;
|
||||
#[macro_use]
|
||||
extern crate approx;
|
||||
extern crate alga;
|
||||
extern crate nalgebra as na;
|
||||
|
||||
pub use crate::aliases::*;
|
||||
pub use crate::traits::{Alloc, Dimension, Number};
|
||||
pub use common::{
|
||||
abs, ceil, clamp, clamp_scalar, clamp_vec, float_bits_to_int, float_bits_to_int_vec,
|
||||
float_bits_to_uint, float_bits_to_uint_vec, floor, fract, int_bits_to_float,
|
||||
@ -133,7 +133,6 @@ pub use geometric::{
|
||||
cross, distance, dot, faceforward, length, magnitude, normalize, reflect_vec, refract_vec,
|
||||
};
|
||||
pub use matrix::{determinant, inverse, matrix_comp_mult, outer_product, transpose};
|
||||
pub use crate::traits::{Alloc, Dimension, Number};
|
||||
pub use trigonometric::{
|
||||
acos, acosh, asin, asinh, atan, atan2, atanh, cos, cosh, degrees, radians, sin, sinh, tan, tanh,
|
||||
};
|
||||
@ -143,20 +142,20 @@ pub use vector_relational::{
|
||||
|
||||
pub use ext::{
|
||||
epsilon, equal_columns, equal_columns_eps, equal_columns_eps_vec, equal_eps, equal_eps_vec,
|
||||
identity, look_at, look_at_lh, look_at_rh, max, max2, max3, max3_scalar, max4, max4_scalar,
|
||||
min, min2, min3, min3_scalar, min4, min4_scalar, not_equal_columns, not_equal_columns_eps,
|
||||
not_equal_columns_eps_vec, not_equal_eps, not_equal_eps_vec, ortho, perspective, perspective_fov,
|
||||
perspective_fov_lh,perspective_fov_lh_no, perspective_fov_lh_zo, perspective_fov_no,
|
||||
perspective_fov_rh, perspective_fov_rh_no, perspective_fov_rh_zo, perspective_fov_zo,
|
||||
perspective_lh, perspective_lh_no, perspective_lh_zo, perspective_no, perspective_rh,
|
||||
perspective_rh_no, perspective_rh_zo, perspective_zo, ortho_lh, ortho_lh_no, ortho_lh_zo,
|
||||
ortho_no, ortho_rh, ortho_rh_no, ortho_rh_zo, ortho_zo, pi, pick_matrix, project, project_no,
|
||||
project_zo, quat_angle, quat_angle_axis, quat_axis, quat_conjugate, quat_cross, quat_dot,
|
||||
quat_equal, quat_equal_eps, quat_exp, quat_inverse, quat_length, quat_lerp, quat_log,
|
||||
identity, infinite_perspective_rh_no, infinite_perspective_rh_zo, look_at, look_at_lh,
|
||||
look_at_rh, max, max2, max2_scalar, max3, max3_scalar, max4, max4_scalar, min, min2,
|
||||
min2_scalar, min3, min3_scalar, min4, min4_scalar, not_equal_columns, not_equal_columns_eps,
|
||||
not_equal_columns_eps_vec, not_equal_eps, not_equal_eps_vec, ortho, ortho_lh, ortho_lh_no,
|
||||
ortho_lh_zo, ortho_no, ortho_rh, ortho_rh_no, ortho_rh_zo, ortho_zo, perspective,
|
||||
perspective_fov, perspective_fov_lh, perspective_fov_lh_no, perspective_fov_lh_zo,
|
||||
perspective_fov_no, perspective_fov_rh, perspective_fov_rh_no, perspective_fov_rh_zo,
|
||||
perspective_fov_zo, perspective_lh, perspective_lh_no, perspective_lh_zo, perspective_no,
|
||||
perspective_rh, perspective_rh_no, perspective_rh_zo, perspective_zo, pi, pick_matrix, project,
|
||||
project_no, project_zo, quat_angle, quat_angle_axis, quat_axis, quat_conjugate, quat_cross,
|
||||
quat_dot, quat_equal, quat_equal_eps, quat_exp, quat_inverse, quat_length, quat_lerp, quat_log,
|
||||
quat_magnitude, quat_normalize, quat_not_equal, quat_not_equal_eps, quat_pow, quat_rotate,
|
||||
quat_slerp, rotate, rotate_x, rotate_y, rotate_z, scale, translate, unproject, unproject_no,
|
||||
unproject_zo, infinite_perspective_rh_no, infinite_perspective_rh_zo,
|
||||
reversed_perspective_rh_zo, reversed_infinite_perspective_rh_zo,
|
||||
quat_slerp, reversed_infinite_perspective_rh_zo, reversed_perspective_rh_zo, rotate, rotate_x,
|
||||
rotate_y, rotate_z, scale, translate, unproject, unproject_no, unproject_zo,
|
||||
};
|
||||
pub use gtc::{
|
||||
affine_inverse, column, e, euler, four_over_pi, golden_ratio, half_pi, inverse_transpose,
|
||||
|
@ -5,13 +5,17 @@ use crate::traits::{Alloc, Dimension, Number};
|
||||
|
||||
/// The determinant of the matrix `m`.
|
||||
pub fn determinant<N: RealField, D: Dimension>(m: &TMat<N, D, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
m.determinant()
|
||||
}
|
||||
|
||||
/// The inverse of the matrix `m`.
|
||||
pub fn inverse<N: RealField, D: Dimension>(m: &TMat<N, D, D>) -> TMat<N, D, D>
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
m.clone()
|
||||
.try_inverse()
|
||||
.unwrap_or_else(TMat::<N, D, D>::zeros)
|
||||
@ -41,6 +45,8 @@ where
|
||||
|
||||
/// The transpose of the matrix `m`.
|
||||
pub fn transpose<N: Scalar, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N, C, R>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
x.transpose()
|
||||
}
|
||||
|
@ -1,9 +1,10 @@
|
||||
use approx::AbsDiffEq;
|
||||
use num::{Bounded, FromPrimitive, Signed};
|
||||
|
||||
use alga::general::{Lattice, Ring};
|
||||
use na::allocator::Allocator;
|
||||
use na::{DimMin, DimName, Scalar, U1};
|
||||
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub};
|
||||
use std::cmp::PartialOrd;
|
||||
|
||||
/// A type-level number representing a vector, matrix row, or matrix column, dimension.
|
||||
pub trait Dimension: DimName + DimMin<Self, Output = Self> {}
|
||||
@ -11,13 +12,33 @@ impl<D: DimName + DimMin<D, Output = Self>> Dimension for D {}
|
||||
|
||||
/// A number that can either be an integer or a float.
|
||||
pub trait Number:
|
||||
Scalar + Copy + Ring + Lattice + AbsDiffEq<Epsilon = Self> + Signed + FromPrimitive + Bounded
|
||||
Scalar
|
||||
+ Copy
|
||||
+ PartialOrd
|
||||
+ ClosedAdd
|
||||
+ ClosedSub
|
||||
+ ClosedMul
|
||||
+ AbsDiffEq<Epsilon = Self>
|
||||
+ Signed
|
||||
+ FromPrimitive
|
||||
+ Bounded
|
||||
{
|
||||
}
|
||||
|
||||
impl<T: Scalar + Copy + Ring + Lattice + AbsDiffEq<Epsilon = Self> + Signed + FromPrimitive + Bounded>
|
||||
Number for T
|
||||
{}
|
||||
impl<
|
||||
T: Scalar
|
||||
+ Copy
|
||||
+ PartialOrd
|
||||
+ ClosedAdd
|
||||
+ ClosedSub
|
||||
+ ClosedMul
|
||||
+ AbsDiffEq<Epsilon = Self>
|
||||
+ Signed
|
||||
+ FromPrimitive
|
||||
+ Bounded,
|
||||
> Number for T
|
||||
{
|
||||
}
|
||||
|
||||
#[doc(hidden)]
|
||||
pub trait Alloc<N: Scalar, R: Dimension, C: Dimension = U1>:
|
||||
@ -50,7 +71,8 @@ pub trait Alloc<N: Scalar, R: Dimension, C: Dimension = U1>:
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dimension, C: Dimension, T> Alloc<N, R, C> for T where T: Allocator<N, R>
|
||||
impl<N: Scalar, R: Dimension, C: Dimension, T> Alloc<N, R, C> for T where
|
||||
T: Allocator<N, R>
|
||||
+ Allocator<N, C>
|
||||
+ Allocator<N, U1, R>
|
||||
+ Allocator<N, U1, C>
|
||||
@ -76,4 +98,5 @@ impl<N: Scalar, R: Dimension, C: Dimension, T> Alloc<N, R, C> for T where T: All
|
||||
+ Allocator<i16, C>
|
||||
+ Allocator<(usize, usize), R>
|
||||
+ Allocator<(usize, usize), C>
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
@ -5,90 +5,120 @@ use crate::traits::{Alloc, Dimension};
|
||||
|
||||
/// Component-wise arc-cosinus.
|
||||
pub fn acos<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.acos())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic arc-cosinus.
|
||||
pub fn acosh<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.acosh())
|
||||
}
|
||||
|
||||
/// Component-wise arc-sinus.
|
||||
pub fn asin<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.asin())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic arc-sinus.
|
||||
pub fn asinh<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.asinh())
|
||||
}
|
||||
|
||||
/// Component-wise arc-tangent of `y / x`.
|
||||
pub fn atan2<N: RealField, D: Dimension>(y: &TVec<N, D>, x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
y.zip_map(x, |y, x| y.atan2(x))
|
||||
}
|
||||
|
||||
/// Component-wise arc-tangent.
|
||||
pub fn atan<N: RealField, D: Dimension>(y_over_x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
y_over_x.map(|e| e.atan())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic arc-tangent.
|
||||
pub fn atanh<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.atanh())
|
||||
}
|
||||
|
||||
/// Component-wise cosinus.
|
||||
pub fn cos<N: RealField, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.cos())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic cosinus.
|
||||
pub fn cosh<N: RealField, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.cosh())
|
||||
}
|
||||
|
||||
/// Component-wise conversion from radians to degrees.
|
||||
pub fn degrees<N: RealField, D: Dimension>(radians: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
radians.map(|e| e * na::convert(180.0) / N::pi())
|
||||
}
|
||||
|
||||
/// Component-wise conversion fro degrees to radians.
|
||||
pub fn radians<N: RealField, D: Dimension>(degrees: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
degrees.map(|e| e * N::pi() / na::convert(180.0))
|
||||
}
|
||||
|
||||
/// Component-wise sinus.
|
||||
pub fn sin<N: RealField, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.sin())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic sinus.
|
||||
pub fn sinh<N: RealField, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.sinh())
|
||||
}
|
||||
|
||||
/// Component-wise tangent.
|
||||
pub fn tan<N: RealField, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.tan())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic tangent.
|
||||
pub fn tanh<N: RealField, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.tanh())
|
||||
}
|
||||
|
@ -21,7 +21,9 @@ use crate::traits::{Alloc, Dimension, Number};
|
||||
/// * [`any`](fn.any.html)
|
||||
/// * [`not`](fn.not.html)
|
||||
pub fn all<D: Dimension>(v: &TVec<bool, D>) -> bool
|
||||
where DefaultAllocator: Alloc<bool, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<bool, D>,
|
||||
{
|
||||
v.iter().all(|x| *x)
|
||||
}
|
||||
|
||||
@ -46,7 +48,9 @@ where DefaultAllocator: Alloc<bool, D> {
|
||||
/// * [`all`](fn.all.html)
|
||||
/// * [`not`](fn.not.html)
|
||||
pub fn any<D: Dimension>(v: &TVec<bool, D>) -> bool
|
||||
where DefaultAllocator: Alloc<bool, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<bool, D>,
|
||||
{
|
||||
v.iter().any(|x| *x)
|
||||
}
|
||||
|
||||
@ -70,7 +74,9 @@ where DefaultAllocator: Alloc<bool, D> {
|
||||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x == y)
|
||||
}
|
||||
|
||||
@ -94,7 +100,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn greater_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x > y)
|
||||
}
|
||||
|
||||
@ -117,10 +125,7 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`less_than_equal`](fn.less_than_equal.html)
|
||||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn greater_than_equal<N: Number, D: Dimension>(
|
||||
x: &TVec<N, D>,
|
||||
y: &TVec<N, D>,
|
||||
) -> TVec<bool, D>
|
||||
pub fn greater_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
@ -147,7 +152,9 @@ where
|
||||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn less_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x < y)
|
||||
}
|
||||
|
||||
@ -171,7 +178,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn less_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x <= y)
|
||||
}
|
||||
|
||||
@ -196,7 +205,9 @@ where DefaultAllocator: Alloc<N, D> {
|
||||
/// * [`less_than_equal`](fn.less_than_equal.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn not<D: Dimension>(v: &TVec<bool, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<bool, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<bool, D>,
|
||||
{
|
||||
v.map(|x| !x)
|
||||
}
|
||||
|
||||
@ -220,6 +231,8 @@ where DefaultAllocator: Alloc<bool, D> {
|
||||
/// * [`less_than_equal`](fn.less_than_equal.html)
|
||||
/// * [`not`](fn.not.html)
|
||||
pub fn not_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x != y)
|
||||
}
|
||||
|
@ -1,36 +1,36 @@
|
||||
extern crate nalgebra as na;
|
||||
extern crate nalgebra_glm as glm;
|
||||
|
||||
use na::Perspective3;
|
||||
use na::Orthographic3;
|
||||
use glm::Mat4;
|
||||
use glm::Vec4;
|
||||
use na::Orthographic3;
|
||||
use na::Perspective3;
|
||||
|
||||
#[test]
|
||||
pub fn orthographic_glm_nalgebra_same()
|
||||
{
|
||||
let na_mat : Mat4 = Orthographic3::new(-100.0f32,100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let gl_mat : Mat4 = glm::ortho(-100.0f32,100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32);
|
||||
pub fn orthographic_glm_nalgebra_same() {
|
||||
let na_mat: Mat4 =
|
||||
Orthographic3::new(-100.0f32, 100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let gl_mat: Mat4 = glm::ortho(-100.0f32, 100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32);
|
||||
|
||||
assert_eq!(na_mat, gl_mat);
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn perspective_glm_nalgebra_same()
|
||||
{
|
||||
let na_mat : Mat4 = Perspective3::new(16.0f32/9.0f32, 3.14f32/2.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let gl_mat : Mat4 = glm::perspective(16.0f32/9.0f32, 3.14f32/2.0f32, 0.1f32, 100.0f32);
|
||||
pub fn perspective_glm_nalgebra_same() {
|
||||
let na_mat: Mat4 =
|
||||
Perspective3::new(16.0f32 / 9.0f32, 3.14f32 / 2.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let gl_mat: Mat4 = glm::perspective(16.0f32 / 9.0f32, 3.14f32 / 2.0f32, 0.1f32, 100.0f32);
|
||||
|
||||
assert_eq!(na_mat, gl_mat);
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn orthographic_glm_nalgebra_project_same()
|
||||
{
|
||||
let point = Vec4::new(1.0,0.0,-20.0,1.0);
|
||||
pub fn orthographic_glm_nalgebra_project_same() {
|
||||
let point = Vec4::new(1.0, 0.0, -20.0, 1.0);
|
||||
|
||||
let na_mat : Mat4 = Orthographic3::new(-100.0f32,100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let gl_mat : Mat4 = glm::ortho(-100.0f32,100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32);
|
||||
let na_mat: Mat4 =
|
||||
Orthographic3::new(-100.0f32, 100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let gl_mat: Mat4 = glm::ortho(-100.0f32, 100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32);
|
||||
|
||||
let na_pt = na_mat * point;
|
||||
let gl_pt = gl_mat * point;
|
||||
@ -40,12 +40,12 @@ pub fn orthographic_glm_nalgebra_project_same()
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn perspective_glm_nalgebra_project_same()
|
||||
{
|
||||
let point = Vec4::new(1.0,0.0,-20.0,1.0);
|
||||
pub fn perspective_glm_nalgebra_project_same() {
|
||||
let point = Vec4::new(1.0, 0.0, -20.0, 1.0);
|
||||
|
||||
let na_mat : Mat4 = Perspective3::new(16.0f32/9.0f32, 3.14f32/2.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let gl_mat : Mat4 = glm::perspective(16.0f32/9.0f32, 3.14f32/2.0f32, 0.1f32, 100.0f32);
|
||||
let na_mat: Mat4 =
|
||||
Perspective3::new(16.0f32 / 9.0f32, 3.14f32 / 2.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let gl_mat: Mat4 = glm::perspective(16.0f32 / 9.0f32, 3.14f32 / 2.0f32, 0.1f32, 100.0f32);
|
||||
|
||||
let na_pt = na_mat * point;
|
||||
let gl_pt = gl_mat * point;
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "nalgebra-lapack"
|
||||
version = "0.12.0"
|
||||
version = "0.13.0"
|
||||
authors = [ "Sébastien Crozet <developer@crozet.re>", "Andrew Straw <strawman@astraw.com>" ]
|
||||
|
||||
description = "Linear algebra library with transformations and satically-sized or dynamically-sized matrices."
|
||||
@ -23,10 +23,10 @@ accelerate = ["lapack-src/accelerate"]
|
||||
intel-mkl = ["lapack-src/intel-mkl"]
|
||||
|
||||
[dependencies]
|
||||
nalgebra = { version = "0.20", path = ".." }
|
||||
nalgebra = { version = "0.21", path = ".." }
|
||||
num-traits = "0.2"
|
||||
num-complex = { version = "0.2", default-features = false }
|
||||
alga = { version = "0.9", default-features = false }
|
||||
simba = "0.1"
|
||||
serde = { version = "1.0", optional = true }
|
||||
serde_derive = { version = "1.0", optional = true }
|
||||
lapack = { version = "0.16", default-features = false }
|
||||
@ -34,7 +34,7 @@ lapack-src = { version = "0.5", default-features = false }
|
||||
# clippy = "*"
|
||||
|
||||
[dev-dependencies]
|
||||
nalgebra = { version = "0.20", path = "..", features = [ "arbitrary" ] }
|
||||
nalgebra = { version = "0.21", path = "..", features = [ "arbitrary" ] }
|
||||
quickcheck = "0.9"
|
||||
approx = "0.3"
|
||||
rand = "0.7"
|
||||
|
@ -15,21 +15,18 @@ use lapack;
|
||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, D>,
|
||||
MatrixN<N, D>: Serialize"
|
||||
))
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, D>,
|
||||
MatrixN<N, D>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "DefaultAllocator: Allocator<N, D>,
|
||||
MatrixN<N, D>: Deserialize<'de>"
|
||||
))
|
||||
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D>,
|
||||
MatrixN<N, D>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Cholesky<N: Scalar, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
l: MatrixN<N, D>,
|
||||
}
|
||||
@ -38,10 +35,12 @@ impl<N: Scalar + Copy, D: Dim> Copy for Cholesky<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
MatrixN<N, D>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: CholeskyScalar + Zero, D: Dim> Cholesky<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Computes the cholesky decomposition of the given symmetric-definite-positive square
|
||||
/// matrix.
|
||||
@ -117,7 +116,9 @@ where DefaultAllocator: Allocator<N, D, D>
|
||||
/// Solves in-place the symmetric-definite-positive linear system `self * x = b`, where `x` is
|
||||
/// the unknown to be determined.
|
||||
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
|
||||
where DefaultAllocator: Allocator<N, R2, C2> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
{
|
||||
let dim = self.l.nrows();
|
||||
|
||||
assert!(
|
||||
|
@ -4,13 +4,13 @@ use serde::{Deserialize, Serialize};
|
||||
use num::Zero;
|
||||
use num_complex::Complex;
|
||||
|
||||
use alga::general::RealField;
|
||||
use simba::scalar::RealField;
|
||||
|
||||
use crate::ComplexHelper;
|
||||
use na::allocator::Allocator;
|
||||
use na::dimension::{Dim, U1};
|
||||
use na::storage::Storage;
|
||||
use na::{DefaultAllocator, Matrix, MatrixN, Scalar, VectorN};
|
||||
use crate::ComplexHelper;
|
||||
|
||||
use lapack;
|
||||
|
||||
@ -18,23 +18,24 @@ use lapack;
|
||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
serde(
|
||||
bound(serialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
VectorN<N, D>: Serialize,
|
||||
MatrixN<N, D>: Serialize"
|
||||
))
|
||||
MatrixN<N, D>: Serialize")
|
||||
)
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
serde(
|
||||
bound(deserialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
VectorN<N, D>: Serialize,
|
||||
MatrixN<N, D>: Deserialize<'de>"
|
||||
))
|
||||
MatrixN<N, D>: Deserialize<'de>")
|
||||
)
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Eigen<N: Scalar, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
|
||||
{
|
||||
/// The eigenvalues of the decomposed matrix.
|
||||
pub eigenvalues: VectorN<N, D>,
|
||||
@ -49,10 +50,12 @@ where
|
||||
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
|
||||
VectorN<N, D>: Copy,
|
||||
MatrixN<N, D>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: EigenScalar + RealField, D: Dim> Eigen<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
{
|
||||
/// Computes the eigenvalues and eigenvectors of the square matrix `m`.
|
||||
///
|
||||
@ -61,8 +64,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
mut m: MatrixN<N, D>,
|
||||
left_eigenvectors: bool,
|
||||
eigenvectors: bool,
|
||||
) -> Option<Eigen<N, D>>
|
||||
{
|
||||
) -> Option<Eigen<N, D>> {
|
||||
assert!(
|
||||
m.is_square(),
|
||||
"Unable to compute the eigenvalue decomposition of a non-square matrix."
|
||||
@ -228,7 +230,9 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
///
|
||||
/// Panics if the eigenvalue computation does not converge.
|
||||
pub fn complex_eigenvalues(mut m: MatrixN<N, D>) -> VectorN<Complex<N>, D>
|
||||
where DefaultAllocator: Allocator<Complex<N>, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<Complex<N>, D>,
|
||||
{
|
||||
assert!(
|
||||
m.is_square(),
|
||||
"Unable to compute the eigenvalue decomposition of a non-square matrix."
|
||||
|
@ -1,11 +1,11 @@
|
||||
use num::Zero;
|
||||
use num_complex::Complex;
|
||||
|
||||
use crate::ComplexHelper;
|
||||
use na::allocator::Allocator;
|
||||
use na::dimension::{DimDiff, DimSub, U1};
|
||||
use na::storage::Storage;
|
||||
use na::{DefaultAllocator, Matrix, MatrixN, Scalar, VectorN};
|
||||
use crate::ComplexHelper;
|
||||
|
||||
use lapack;
|
||||
|
||||
@ -13,25 +13,22 @@ use lapack;
|
||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, D, D> +
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, D, D> +
|
||||
Allocator<N, DimDiff<D, U1>>,
|
||||
MatrixN<N, D>: Serialize,
|
||||
VectorN<N, DimDiff<D, U1>>: Serialize"
|
||||
))
|
||||
VectorN<N, DimDiff<D, U1>>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "DefaultAllocator: Allocator<N, D, D> +
|
||||
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D, D> +
|
||||
Allocator<N, DimDiff<D, U1>>,
|
||||
MatrixN<N, D>: Deserialize<'de>,
|
||||
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"
|
||||
))
|
||||
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Hessenberg<N: Scalar, D: DimSub<U1>>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
h: MatrixN<N, D>,
|
||||
tau: VectorN<N, DimDiff<D, U1>>,
|
||||
@ -42,10 +39,12 @@ where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
MatrixN<N, D>: Copy,
|
||||
VectorN<N, DimDiff<D, U1>>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: HessenbergScalar + Zero, D: DimSub<U1>> Hessenberg<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
/// Computes the hessenberg decomposition of the matrix `m`.
|
||||
pub fn new(mut m: MatrixN<N, D>) -> Self {
|
||||
@ -97,7 +96,8 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
}
|
||||
|
||||
impl<N: HessenbergReal + Zero, D: DimSub<U1>> Hessenberg<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
/// Computes the matrices `(Q, H)` of this decomposition.
|
||||
#[inline]
|
||||
|
@ -73,11 +73,7 @@
|
||||
html_root_url = "https://nalgebra.org/rustdoc"
|
||||
)]
|
||||
|
||||
extern crate alga;
|
||||
extern crate lapack;
|
||||
extern crate lapack_src;
|
||||
extern crate nalgebra as na;
|
||||
extern crate num_complex;
|
||||
extern crate num_traits as num;
|
||||
|
||||
mod lapack_check;
|
||||
|
@ -1,11 +1,11 @@
|
||||
use num::{One, Zero};
|
||||
use num_complex::Complex;
|
||||
|
||||
use crate::ComplexHelper;
|
||||
use na::allocator::Allocator;
|
||||
use na::dimension::{Dim, DimMin, DimMinimum, U1};
|
||||
use na::storage::Storage;
|
||||
use na::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar, VectorN};
|
||||
use crate::ComplexHelper;
|
||||
|
||||
use lapack;
|
||||
|
||||
@ -20,25 +20,22 @@ use lapack;
|
||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
Allocator<i32, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Serialize,
|
||||
PermutationSequence<DimMinimum<R, C>>: Serialize"
|
||||
))
|
||||
PermutationSequence<DimMinimum<R, C>>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
serde(bound(deserialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
Allocator<i32, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Deserialize<'de>,
|
||||
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"
|
||||
))
|
||||
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct LU<N: Scalar, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<i32, DimMinimum<R, C>> + Allocator<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<i32, DimMinimum<R, C>> + Allocator<N, R, C>,
|
||||
{
|
||||
lu: MatrixMN<N, R, C>,
|
||||
p: VectorN<i32, DimMinimum<R, C>>,
|
||||
@ -49,7 +46,8 @@ where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<i32, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Copy,
|
||||
VectorN<i32, DimMinimum<R, C>>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: LUScalar, R: Dim, C: Dim> LU<N, R, C>
|
||||
where
|
||||
@ -133,7 +131,9 @@ where
|
||||
/// Applies the permutation matrix to a given matrix or vector in-place.
|
||||
#[inline]
|
||||
pub fn permute<C2: Dim>(&self, rhs: &mut MatrixMN<N, R, C2>)
|
||||
where DefaultAllocator: Allocator<N, R, C2> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C2>,
|
||||
{
|
||||
let (nrows, ncols) = rhs.shape();
|
||||
|
||||
N::xlaswp(
|
||||
@ -148,7 +148,9 @@ where
|
||||
}
|
||||
|
||||
fn generic_solve_mut<R2: Dim, C2: Dim>(&self, trans: u8, b: &mut MatrixMN<N, R2, C2>) -> bool
|
||||
where DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
|
||||
{
|
||||
let dim = self.lu.nrows();
|
||||
|
||||
assert!(
|
||||
@ -236,7 +238,9 @@ where
|
||||
///
|
||||
/// Returns `false` if no solution was found (the decomposed matrix is singular).
|
||||
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
|
||||
where DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
|
||||
{
|
||||
self.generic_solve_mut(b'N', b)
|
||||
}
|
||||
|
||||
@ -245,7 +249,9 @@ where
|
||||
///
|
||||
/// Returns `false` if no solution was found (the decomposed matrix is singular).
|
||||
pub fn solve_transpose_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
|
||||
where DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
|
||||
{
|
||||
self.generic_solve_mut(b'T', b)
|
||||
}
|
||||
|
||||
@ -253,10 +259,7 @@ where
|
||||
/// be determined.
|
||||
///
|
||||
/// Returns `false` if no solution was found (the decomposed matrix is singular).
|
||||
pub fn solve_adjoint_mut<R2: Dim, C2: Dim>(
|
||||
&self,
|
||||
b: &mut MatrixMN<N, R2, C2>,
|
||||
) -> bool
|
||||
pub fn solve_adjoint_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
|
||||
{
|
||||
|
@ -4,11 +4,11 @@ use serde::{Deserialize, Serialize};
|
||||
use num::Zero;
|
||||
use num_complex::Complex;
|
||||
|
||||
use crate::ComplexHelper;
|
||||
use na::allocator::Allocator;
|
||||
use na::dimension::{Dim, DimMin, DimMinimum, U1};
|
||||
use na::storage::Storage;
|
||||
use na::{DefaultAllocator, Matrix, MatrixMN, Scalar, VectorN};
|
||||
use crate::ComplexHelper;
|
||||
|
||||
use lapack;
|
||||
|
||||
@ -16,25 +16,22 @@ use lapack;
|
||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
Allocator<N, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Serialize,
|
||||
VectorN<N, DimMinimum<R, C>>: Serialize"
|
||||
))
|
||||
VectorN<N, DimMinimum<R, C>>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
serde(bound(deserialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
Allocator<N, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Deserialize<'de>,
|
||||
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"
|
||||
))
|
||||
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct QR<N: Scalar, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>,
|
||||
{
|
||||
qr: MatrixMN<N, R, C>,
|
||||
tau: VectorN<N, DimMinimum<R, C>>,
|
||||
@ -45,13 +42,15 @@ where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Copy,
|
||||
VectorN<N, DimMinimum<R, C>>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: QRScalar + Zero, R: DimMin<C>, C: Dim> QR<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
+ Allocator<N, R, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>, C>
|
||||
+ Allocator<N, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>>,
|
||||
{
|
||||
/// Computes the QR decomposition of the matrix `m`.
|
||||
pub fn new(mut m: MatrixMN<N, R, C>) -> Self {
|
||||
@ -98,10 +97,11 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
}
|
||||
|
||||
impl<N: QRReal + Zero, R: DimMin<C>, C: Dim> QR<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
+ Allocator<N, R, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>, C>
|
||||
+ Allocator<N, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>>,
|
||||
{
|
||||
/// Retrieves the matrices `(Q, R)` of this decompositions.
|
||||
pub fn unpack(
|
||||
|
@ -4,13 +4,13 @@ use serde::{Deserialize, Serialize};
|
||||
use num::Zero;
|
||||
use num_complex::Complex;
|
||||
|
||||
use alga::general::RealField;
|
||||
use simba::scalar::RealField;
|
||||
|
||||
use crate::ComplexHelper;
|
||||
use na::allocator::Allocator;
|
||||
use na::dimension::{Dim, U1};
|
||||
use na::storage::Storage;
|
||||
use na::{DefaultAllocator, Matrix, MatrixN, Scalar, VectorN};
|
||||
use crate::ComplexHelper;
|
||||
|
||||
use lapack;
|
||||
|
||||
@ -18,23 +18,24 @@ use lapack;
|
||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
serde(
|
||||
bound(serialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
VectorN<N, D>: Serialize,
|
||||
MatrixN<N, D>: Serialize"
|
||||
))
|
||||
MatrixN<N, D>: Serialize")
|
||||
)
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
serde(
|
||||
bound(deserialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
VectorN<N, D>: Serialize,
|
||||
MatrixN<N, D>: Deserialize<'de>"
|
||||
))
|
||||
MatrixN<N, D>: Deserialize<'de>")
|
||||
)
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Schur<N: Scalar, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
|
||||
{
|
||||
re: VectorN<N, D>,
|
||||
im: VectorN<N, D>,
|
||||
@ -47,10 +48,12 @@ where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
MatrixN<N, D>: Copy,
|
||||
VectorN<N, D>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: SchurScalar + RealField, D: Dim> Schur<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
{
|
||||
/// Computes the eigenvalues and real Schur form of the matrix `m`.
|
||||
///
|
||||
@ -145,7 +148,9 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
|
||||
/// Computes the complex eigenvalues of the decomposed matrix.
|
||||
pub fn complex_eigenvalues(&self) -> VectorN<Complex<N>, D>
|
||||
where DefaultAllocator: Allocator<Complex<N>, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<Complex<N>, D>,
|
||||
{
|
||||
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
|
||||
|
||||
for i in 0..out.len() {
|
||||
|
@ -15,29 +15,26 @@ use lapack;
|
||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, DimMinimum<R, C>> +
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, DimMinimum<R, C>> +
|
||||
Allocator<N, R, R> +
|
||||
Allocator<N, C, C>,
|
||||
MatrixN<N, R>: Serialize,
|
||||
MatrixN<N, C>: Serialize,
|
||||
VectorN<N, DimMinimum<R, C>>: Serialize"
|
||||
))
|
||||
VectorN<N, DimMinimum<R, C>>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, DimMinimum<R, C>> +
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, DimMinimum<R, C>> +
|
||||
Allocator<N, R, R> +
|
||||
Allocator<N, C, C>,
|
||||
MatrixN<N, R>: Deserialize<'de>,
|
||||
MatrixN<N, C>: Deserialize<'de>,
|
||||
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"
|
||||
))
|
||||
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SVD<N: Scalar, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C>,
|
||||
{
|
||||
/// The left-singular vectors `U` of this SVD.
|
||||
pub u: MatrixN<N, R>, // FIXME: should be MatrixMN<N, R, DimMinimum<R, C>>
|
||||
@ -53,25 +50,28 @@ where
|
||||
MatrixMN<N, R, R>: Copy,
|
||||
MatrixMN<N, C, C>: Copy,
|
||||
VectorN<N, DimMinimum<R, C>>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
/// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex<f32>`, `Complex<f64>`)
|
||||
/// supported by the Singular Value Decompotition.
|
||||
pub trait SVDScalar<R: DimMin<C>, C: Dim>: Scalar
|
||||
where DefaultAllocator: Allocator<Self, R, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<Self, R, R>
|
||||
+ Allocator<Self, R, C>
|
||||
+ Allocator<Self, DimMinimum<R, C>>
|
||||
+ Allocator<Self, C, C>
|
||||
+ Allocator<Self, C, C>,
|
||||
{
|
||||
/// Computes the SVD decomposition of `m`.
|
||||
fn compute(m: MatrixMN<Self, R, C>) -> Option<SVD<Self, R, C>>;
|
||||
}
|
||||
|
||||
impl<N: SVDScalar<R, C>, R: DimMin<C>, C: Dim> SVD<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, R>
|
||||
+ Allocator<N, R, C>
|
||||
+ Allocator<N, DimMinimum<R, C>>
|
||||
+ Allocator<N, C, C>
|
||||
+ Allocator<N, C, C>,
|
||||
{
|
||||
/// Computes the Singular Value Decomposition of `matrix`.
|
||||
pub fn new(m: MatrixMN<N, R, C>) -> Option<Self> {
|
||||
|
@ -4,13 +4,13 @@ use serde::{Deserialize, Serialize};
|
||||
use num::Zero;
|
||||
use std::ops::MulAssign;
|
||||
|
||||
use alga::general::RealField;
|
||||
use simba::scalar::RealField;
|
||||
|
||||
use crate::ComplexHelper;
|
||||
use na::allocator::Allocator;
|
||||
use na::dimension::{Dim, U1};
|
||||
use na::storage::Storage;
|
||||
use na::{DefaultAllocator, Matrix, MatrixN, Scalar, VectorN};
|
||||
use crate::ComplexHelper;
|
||||
|
||||
use lapack;
|
||||
|
||||
@ -18,25 +18,22 @@ use lapack;
|
||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, D, D> +
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, D, D> +
|
||||
Allocator<N, D>,
|
||||
VectorN<N, D>: Serialize,
|
||||
MatrixN<N, D>: Serialize"
|
||||
))
|
||||
MatrixN<N, D>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "DefaultAllocator: Allocator<N, D, D> +
|
||||
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D, D> +
|
||||
Allocator<N, D>,
|
||||
VectorN<N, D>: Deserialize<'de>,
|
||||
MatrixN<N, D>: Deserialize<'de>"
|
||||
))
|
||||
MatrixN<N, D>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SymmetricEigen<N: Scalar, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
|
||||
{
|
||||
/// The eigenvectors of the decomposed matrix.
|
||||
pub eigenvectors: MatrixN<N, D>,
|
||||
@ -50,10 +47,12 @@ where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
MatrixN<N, D>: Copy,
|
||||
VectorN<N, D>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: SymmetricEigenScalar + RealField, D: Dim> SymmetricEigen<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
{
|
||||
/// Computes the eigenvalues and eigenvectors of the symmetric matrix `m`.
|
||||
///
|
||||
@ -82,8 +81,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
fn do_decompose(
|
||||
mut m: MatrixN<N, D>,
|
||||
eigenvectors: bool,
|
||||
) -> Option<(VectorN<N, D>, Option<MatrixN<N, D>>)>
|
||||
{
|
||||
) -> Option<(VectorN<N, D>, Option<MatrixN<N, D>>)> {
|
||||
assert!(
|
||||
m.is_square(),
|
||||
"Unable to compute the eigenvalue decomposition of a non-square matrix."
|
||||
|
@ -3,7 +3,7 @@ use std::cmp;
|
||||
use na::{DMatrix, DVector, Matrix3, Matrix4, Matrix4x3, Vector4};
|
||||
use nl::Cholesky;
|
||||
|
||||
quickcheck!{
|
||||
quickcheck! {
|
||||
fn cholesky(m: DMatrix<f64>) -> bool {
|
||||
if m.len() != 0 {
|
||||
let m = &m * m.transpose();
|
||||
|
@ -3,7 +3,7 @@ use std::cmp;
|
||||
use na::{DMatrix, DVector, Matrix3x4, Matrix4, Matrix4x3, Vector4};
|
||||
use nl::LU;
|
||||
|
||||
quickcheck!{
|
||||
quickcheck! {
|
||||
fn lup(m: DMatrix<f64>) -> bool {
|
||||
if m.len() != 0 {
|
||||
let lup = LU::new(m.clone());
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{DMatrix, Matrix4x3};
|
||||
use nl::QR;
|
||||
|
||||
quickcheck!{
|
||||
quickcheck! {
|
||||
fn qr(m: DMatrix<f64>) -> bool {
|
||||
let qr = QR::new(m.clone());
|
||||
let q = qr.q();
|
||||
|
@ -3,7 +3,7 @@ use std::cmp;
|
||||
use na::{DMatrix, Matrix4};
|
||||
use nl::Eigen;
|
||||
|
||||
quickcheck!{
|
||||
quickcheck! {
|
||||
fn eigensystem(n: usize) -> bool {
|
||||
if n != 0 {
|
||||
let n = cmp::min(n, 25);
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{DMatrix, Matrix3x4};
|
||||
use nl::SVD;
|
||||
|
||||
quickcheck!{
|
||||
quickcheck! {
|
||||
fn svd(m: DMatrix<f64>) -> bool {
|
||||
if m.nrows() != 0 && m.ncols() != 0 {
|
||||
let svd = SVD::new(m.clone()).unwrap();
|
||||
|
@ -3,7 +3,7 @@ use std::cmp;
|
||||
use na::{DMatrix, Matrix4};
|
||||
use nl::SymmetricEigen;
|
||||
|
||||
quickcheck!{
|
||||
quickcheck! {
|
||||
fn symmetric_eigen(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 10));
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
|
@ -1,9 +1,9 @@
|
||||
#[cfg(any(feature = "alloc", feature = "std"))]
|
||||
use crate::base::dimension::Dynamic;
|
||||
use crate::base::dimension::{U1, U2, U3, U4, U5, U6};
|
||||
use crate::base::storage::Owned;
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
use crate::base::vec_storage::VecStorage;
|
||||
use crate::base::storage::Owned;
|
||||
use crate::base::Matrix;
|
||||
|
||||
/*
|
||||
|
@ -179,20 +179,27 @@ pub type VectorSliceN<'a, N, D, RStride = U1, CStride = D> =
|
||||
Matrix<N, D, U1, SliceStorage<'a, N, D, U1, RStride, CStride>>;
|
||||
|
||||
/// A column vector slice dynamic numbers of rows and columns.
|
||||
pub type DVectorSlice<'a, N, RStride = U1, CStride = Dynamic> = VectorSliceN<'a, N, Dynamic, RStride, CStride>;
|
||||
pub type DVectorSlice<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
VectorSliceN<'a, N, Dynamic, RStride, CStride>;
|
||||
|
||||
/// A 1D column vector slice.
|
||||
pub type VectorSlice1<'a, N, RStride = U1, CStride = U1> = VectorSliceN<'a, N, U1, RStride, CStride>;
|
||||
pub type VectorSlice1<'a, N, RStride = U1, CStride = U1> =
|
||||
VectorSliceN<'a, N, U1, RStride, CStride>;
|
||||
/// A 2D column vector slice.
|
||||
pub type VectorSlice2<'a, N, RStride = U1, CStride = U2> = VectorSliceN<'a, N, U2, RStride, CStride>;
|
||||
pub type VectorSlice2<'a, N, RStride = U1, CStride = U2> =
|
||||
VectorSliceN<'a, N, U2, RStride, CStride>;
|
||||
/// A 3D column vector slice.
|
||||
pub type VectorSlice3<'a, N, RStride = U1, CStride = U3> = VectorSliceN<'a, N, U3, RStride, CStride>;
|
||||
pub type VectorSlice3<'a, N, RStride = U1, CStride = U3> =
|
||||
VectorSliceN<'a, N, U3, RStride, CStride>;
|
||||
/// A 4D column vector slice.
|
||||
pub type VectorSlice4<'a, N, RStride = U1, CStride = U4> = VectorSliceN<'a, N, U4, RStride, CStride>;
|
||||
pub type VectorSlice4<'a, N, RStride = U1, CStride = U4> =
|
||||
VectorSliceN<'a, N, U4, RStride, CStride>;
|
||||
/// A 5D column vector slice.
|
||||
pub type VectorSlice5<'a, N, RStride = U1, CStride = U5> = VectorSliceN<'a, N, U5, RStride, CStride>;
|
||||
pub type VectorSlice5<'a, N, RStride = U1, CStride = U5> =
|
||||
VectorSliceN<'a, N, U5, RStride, CStride>;
|
||||
/// A 6D column vector slice.
|
||||
pub type VectorSlice6<'a, N, RStride = U1, CStride = U6> = VectorSliceN<'a, N, U6, RStride, CStride>;
|
||||
pub type VectorSlice6<'a, N, RStride = U1, CStride = U6> =
|
||||
VectorSliceN<'a, N, U6, RStride, CStride>;
|
||||
|
||||
/*
|
||||
*
|
||||
@ -371,17 +378,24 @@ pub type VectorSliceMutN<'a, N, D, RStride = U1, CStride = D> =
|
||||
Matrix<N, D, U1, SliceStorageMut<'a, N, D, U1, RStride, CStride>>;
|
||||
|
||||
/// A mutable column vector slice dynamic numbers of rows and columns.
|
||||
pub type DVectorSliceMut<'a, N, RStride = U1, CStride = Dynamic> = VectorSliceMutN<'a, N, Dynamic, RStride, CStride>;
|
||||
pub type DVectorSliceMut<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
VectorSliceMutN<'a, N, Dynamic, RStride, CStride>;
|
||||
|
||||
/// A 1D mutable column vector slice.
|
||||
pub type VectorSliceMut1<'a, N, RStride = U1, CStride = U1> = VectorSliceMutN<'a, N, U1, RStride, CStride>;
|
||||
pub type VectorSliceMut1<'a, N, RStride = U1, CStride = U1> =
|
||||
VectorSliceMutN<'a, N, U1, RStride, CStride>;
|
||||
/// A 2D mutable column vector slice.
|
||||
pub type VectorSliceMut2<'a, N, RStride = U1, CStride = U2> = VectorSliceMutN<'a, N, U2, RStride, CStride>;
|
||||
pub type VectorSliceMut2<'a, N, RStride = U1, CStride = U2> =
|
||||
VectorSliceMutN<'a, N, U2, RStride, CStride>;
|
||||
/// A 3D mutable column vector slice.
|
||||
pub type VectorSliceMut3<'a, N, RStride = U1, CStride = U3> = VectorSliceMutN<'a, N, U3, RStride, CStride>;
|
||||
pub type VectorSliceMut3<'a, N, RStride = U1, CStride = U3> =
|
||||
VectorSliceMutN<'a, N, U3, RStride, CStride>;
|
||||
/// A 4D mutable column vector slice.
|
||||
pub type VectorSliceMut4<'a, N, RStride = U1, CStride = U4> = VectorSliceMutN<'a, N, U4, RStride, CStride>;
|
||||
pub type VectorSliceMut4<'a, N, RStride = U1, CStride = U4> =
|
||||
VectorSliceMutN<'a, N, U4, RStride, CStride>;
|
||||
/// A 5D mutable column vector slice.
|
||||
pub type VectorSliceMut5<'a, N, RStride = U1, CStride = U5> = VectorSliceMutN<'a, N, U5, RStride, CStride>;
|
||||
pub type VectorSliceMut5<'a, N, RStride = U1, CStride = U5> =
|
||||
VectorSliceMutN<'a, N, U5, RStride, CStride>;
|
||||
/// A 6D mutable column vector slice.
|
||||
pub type VectorSliceMut6<'a, N, RStride = U1, CStride = U6> = VectorSliceMutN<'a, N, U6, RStride, CStride>;
|
||||
pub type VectorSliceMut6<'a, N, RStride = U1, CStride = U6> =
|
||||
VectorSliceMutN<'a, N, U6, RStride, CStride>;
|
||||
|
@ -79,7 +79,8 @@ where
|
||||
N: Scalar,
|
||||
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, SameShapeR<R1, R2>, SameShapeC<C1, C2>>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
// XXX: Bad name.
|
||||
/// Restricts the given number of rows to be equal.
|
||||
@ -100,4 +101,5 @@ where
|
||||
N: Scalar,
|
||||
DefaultAllocator: Allocator<N, R1, U1> + Allocator<N, SameShapeR<R1, R2>>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2>,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
@ -44,7 +44,7 @@ where
|
||||
data: GenericArray<N, Prod<R::Value, C::Value>>,
|
||||
}
|
||||
|
||||
#[deprecated(note="renamed to `ArrayStorage`")]
|
||||
#[deprecated(note = "renamed to `ArrayStorage`")]
|
||||
/// Renamed to [ArrayStorage].
|
||||
pub type MatrixArray<N, R, C> = ArrayStorage<N, R, C>;
|
||||
|
||||
@ -111,7 +111,8 @@ where
|
||||
R::Value: Mul<C::Value>,
|
||||
Prod<R::Value, C::Value>: ArrayLength<N>,
|
||||
GenericArray<N, Prod<R::Value, C::Value>>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N, R, C> Clone for ArrayStorage<N, R, C>
|
||||
where
|
||||
@ -136,7 +137,8 @@ where
|
||||
C: DimName,
|
||||
R::Value: Mul<C::Value>,
|
||||
Prod<R::Value, C::Value>: ArrayLength<N>,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N, R, C> PartialEq for ArrayStorage<N, R, C>
|
||||
where
|
||||
@ -186,13 +188,17 @@ where
|
||||
|
||||
#[inline]
|
||||
fn into_owned(self) -> Owned<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn clone_owned(&self) -> Owned<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
let it = self.iter().cloned();
|
||||
|
||||
DefaultAllocator::allocate_from_iterator(self.shape().0, self.shape().1, it)
|
||||
@ -232,7 +238,8 @@ where
|
||||
R::Value: Mul<C::Value>,
|
||||
Prod<R::Value, C::Value>: ArrayLength<N>,
|
||||
DefaultAllocator: Allocator<N, R, C, Buffer = Self>,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
unsafe impl<N, R, C> ContiguousStorageMut<N, R, C> for ArrayStorage<N, R, C>
|
||||
where
|
||||
@ -242,7 +249,8 @@ where
|
||||
R::Value: Mul<C::Value>,
|
||||
Prod<R::Value, C::Value>: ArrayLength<N>,
|
||||
DefaultAllocator: Allocator<N, R, C, Buffer = Self>,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
@ -260,7 +268,9 @@ where
|
||||
Prod<R::Value, C::Value>: ArrayLength<N>,
|
||||
{
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where S: Serializer {
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
let mut serializer = serializer.serialize_seq(Some(R::dim() * C::dim()))?;
|
||||
|
||||
for e in self.iter() {
|
||||
@ -281,7 +291,9 @@ where
|
||||
Prod<R::Value, C::Value>: ArrayLength<N>,
|
||||
{
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where D: Deserializer<'a> {
|
||||
where
|
||||
D: Deserializer<'a>,
|
||||
{
|
||||
deserializer.deserialize_seq(ArrayStorageVisitor::new())
|
||||
}
|
||||
}
|
||||
@ -326,12 +338,15 @@ where
|
||||
|
||||
#[inline]
|
||||
fn visit_seq<V>(self, mut visitor: V) -> Result<ArrayStorage<N, R, C>, V::Error>
|
||||
where V: SeqAccess<'a> {
|
||||
where
|
||||
V: SeqAccess<'a>,
|
||||
{
|
||||
let mut out: Self::Value = unsafe { mem::uninitialized() };
|
||||
let mut curr = 0;
|
||||
|
||||
while let Some(value) = visitor.next_element()? {
|
||||
*out.get_mut(curr).ok_or_else(|| V::Error::invalid_length(curr, &self))? = value;
|
||||
*out.get_mut(curr)
|
||||
.ok_or_else(|| V::Error::invalid_length(curr, &self))? = value;
|
||||
curr += 1;
|
||||
}
|
||||
|
||||
|
204
src/base/blas.rs
204
src/base/blas.rs
@ -1,7 +1,8 @@
|
||||
use alga::general::{ClosedAdd, ClosedMul, ComplexField};
|
||||
use crate::SimdComplexField;
|
||||
#[cfg(feature = "std")]
|
||||
use matrixmultiply;
|
||||
use num::{One, Signed, Zero};
|
||||
use simba::scalar::{ClosedAdd, ClosedMul, ComplexField};
|
||||
#[cfg(feature = "std")]
|
||||
use std::mem;
|
||||
|
||||
@ -11,8 +12,9 @@ use crate::base::constraint::{
|
||||
};
|
||||
use crate::base::dimension::{Dim, Dynamic, U1, U2, U3, U4};
|
||||
use crate::base::storage::{Storage, StorageMut};
|
||||
use crate::base::{DefaultAllocator, Matrix, Scalar, SquareMatrix, Vector, DVectorSlice, VectorSliceN};
|
||||
|
||||
use crate::base::{
|
||||
DVectorSlice, DefaultAllocator, Matrix, Scalar, SquareMatrix, Vector, VectorSliceN,
|
||||
};
|
||||
|
||||
// FIXME: find a way to avoid code duplication just for complex number support.
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
|
||||
@ -102,7 +104,9 @@ impl<N: Scalar + PartialOrd, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn iamax(&self) -> usize
|
||||
where N: Signed {
|
||||
where
|
||||
N: Signed,
|
||||
{
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.vget_unchecked(0).abs() };
|
||||
@ -173,7 +177,9 @@ impl<N: Scalar + PartialOrd, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn iamin(&self) -> usize
|
||||
where N: Signed {
|
||||
where
|
||||
N: Signed,
|
||||
{
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_min = unsafe { self.vget_unchecked(0).abs() };
|
||||
@ -229,7 +235,6 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<N: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Computes the index of the matrix component with the largest absolute value.
|
||||
///
|
||||
@ -264,10 +269,15 @@ impl<N: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matri
|
||||
}
|
||||
|
||||
impl<N, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
where
|
||||
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn dotx<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<N, R2, C2, SB>, conjugate: impl Fn(N) -> N) -> N
|
||||
fn dotx<R2: Dim, C2: Dim, SB>(
|
||||
&self,
|
||||
rhs: &Matrix<N, R2, C2, SB>,
|
||||
conjugate: impl Fn(N) -> N,
|
||||
) -> N
|
||||
where
|
||||
SB: Storage<N, R2, C2>,
|
||||
ShapeConstraint: DimEq<R, R2> + DimEq<C, C2>,
|
||||
@ -281,27 +291,36 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
// because the `for` loop below won't be very efficient on those.
|
||||
if (R::is::<U2>() || R2::is::<U2>()) && (C::is::<U1>() || C2::is::<U1>()) {
|
||||
unsafe {
|
||||
let a = conjugate(self.get_unchecked((0, 0)).inlined_clone()) * rhs.get_unchecked((0, 0)).inlined_clone();
|
||||
let b = conjugate(self.get_unchecked((1, 0)).inlined_clone()) * rhs.get_unchecked((1, 0)).inlined_clone();
|
||||
let a = conjugate(self.get_unchecked((0, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((0, 0)).inlined_clone();
|
||||
let b = conjugate(self.get_unchecked((1, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((1, 0)).inlined_clone();
|
||||
|
||||
return a + b;
|
||||
}
|
||||
}
|
||||
if (R::is::<U3>() || R2::is::<U3>()) && (C::is::<U1>() || C2::is::<U1>()) {
|
||||
unsafe {
|
||||
let a = conjugate(self.get_unchecked((0, 0)).inlined_clone()) * rhs.get_unchecked((0, 0)).inlined_clone();
|
||||
let b = conjugate(self.get_unchecked((1, 0)).inlined_clone()) * rhs.get_unchecked((1, 0)).inlined_clone();
|
||||
let c = conjugate(self.get_unchecked((2, 0)).inlined_clone()) * rhs.get_unchecked((2, 0)).inlined_clone();
|
||||
let a = conjugate(self.get_unchecked((0, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((0, 0)).inlined_clone();
|
||||
let b = conjugate(self.get_unchecked((1, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((1, 0)).inlined_clone();
|
||||
let c = conjugate(self.get_unchecked((2, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((2, 0)).inlined_clone();
|
||||
|
||||
return a + b + c;
|
||||
}
|
||||
}
|
||||
if (R::is::<U4>() || R2::is::<U4>()) && (C::is::<U1>() || C2::is::<U1>()) {
|
||||
unsafe {
|
||||
let mut a = conjugate(self.get_unchecked((0, 0)).inlined_clone()) * rhs.get_unchecked((0, 0)).inlined_clone();
|
||||
let mut b = conjugate(self.get_unchecked((1, 0)).inlined_clone()) * rhs.get_unchecked((1, 0)).inlined_clone();
|
||||
let c = conjugate(self.get_unchecked((2, 0)).inlined_clone()) * rhs.get_unchecked((2, 0)).inlined_clone();
|
||||
let d = conjugate(self.get_unchecked((3, 0)).inlined_clone()) * rhs.get_unchecked((3, 0)).inlined_clone();
|
||||
let mut a = conjugate(self.get_unchecked((0, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((0, 0)).inlined_clone();
|
||||
let mut b = conjugate(self.get_unchecked((1, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((1, 0)).inlined_clone();
|
||||
let c = conjugate(self.get_unchecked((2, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((2, 0)).inlined_clone();
|
||||
let d = conjugate(self.get_unchecked((3, 0)).inlined_clone())
|
||||
* rhs.get_unchecked((3, 0)).inlined_clone();
|
||||
|
||||
a += c;
|
||||
b += d;
|
||||
@ -341,14 +360,38 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
acc7 = N::zero();
|
||||
|
||||
while self.nrows() - i >= 8 {
|
||||
acc0 += unsafe { conjugate(self.get_unchecked((i + 0, j)).inlined_clone()) * rhs.get_unchecked((i + 0, j)).inlined_clone() };
|
||||
acc1 += unsafe { conjugate(self.get_unchecked((i + 1, j)).inlined_clone()) * rhs.get_unchecked((i + 1, j)).inlined_clone() };
|
||||
acc2 += unsafe { conjugate(self.get_unchecked((i + 2, j)).inlined_clone()) * rhs.get_unchecked((i + 2, j)).inlined_clone() };
|
||||
acc3 += unsafe { conjugate(self.get_unchecked((i + 3, j)).inlined_clone()) * rhs.get_unchecked((i + 3, j)).inlined_clone() };
|
||||
acc4 += unsafe { conjugate(self.get_unchecked((i + 4, j)).inlined_clone()) * rhs.get_unchecked((i + 4, j)).inlined_clone() };
|
||||
acc5 += unsafe { conjugate(self.get_unchecked((i + 5, j)).inlined_clone()) * rhs.get_unchecked((i + 5, j)).inlined_clone() };
|
||||
acc6 += unsafe { conjugate(self.get_unchecked((i + 6, j)).inlined_clone()) * rhs.get_unchecked((i + 6, j)).inlined_clone() };
|
||||
acc7 += unsafe { conjugate(self.get_unchecked((i + 7, j)).inlined_clone()) * rhs.get_unchecked((i + 7, j)).inlined_clone() };
|
||||
acc0 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 0, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 0, j)).inlined_clone()
|
||||
};
|
||||
acc1 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 1, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 1, j)).inlined_clone()
|
||||
};
|
||||
acc2 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 2, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 2, j)).inlined_clone()
|
||||
};
|
||||
acc3 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 3, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 3, j)).inlined_clone()
|
||||
};
|
||||
acc4 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 4, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 4, j)).inlined_clone()
|
||||
};
|
||||
acc5 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 5, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 5, j)).inlined_clone()
|
||||
};
|
||||
acc6 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 6, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 6, j)).inlined_clone()
|
||||
};
|
||||
acc7 += unsafe {
|
||||
conjugate(self.get_unchecked((i + 7, j)).inlined_clone())
|
||||
* rhs.get_unchecked((i + 7, j)).inlined_clone()
|
||||
};
|
||||
i += 8;
|
||||
}
|
||||
|
||||
@ -358,14 +401,16 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
res += acc3 + acc7;
|
||||
|
||||
for k in i..self.nrows() {
|
||||
res += unsafe { conjugate(self.get_unchecked((k, j)).inlined_clone()) * rhs.get_unchecked((k, j)).inlined_clone() }
|
||||
res += unsafe {
|
||||
conjugate(self.get_unchecked((k, j)).inlined_clone())
|
||||
* rhs.get_unchecked((k, j)).inlined_clone()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
|
||||
/// The dot product between two vectors or matrices (seen as vectors).
|
||||
///
|
||||
/// This is equal to `self.transpose() * rhs`. For the sesquilinear complex dot product, use
|
||||
@ -420,11 +465,11 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
#[inline]
|
||||
pub fn dotc<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<N, R2, C2, SB>) -> N
|
||||
where
|
||||
N: ComplexField,
|
||||
N: SimdComplexField,
|
||||
SB: Storage<N, R2, C2>,
|
||||
ShapeConstraint: DimEq<R, R2> + DimEq<C, C2>,
|
||||
{
|
||||
self.dotx(rhs, ComplexField::conjugate)
|
||||
self.dotx(rhs, N::simd_conjugate)
|
||||
}
|
||||
|
||||
/// The dot product between the transpose of `self` and `rhs`.
|
||||
@ -460,7 +505,10 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
|
||||
for j in 0..self.nrows() {
|
||||
for i in 0..self.ncols() {
|
||||
res += unsafe { self.get_unchecked((j, i)).inlined_clone() * rhs.get_unchecked((i, j)).inlined_clone() }
|
||||
res += unsafe {
|
||||
self.get_unchecked((j, i)).inlined_clone()
|
||||
* rhs.get_unchecked((i, j)).inlined_clone()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -468,21 +516,38 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
}
|
||||
}
|
||||
|
||||
fn array_axcpy<N>(y: &mut [N], a: N, x: &[N], c: N, beta: N, stride1: usize, stride2: usize, len: usize)
|
||||
where N: Scalar + Zero + ClosedAdd + ClosedMul {
|
||||
fn array_axcpy<N>(
|
||||
y: &mut [N],
|
||||
a: N,
|
||||
x: &[N],
|
||||
c: N,
|
||||
beta: N,
|
||||
stride1: usize,
|
||||
stride2: usize,
|
||||
len: usize,
|
||||
) where
|
||||
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
||||
{
|
||||
for i in 0..len {
|
||||
unsafe {
|
||||
let y = y.get_unchecked_mut(i * stride1);
|
||||
*y = a.inlined_clone() * x.get_unchecked(i * stride2).inlined_clone() * c.inlined_clone() + beta.inlined_clone() * y.inlined_clone();
|
||||
*y = a.inlined_clone()
|
||||
* x.get_unchecked(i * stride2).inlined_clone()
|
||||
* c.inlined_clone()
|
||||
+ beta.inlined_clone() * y.inlined_clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn array_axc<N>(y: &mut [N], a: N, x: &[N], c: N, stride1: usize, stride2: usize, len: usize)
|
||||
where N: Scalar + Zero + ClosedAdd + ClosedMul {
|
||||
where
|
||||
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
||||
{
|
||||
for i in 0..len {
|
||||
unsafe {
|
||||
*y.get_unchecked_mut(i * stride1) = a.inlined_clone() * x.get_unchecked(i * stride2).inlined_clone() * c.inlined_clone();
|
||||
*y.get_unchecked_mut(i * stride1) = a.inlined_clone()
|
||||
* x.get_unchecked(i * stride2).inlined_clone()
|
||||
* c.inlined_clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -613,7 +678,6 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[inline(always)]
|
||||
fn xxgemv<D2: Dim, D3: Dim, SB, SC>(
|
||||
&mut self,
|
||||
@ -621,7 +685,10 @@ where
|
||||
a: &SquareMatrix<N, D2, SB>,
|
||||
x: &Vector<N, D3, SC>,
|
||||
beta: N,
|
||||
dot: impl Fn(&DVectorSlice<N, SB::RStride, SB::CStride>, &DVectorSlice<N, SC::RStride, SC::CStride>) -> N,
|
||||
dot: impl Fn(
|
||||
&DVectorSlice<N, SB::RStride, SB::CStride>,
|
||||
&DVectorSlice<N, SC::RStride, SC::CStride>,
|
||||
) -> N,
|
||||
) where
|
||||
N: One,
|
||||
SB: Storage<N, D2, D2>,
|
||||
@ -660,8 +727,11 @@ where
|
||||
val = x.vget_unchecked(j).inlined_clone();
|
||||
*self.vget_unchecked_mut(j) += alpha.inlined_clone() * dot;
|
||||
}
|
||||
self.rows_range_mut(j + 1..)
|
||||
.axpy(alpha.inlined_clone() * val, &col2.rows_range(j + 1..), N::one());
|
||||
self.rows_range_mut(j + 1..).axpy(
|
||||
alpha.inlined_clone() * val,
|
||||
&col2.rows_range(j + 1..),
|
||||
N::one(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@ -765,7 +835,7 @@ where
|
||||
x: &Vector<N, D3, SC>,
|
||||
beta: N,
|
||||
) where
|
||||
N: ComplexField,
|
||||
N: SimdComplexField,
|
||||
SB: Storage<N, D2, D2>,
|
||||
SC: Storage<N, D3>,
|
||||
ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
|
||||
@ -773,7 +843,6 @@ where
|
||||
self.xxgemv(alpha, a, x, beta, |a, b| a.dotc(b))
|
||||
}
|
||||
|
||||
|
||||
#[inline(always)]
|
||||
fn gemv_xx<R2: Dim, C2: Dim, D3: Dim, SB, SC>(
|
||||
&mut self,
|
||||
@ -809,12 +878,12 @@ where
|
||||
} else {
|
||||
for j in 0..ncols2 {
|
||||
let val = unsafe { self.vget_unchecked_mut(j) };
|
||||
*val = alpha.inlined_clone() * dot(&a.column(j), x) + beta.inlined_clone() * val.inlined_clone();
|
||||
*val = alpha.inlined_clone() * dot(&a.column(j), x)
|
||||
+ beta.inlined_clone() * val.inlined_clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Computes `self = alpha * a.transpose() * x + beta * self`, where `a` is a matrix, `x` a vector, and
|
||||
/// `alpha, beta` two scalars.
|
||||
///
|
||||
@ -876,7 +945,7 @@ where
|
||||
x: &Vector<N, D3, SC>,
|
||||
beta: N,
|
||||
) where
|
||||
N: ComplexField,
|
||||
N: SimdComplexField,
|
||||
SB: Storage<N, R2, C2>,
|
||||
SC: Storage<N, D3>,
|
||||
ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, U1>,
|
||||
@ -886,7 +955,8 @@ where
|
||||
}
|
||||
|
||||
impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S>
|
||||
where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
where
|
||||
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn gerx<D2: Dim, D3: Dim, SB, SC>(
|
||||
@ -914,7 +984,8 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
for j in 0..ncols1 {
|
||||
// FIXME: avoid bound checks.
|
||||
let val = unsafe { conjugate(y.vget_unchecked(j).inlined_clone()) };
|
||||
self.column_mut(j).axpy(alpha.inlined_clone() * val, x, beta.inlined_clone());
|
||||
self.column_mut(j)
|
||||
.axpy(alpha.inlined_clone() * val, x, beta.inlined_clone());
|
||||
}
|
||||
}
|
||||
|
||||
@ -975,12 +1046,12 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
y: &Vector<N, D3, SC>,
|
||||
beta: N,
|
||||
) where
|
||||
N: ComplexField,
|
||||
N: SimdComplexField,
|
||||
SB: Storage<N, D2>,
|
||||
SC: Storage<N, D3>,
|
||||
ShapeConstraint: DimEq<R1, D2> + DimEq<C1, D3>,
|
||||
{
|
||||
self.gerx(alpha, x, y, beta, ComplexField::conjugate)
|
||||
self.gerx(alpha, x, y, beta, SimdComplexField::simd_conjugate)
|
||||
}
|
||||
|
||||
/// Computes `self = alpha * a * b + beta * self`, where `a, b, self` are matrices.
|
||||
@ -1032,7 +1103,8 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
|| R2::is::<Dynamic>()
|
||||
|| C2::is::<Dynamic>()
|
||||
|| R3::is::<Dynamic>()
|
||||
|| C3::is::<Dynamic>() {
|
||||
|| C3::is::<Dynamic>()
|
||||
{
|
||||
// matrixmultiply can be used only if the std feature is available.
|
||||
let nrows1 = self.nrows();
|
||||
let (nrows2, ncols2) = a.shape();
|
||||
@ -1125,10 +1197,14 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for j1 in 0..ncols1 {
|
||||
// FIXME: avoid bound checks.
|
||||
self.column_mut(j1).gemv(alpha.inlined_clone(), a, &b.column(j1), beta.inlined_clone());
|
||||
self.column_mut(j1).gemv(
|
||||
alpha.inlined_clone(),
|
||||
a,
|
||||
&b.column(j1),
|
||||
beta.inlined_clone(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1185,11 +1261,15 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
|
||||
for j1 in 0..ncols1 {
|
||||
// FIXME: avoid bound checks.
|
||||
self.column_mut(j1).gemv_tr(alpha.inlined_clone(), a, &b.column(j1), beta.inlined_clone());
|
||||
self.column_mut(j1).gemv_tr(
|
||||
alpha.inlined_clone(),
|
||||
a,
|
||||
&b.column(j1),
|
||||
beta.inlined_clone(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Computes `self = alpha * a.adjoint() * b + beta * self`, where `a, b, self` are matrices.
|
||||
/// `alpha` and `beta` are scalar.
|
||||
///
|
||||
@ -1220,7 +1300,7 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
b: &Matrix<N, R3, C3, SC>,
|
||||
beta: N,
|
||||
) where
|
||||
N: ComplexField,
|
||||
N: SimdComplexField,
|
||||
SB: Storage<N, R2, C2>,
|
||||
SC: Storage<N, R3, C3>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, C2>
|
||||
@ -1249,7 +1329,8 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
}
|
||||
|
||||
impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S>
|
||||
where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
where
|
||||
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn xxgerx<D2: Dim, D3: Dim, SB, SC>(
|
||||
@ -1386,17 +1467,18 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
y: &Vector<N, D3, SC>,
|
||||
beta: N,
|
||||
) where
|
||||
N: ComplexField,
|
||||
N: SimdComplexField,
|
||||
SB: Storage<N, D2>,
|
||||
SC: Storage<N, D3>,
|
||||
ShapeConstraint: DimEq<R1, D2> + DimEq<C1, D3>,
|
||||
{
|
||||
self.xxgerx(alpha, x, y, beta, ComplexField::conjugate)
|
||||
self.xxgerx(alpha, x, y, beta, SimdComplexField::simd_conjugate)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N, D1: Dim, S: StorageMut<N, D1, D1>> SquareMatrix<N, D1, S>
|
||||
where N: Scalar + Zero + One + ClosedAdd + ClosedMul
|
||||
where
|
||||
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
|
||||
{
|
||||
/// Computes the quadratic form `self = alpha * lhs * mid * lhs.transpose() + beta * self`.
|
||||
///
|
||||
@ -1534,11 +1616,13 @@ where N: Scalar + Zero + One + ClosedAdd + ClosedMul
|
||||
DimEq<D3, R4> + DimEq<D1, C4> + DimEq<D2, D3> + AreMultipliable<C4, R4, D2, U1>,
|
||||
{
|
||||
work.gemv(N::one(), mid, &rhs.column(0), N::zero());
|
||||
self.column_mut(0).gemv_tr(alpha.inlined_clone(), &rhs, work, beta.inlined_clone());
|
||||
self.column_mut(0)
|
||||
.gemv_tr(alpha.inlined_clone(), &rhs, work, beta.inlined_clone());
|
||||
|
||||
for j in 1..rhs.ncols() {
|
||||
work.gemv(N::one(), mid, &rhs.column(j), N::zero());
|
||||
self.column_mut(j).gemv_tr(alpha.inlined_clone(), &rhs, work, beta.inlined_clone());
|
||||
self.column_mut(j)
|
||||
.gemv_tr(alpha.inlined_clone(), &rhs, work, beta.inlined_clone());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -5,7 +5,7 @@
|
||||
*
|
||||
*/
|
||||
|
||||
use num::One;
|
||||
use num::{One, Zero};
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::{DimName, DimNameDiff, DimNameSub, U1};
|
||||
@ -18,12 +18,11 @@ use crate::geometry::{
|
||||
Isometry, IsometryMatrix3, Orthographic3, Perspective3, Point, Point3, Rotation2, Rotation3,
|
||||
};
|
||||
|
||||
use alga::general::{RealField, Ring};
|
||||
use alga::linear::Transformation;
|
||||
use simba::scalar::{ClosedAdd, ClosedMul, RealField};
|
||||
|
||||
impl<N, D: DimName> MatrixN<N, D>
|
||||
where
|
||||
N: Scalar + Ring,
|
||||
N: Scalar + Zero + One,
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Creates a new homogeneous matrix that applies the same scaling factor on each dimension.
|
||||
@ -42,7 +41,7 @@ where
|
||||
D: DimNameSub<U1>,
|
||||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||||
{
|
||||
let mut res = Self::one();
|
||||
let mut res = Self::identity();
|
||||
for i in 0..scaling.len() {
|
||||
res[(i, i)] = scaling[i].inlined_clone();
|
||||
}
|
||||
@ -57,7 +56,7 @@ where
|
||||
D: DimNameSub<U1>,
|
||||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||||
{
|
||||
let mut res = Self::one();
|
||||
let mut res = Self::identity();
|
||||
res.fixed_slice_mut::<DimNameDiff<D, U1>, U1>(0, D::dim() - 1)
|
||||
.copy_from(translation);
|
||||
|
||||
@ -135,7 +134,7 @@ impl<N: RealField> Matrix4<N> {
|
||||
}
|
||||
|
||||
/// Deprecated: Use [Matrix4::face_towards] instead.
|
||||
#[deprecated(note="renamed to `face_towards`")]
|
||||
#[deprecated(note = "renamed to `face_towards`")]
|
||||
pub fn new_observer_frame(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self {
|
||||
Matrix4::face_towards(eye, target, up)
|
||||
}
|
||||
@ -153,7 +152,9 @@ impl<N: RealField> Matrix4<N> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + Ring, D: DimName, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: Storage<N, D, D>>
|
||||
SquareMatrix<N, D, S>
|
||||
{
|
||||
/// Computes the transformation equal to `self` followed by an uniform scaling factor.
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use append_scaling_mut()?"]
|
||||
@ -246,11 +247,15 @@ impl<N: Scalar + Ring, D: DimName, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
|
||||
impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: StorageMut<N, D, D>>
|
||||
SquareMatrix<N, D, S>
|
||||
{
|
||||
/// Computes in-place the transformation equal to `self` followed by an uniform scaling factor.
|
||||
#[inline]
|
||||
pub fn append_scaling_mut(&mut self, scaling: N)
|
||||
where D: DimNameSub<U1> {
|
||||
where
|
||||
D: DimNameSub<U1>,
|
||||
{
|
||||
let mut to_scale = self.fixed_rows_mut::<DimNameDiff<D, U1>>(0);
|
||||
to_scale *= scaling;
|
||||
}
|
||||
@ -258,7 +263,9 @@ impl<N: Scalar + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N, D, S>
|
||||
/// Computes in-place the transformation equal to an uniform scaling factor followed by `self`.
|
||||
#[inline]
|
||||
pub fn prepend_scaling_mut(&mut self, scaling: N)
|
||||
where D: DimNameSub<U1> {
|
||||
where
|
||||
D: DimNameSub<U1>,
|
||||
{
|
||||
let mut to_scale = self.fixed_columns_mut::<DimNameDiff<D, U1>>(0);
|
||||
to_scale *= scaling;
|
||||
}
|
||||
@ -328,17 +335,17 @@ impl<N: Scalar + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N, D, S>
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimNameSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>
|
||||
+ Allocator<N, DimNameDiff<D, U1>>
|
||||
+ Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>
|
||||
+ Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>,
|
||||
{
|
||||
/// Transforms the given vector, assuming the matrix `self` uses homogeneous coordinates.
|
||||
#[inline]
|
||||
pub fn transform_vector(
|
||||
&self,
|
||||
v: &VectorN<N, DimNameDiff<D, U1>>,
|
||||
) -> VectorN<N, DimNameDiff<D, U1>>
|
||||
{
|
||||
) -> VectorN<N, DimNameDiff<D, U1>> {
|
||||
let transform = self.fixed_slice::<DimNameDiff<D, U1>, DimNameDiff<D, U1>>(0, 0);
|
||||
let normalizer = self.fixed_slice::<U1, DimNameDiff<D, U1>>(D::dim() - 1, 0);
|
||||
let n = normalizer.tr_dot(&v);
|
||||
@ -355,8 +362,7 @@ where DefaultAllocator: Allocator<N, D, D>
|
||||
pub fn transform_point(
|
||||
&self,
|
||||
pt: &Point<N, DimNameDiff<D, U1>>,
|
||||
) -> Point<N, DimNameDiff<D, U1>>
|
||||
{
|
||||
) -> Point<N, DimNameDiff<D, U1>> {
|
||||
let transform = self.fixed_slice::<DimNameDiff<D, U1>, DimNameDiff<D, U1>>(0, 0);
|
||||
let translation = self.fixed_slice::<DimNameDiff<D, U1>, U1>(0, D::dim() - 1);
|
||||
let normalizer = self.fixed_slice::<U1, DimNameDiff<D, U1>>(D::dim() - 1, 0);
|
||||
@ -370,23 +376,3 @@ where DefaultAllocator: Allocator<N, D, D>
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimNameSub<U1>> Transformation<Point<N, DimNameDiff<D, U1>>> for MatrixN<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
+ Allocator<N, DimNameDiff<D, U1>>
|
||||
+ Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>
|
||||
{
|
||||
#[inline]
|
||||
fn transform_vector(
|
||||
&self,
|
||||
v: &VectorN<N, DimNameDiff<D, U1>>,
|
||||
) -> VectorN<N, DimNameDiff<D, U1>>
|
||||
{
|
||||
self.transform_vector(v)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn transform_point(&self, pt: &Point<N, DimNameDiff<D, U1>>) -> Point<N, DimNameDiff<D, U1>> {
|
||||
self.transform_point(pt)
|
||||
}
|
||||
}
|
||||
|
@ -3,7 +3,8 @@
|
||||
use num::{Signed, Zero};
|
||||
use std::ops::{Add, Mul};
|
||||
|
||||
use alga::general::{ClosedDiv, ClosedMul};
|
||||
use simba::scalar::{ClosedDiv, ClosedMul};
|
||||
use simba::simd::SimdPartialOrd;
|
||||
|
||||
use crate::base::allocator::{Allocator, SameShapeAllocator};
|
||||
use crate::base::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
|
||||
@ -235,3 +236,31 @@ component_binop_impl!(
|
||||
";
|
||||
// FIXME: add other operators like bitshift, etc. ?
|
||||
);
|
||||
|
||||
/*
|
||||
* inf/sup
|
||||
*/
|
||||
impl<N, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where
|
||||
N: Scalar + SimdPartialOrd,
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
/// Computes the infimum (aka. componentwise min) of two matrices/vectors.
|
||||
#[inline]
|
||||
pub fn inf(&self, other: &Self) -> MatrixMN<N, R, C> {
|
||||
self.zip_map(other, |a, b| a.simd_min(b))
|
||||
}
|
||||
|
||||
/// Computes the supremum (aka. componentwise max) of two matrices/vectors.
|
||||
#[inline]
|
||||
pub fn sup(&self, other: &Self) -> MatrixMN<N, R, C> {
|
||||
self.zip_map(other, |a, b| a.simd_max(b))
|
||||
}
|
||||
|
||||
/// Computes the (infimum, supremum) of two matrices/vectors.
|
||||
#[inline]
|
||||
pub fn inf_sup(&self, other: &Self) -> (MatrixMN<N, R, C>, MatrixMN<N, R, C>) {
|
||||
// FIXME: can this be optimized?
|
||||
(self.inf(other), self.sup(other))
|
||||
}
|
||||
}
|
||||
|
@ -8,8 +8,10 @@ pub struct ShapeConstraint;
|
||||
/// Constraints `C1` and `R2` to be equivalent.
|
||||
pub trait AreMultipliable<R1: Dim, C1: Dim, R2: Dim, C2: Dim>: DimEq<C1, R2> {}
|
||||
|
||||
impl<R1: Dim, C1: Dim, R2: Dim, C2: Dim> AreMultipliable<R1, C1, R2, C2> for ShapeConstraint where ShapeConstraint: DimEq<C1, R2>
|
||||
{}
|
||||
impl<R1: Dim, C1: Dim, R2: Dim, C2: Dim> AreMultipliable<R1, C1, R2, C2> for ShapeConstraint where
|
||||
ShapeConstraint: DimEq<C1, R2>
|
||||
{
|
||||
}
|
||||
|
||||
/// Constraints `D1` and `D2` to be equivalent.
|
||||
pub trait DimEq<D1: Dim, D2: Dim> {
|
||||
|
@ -4,18 +4,18 @@ use crate::base::storage::Owned;
|
||||
use quickcheck::{Arbitrary, Gen};
|
||||
|
||||
use num::{Bounded, One, Zero};
|
||||
use rand::distributions::{Distribution, Standard};
|
||||
use rand::Rng;
|
||||
#[cfg(feature = "std")]
|
||||
use rand;
|
||||
use rand::distributions::{Distribution, Standard};
|
||||
use rand::Rng;
|
||||
#[cfg(feature = "std")]
|
||||
use rand_distr::StandardNormal;
|
||||
use std::iter;
|
||||
use typenum::{self, Cmp, Greater};
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
use alga::general::RealField;
|
||||
use alga::general::{ClosedAdd, ClosedMul};
|
||||
use simba::scalar::RealField;
|
||||
use simba::scalar::{ClosedAdd, ClosedMul};
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::{Dim, DimName, Dynamic, U1, U2, U3, U4, U5, U6};
|
||||
@ -28,7 +28,8 @@ use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar, Unit, Vec
|
||||
*
|
||||
*/
|
||||
impl<N: Scalar, R: Dim, C: Dim> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
/// Creates a new uninitialized matrix. If the matrix has a compile-time dimension, this panics
|
||||
/// if `nrows != R::to_usize()` or `ncols != C::to_usize()`.
|
||||
@ -56,14 +57,18 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
/// Creates a matrix with all its elements set to 0.
|
||||
#[inline]
|
||||
pub fn zeros_generic(nrows: R, ncols: C) -> Self
|
||||
where N: Zero {
|
||||
where
|
||||
N: Zero,
|
||||
{
|
||||
Self::from_element_generic(nrows, ncols, N::zero())
|
||||
}
|
||||
|
||||
/// Creates a matrix with all its elements filled by an iterator.
|
||||
#[inline]
|
||||
pub fn from_iterator_generic<I>(nrows: R, ncols: C, iter: I) -> Self
|
||||
where I: IntoIterator<Item = N> {
|
||||
where
|
||||
I: IntoIterator<Item = N>,
|
||||
{
|
||||
Self::from_data(DefaultAllocator::allocate_from_iterator(nrows, ncols, iter))
|
||||
}
|
||||
|
||||
@ -102,7 +107,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
/// coordinates.
|
||||
#[inline]
|
||||
pub fn from_fn_generic<F>(nrows: R, ncols: C, mut f: F) -> Self
|
||||
where F: FnMut(usize, usize) -> N {
|
||||
where
|
||||
F: FnMut(usize, usize) -> N,
|
||||
{
|
||||
let mut res = unsafe { Self::new_uninitialized_generic(nrows, ncols) };
|
||||
|
||||
for j in 0..ncols.value() {
|
||||
@ -120,7 +127,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
/// to the identity matrix. All other entries are set to zero.
|
||||
#[inline]
|
||||
pub fn identity_generic(nrows: R, ncols: C) -> Self
|
||||
where N: Zero + One {
|
||||
where
|
||||
N: Zero + One,
|
||||
{
|
||||
Self::from_diagonal_element_generic(nrows, ncols, N::one())
|
||||
}
|
||||
|
||||
@ -130,7 +139,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
/// to the identity matrix. All other entries are set to zero.
|
||||
#[inline]
|
||||
pub fn from_diagonal_element_generic(nrows: R, ncols: C, elt: N) -> Self
|
||||
where N: Zero + One {
|
||||
where
|
||||
N: Zero + One,
|
||||
{
|
||||
let mut res = Self::zeros_generic(nrows, ncols);
|
||||
|
||||
for i in 0..crate::min(nrows.value(), ncols.value()) {
|
||||
@ -146,7 +157,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
/// Panics if `elts.len()` is larger than the minimum among `nrows` and `ncols`.
|
||||
#[inline]
|
||||
pub fn from_partial_diagonal_generic(nrows: R, ncols: C, elts: &[N]) -> Self
|
||||
where N: Zero {
|
||||
where
|
||||
N: Zero,
|
||||
{
|
||||
let mut res = Self::zeros_generic(nrows, ncols);
|
||||
assert!(
|
||||
elts.len() <= crate::min(nrows.value(), ncols.value()),
|
||||
@ -178,7 +191,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn from_rows<SB>(rows: &[Matrix<N, U1, C, SB>]) -> Self
|
||||
where SB: Storage<N, U1, C> {
|
||||
where
|
||||
SB: Storage<N, U1, C>,
|
||||
{
|
||||
assert!(rows.len() > 0, "At least one row must be given.");
|
||||
let nrows = R::try_to_usize().unwrap_or(rows.len());
|
||||
let ncols = rows[0].len();
|
||||
@ -218,7 +233,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn from_columns<SB>(columns: &[Vector<N, R, SB>]) -> Self
|
||||
where SB: Storage<N, R> {
|
||||
where
|
||||
SB: Storage<N, R>,
|
||||
{
|
||||
assert!(columns.len() > 0, "At least one column must be given.");
|
||||
let ncols = C::try_to_usize().unwrap_or(columns.len());
|
||||
let nrows = columns[0].len();
|
||||
@ -244,7 +261,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
#[inline]
|
||||
#[cfg(feature = "std")]
|
||||
pub fn new_random_generic(nrows: R, ncols: C) -> Self
|
||||
where Standard: Distribution<N> {
|
||||
where
|
||||
Standard: Distribution<N>,
|
||||
{
|
||||
Self::from_fn_generic(nrows, ncols, |_, _| rand::random())
|
||||
}
|
||||
|
||||
@ -255,8 +274,7 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
ncols: C,
|
||||
distribution: &Distr,
|
||||
rng: &mut G,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
Self::from_fn_generic(nrows, ncols, |_, _| distribution.sample(rng))
|
||||
}
|
||||
|
||||
@ -309,7 +327,9 @@ where
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn from_diagonal<SB: Storage<N, D>>(diag: &Vector<N, D, SB>) -> Self
|
||||
where N: Zero {
|
||||
where
|
||||
N: Zero,
|
||||
{
|
||||
let (dim, _) = diag.data.shape();
|
||||
let mut res = Self::zeros_generic(dim, dim);
|
||||
|
||||
@ -576,9 +596,9 @@ macro_rules! impl_constructors(
|
||||
|
||||
// FIXME: this is not very pretty. We could find a better call syntax.
|
||||
impl_constructors!(R, C; // Arguments for Matrix<N, ..., S>
|
||||
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
|
||||
R::name(), C::name(); // Arguments for `_generic` constructors.
|
||||
); // Arguments for non-generic constructors.
|
||||
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
|
||||
R::name(), C::name(); // Arguments for `_generic` constructors.
|
||||
); // Arguments for non-generic constructors.
|
||||
|
||||
impl_constructors!(R, Dynamic;
|
||||
=> R: DimName;
|
||||
@ -693,27 +713,25 @@ macro_rules! impl_constructors_from_data(
|
||||
|
||||
// FIXME: this is not very pretty. We could find a better call syntax.
|
||||
impl_constructors_from_data!(data; R, C; // Arguments for Matrix<N, ..., S>
|
||||
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
|
||||
R::name(), C::name(); // Arguments for `_generic` constructors.
|
||||
); // Arguments for non-generic constructors.
|
||||
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
|
||||
R::name(), C::name(); // Arguments for `_generic` constructors.
|
||||
); // Arguments for non-generic constructors.
|
||||
|
||||
impl_constructors_from_data!(data; R, Dynamic;
|
||||
=> R: DimName;
|
||||
R::name(), Dynamic::new(data.len() / R::dim());
|
||||
);
|
||||
=> R: DimName;
|
||||
R::name(), Dynamic::new(data.len() / R::dim());
|
||||
);
|
||||
|
||||
impl_constructors_from_data!(data; Dynamic, C;
|
||||
=> C: DimName;
|
||||
Dynamic::new(data.len() / C::dim()), C::name();
|
||||
);
|
||||
=> C: DimName;
|
||||
Dynamic::new(data.len() / C::dim()), C::name();
|
||||
);
|
||||
|
||||
impl_constructors_from_data!(data; Dynamic, Dynamic;
|
||||
;
|
||||
Dynamic::new(nrows), Dynamic::new(ncols);
|
||||
nrows, ncols);
|
||||
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Zero, One, Rand traits.
|
||||
@ -996,7 +1014,9 @@ where
|
||||
/// The column vector with a 1 as its first component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn x() -> Self
|
||||
where R::Value: Cmp<typenum::U0, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U0, Output = Greater>,
|
||||
{
|
||||
let mut res = Self::zeros();
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(0) = N::one();
|
||||
@ -1008,7 +1028,9 @@ where
|
||||
/// The column vector with a 1 as its second component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn y() -> Self
|
||||
where R::Value: Cmp<typenum::U1, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U1, Output = Greater>,
|
||||
{
|
||||
let mut res = Self::zeros();
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(1) = N::one();
|
||||
@ -1020,7 +1042,9 @@ where
|
||||
/// The column vector with a 1 as its third component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn z() -> Self
|
||||
where R::Value: Cmp<typenum::U2, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U2, Output = Greater>,
|
||||
{
|
||||
let mut res = Self::zeros();
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(2) = N::one();
|
||||
@ -1032,7 +1056,9 @@ where
|
||||
/// The column vector with a 1 as its fourth component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn w() -> Self
|
||||
where R::Value: Cmp<typenum::U3, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U3, Output = Greater>,
|
||||
{
|
||||
let mut res = Self::zeros();
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(3) = N::one();
|
||||
@ -1044,7 +1070,9 @@ where
|
||||
/// The column vector with a 1 as its fifth component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn a() -> Self
|
||||
where R::Value: Cmp<typenum::U4, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U4, Output = Greater>,
|
||||
{
|
||||
let mut res = Self::zeros();
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(4) = N::one();
|
||||
@ -1056,7 +1084,9 @@ where
|
||||
/// The column vector with a 1 as its sixth component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn b() -> Self
|
||||
where R::Value: Cmp<typenum::U5, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U5, Output = Greater>,
|
||||
{
|
||||
let mut res = Self::zeros();
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(5) = N::one();
|
||||
@ -1068,42 +1098,54 @@ where
|
||||
/// The unit column vector with a 1 as its first component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn x_axis() -> Unit<Self>
|
||||
where R::Value: Cmp<typenum::U0, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U0, Output = Greater>,
|
||||
{
|
||||
Unit::new_unchecked(Self::x())
|
||||
}
|
||||
|
||||
/// The unit column vector with a 1 as its second component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn y_axis() -> Unit<Self>
|
||||
where R::Value: Cmp<typenum::U1, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U1, Output = Greater>,
|
||||
{
|
||||
Unit::new_unchecked(Self::y())
|
||||
}
|
||||
|
||||
/// The unit column vector with a 1 as its third component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn z_axis() -> Unit<Self>
|
||||
where R::Value: Cmp<typenum::U2, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U2, Output = Greater>,
|
||||
{
|
||||
Unit::new_unchecked(Self::z())
|
||||
}
|
||||
|
||||
/// The unit column vector with a 1 as its fourth component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn w_axis() -> Unit<Self>
|
||||
where R::Value: Cmp<typenum::U3, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U3, Output = Greater>,
|
||||
{
|
||||
Unit::new_unchecked(Self::w())
|
||||
}
|
||||
|
||||
/// The unit column vector with a 1 as its fifth component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn a_axis() -> Unit<Self>
|
||||
where R::Value: Cmp<typenum::U4, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U4, Output = Greater>,
|
||||
{
|
||||
Unit::new_unchecked(Self::a())
|
||||
}
|
||||
|
||||
/// The unit column vector with a 1 as its sixth component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn b_axis() -> Unit<Self>
|
||||
where R::Value: Cmp<typenum::U5, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U5, Output = Greater>,
|
||||
{
|
||||
Unit::new_unchecked(Self::b())
|
||||
}
|
||||
}
|
||||
|
@ -23,8 +23,7 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
||||
ncols: C,
|
||||
rstride: RStride,
|
||||
cstride: CStride,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
let data = SliceStorage::from_raw_parts(
|
||||
data.as_ptr().offset(start as isize),
|
||||
(nrows, ncols),
|
||||
@ -44,8 +43,7 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
||||
ncols: C,
|
||||
rstride: RStride,
|
||||
cstride: CStride,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
// NOTE: The assertion implements the following formula, but without subtractions to avoid
|
||||
// underflow panics:
|
||||
// len >= (ncols - 1) * cstride + (nrows - 1) * rstride + 1
|
||||
@ -76,8 +74,7 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
||||
ncols: C,
|
||||
rstride: RStride,
|
||||
cstride: CStride,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
let data = SliceStorageMut::from_raw_parts(
|
||||
data.as_mut_ptr().offset(start as isize),
|
||||
(nrows, ncols),
|
||||
@ -97,8 +94,7 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
||||
ncols: C,
|
||||
rstride: RStride,
|
||||
cstride: CStride,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
// NOTE: The assertion implements the following formula, but without subtractions to avoid
|
||||
// underflow panics:
|
||||
// len >= (ncols - 1) * cstride + (nrows - 1) * rstride + 1
|
||||
@ -108,24 +104,27 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
||||
"Matrix slice: input data buffer to small."
|
||||
);
|
||||
|
||||
assert!({
|
||||
assert!(
|
||||
{
|
||||
let nrows = nrows.value();
|
||||
let ncols = ncols.value();
|
||||
let rstride = rstride.value();
|
||||
let cstride = cstride.value();
|
||||
|
||||
nrows * ncols <= 1 ||
|
||||
match (rstride, cstride) {
|
||||
nrows * ncols <= 1
|
||||
|| match (rstride, cstride) {
|
||||
(0, 0) => false, // otherwise: matrix[(0, 0)] == index[(nrows - 1, ncols - 1)],
|
||||
(0, _) => nrows <= 1, // otherwise: matrix[(0, 0)] == index[(nrows - 1, 0)],
|
||||
(_, 0) => ncols <= 1, // otherwise: matrix[(0, 0)] == index[(0, ncols - 1)],
|
||||
(_, _) => { // otherwise: matrix[(0, numer)] == index[(denom, 0)]
|
||||
(_, _) => {
|
||||
// otherwise: matrix[(0, numer)] == index[(denom, 0)]
|
||||
let ratio = Ratio::new(rstride, cstride);
|
||||
nrows <= *ratio.denom() || ncols <= *ratio.numer()
|
||||
}
|
||||
}
|
||||
},
|
||||
"Matrix slice: dimensions and strides result in aliased indices.");
|
||||
"Matrix slice: dimensions and strides result in aliased indices."
|
||||
);
|
||||
|
||||
unsafe {
|
||||
Self::from_slice_with_strides_generic_unchecked(data, 0, nrows, ncols, rstride, cstride)
|
||||
@ -144,8 +143,7 @@ impl<'a, N: Scalar, R: Dim, C: Dim> MatrixSliceMN<'a, N, R, C> {
|
||||
start: usize,
|
||||
nrows: R,
|
||||
ncols: C,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
Self::from_slice_with_strides_generic_unchecked(data, start, nrows, ncols, U1, nrows)
|
||||
}
|
||||
|
||||
@ -170,8 +168,7 @@ impl<'a, N: Scalar, R: Dim, C: Dim> MatrixSliceMutMN<'a, N, R, C> {
|
||||
start: usize,
|
||||
nrows: R,
|
||||
ncols: C,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
Self::from_slice_with_strides_generic_unchecked(data, start, nrows, ncols, U1, nrows)
|
||||
}
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
use alga::general::{SubsetOf, SupersetOf};
|
||||
#[cfg(feature = "mint")]
|
||||
use mint;
|
||||
use simba::scalar::{SubsetOf, SupersetOf};
|
||||
use std::convert::{AsMut, AsRef, From, Into};
|
||||
use std::mem;
|
||||
use std::ptr;
|
||||
@ -9,19 +9,24 @@ use generic_array::ArrayLength;
|
||||
use std::ops::Mul;
|
||||
use typenum::Prod;
|
||||
|
||||
use simba::simd::{PrimitiveSimdValue, SimdValue};
|
||||
|
||||
use crate::base::allocator::{Allocator, SameShapeAllocator};
|
||||
use crate::base::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
use crate::base::dimension::Dynamic;
|
||||
use crate::base::dimension::{
|
||||
Dim, DimName, U1, U10, U11, U12, U13, U14, U15, U16, U2, U3, U4, U5, U6, U7, U8, U9,
|
||||
};
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
use crate::base::dimension::Dynamic;
|
||||
use crate::base::iter::{MatrixIter, MatrixIterMut};
|
||||
use crate::base::storage::{ContiguousStorage, ContiguousStorageMut, Storage, StorageMut};
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
use crate::base::VecStorage;
|
||||
use crate::base::{
|
||||
ArrayStorage, DVectorSlice, DVectorSliceMut, DefaultAllocator, Matrix, MatrixMN, MatrixSlice,
|
||||
MatrixSliceMut, Scalar,
|
||||
};
|
||||
use crate::base::{SliceStorage, SliceStorageMut};
|
||||
use crate::base::{DefaultAllocator, Matrix, ArrayStorage, MatrixMN, MatrixSlice, MatrixSliceMut, Scalar, DVectorSlice, DVectorSliceMut};
|
||||
use crate::constraint::DimEq;
|
||||
|
||||
// FIXME: too bad this won't work allo slice conversions.
|
||||
@ -46,7 +51,9 @@ where
|
||||
let mut res = unsafe { MatrixMN::<N2, R2, C2>::new_uninitialized_generic(nrows2, ncols2) };
|
||||
for i in 0..nrows {
|
||||
for j in 0..ncols {
|
||||
unsafe { *res.get_unchecked_mut((i, j)) = N2::from_subset(self.get_unchecked((i, j))) }
|
||||
unsafe {
|
||||
*res.get_unchecked_mut((i, j)) = N2::from_subset(self.get_unchecked((i, j)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -59,17 +66,19 @@ where
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn from_superset_unchecked(m: &MatrixMN<N2, R2, C2>) -> Self {
|
||||
fn from_superset_unchecked(m: &MatrixMN<N2, R2, C2>) -> Self {
|
||||
let (nrows2, ncols2) = m.shape();
|
||||
let nrows = R1::from_usize(nrows2);
|
||||
let ncols = C1::from_usize(ncols2);
|
||||
|
||||
let mut res = Self::new_uninitialized_generic(nrows, ncols);
|
||||
let mut res = unsafe { Self::new_uninitialized_generic(nrows, ncols) };
|
||||
for i in 0..nrows2 {
|
||||
for j in 0..ncols2 {
|
||||
unsafe {
|
||||
*res.get_unchecked_mut((i, j)) = m.get_unchecked((i, j)).to_subset_unchecked()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
@ -118,12 +127,11 @@ macro_rules! impl_from_into_asref_1D(
|
||||
S: ContiguousStorage<N, $NRows, $NCols> {
|
||||
#[inline]
|
||||
fn into(self) -> [N; $SZ] {
|
||||
unsafe {
|
||||
let mut res: [N; $SZ] = mem::uninitialized();
|
||||
ptr::copy_nonoverlapping(self.data.ptr(), &mut res[0], $SZ);
|
||||
let mut res = mem::MaybeUninit::<[N; $SZ]>::uninit();
|
||||
|
||||
res
|
||||
}
|
||||
unsafe { ptr::copy_nonoverlapping(self.data.ptr(), res.as_mut_ptr() as *mut N, $SZ) };
|
||||
|
||||
unsafe { res.assume_init() }
|
||||
}
|
||||
}
|
||||
|
||||
@ -185,12 +193,11 @@ macro_rules! impl_from_into_asref_2D(
|
||||
where S: ContiguousStorage<N, $NRows, $NCols> {
|
||||
#[inline]
|
||||
fn into(self) -> [[N; $SZRows]; $SZCols] {
|
||||
unsafe {
|
||||
let mut res: [[N; $SZRows]; $SZCols] = mem::uninitialized();
|
||||
ptr::copy_nonoverlapping(self.data.ptr(), &mut res[0][0], $SZRows * $SZCols);
|
||||
let mut res = mem::MaybeUninit::<[[N; $SZRows]; $SZCols]>::uninit();
|
||||
|
||||
res
|
||||
}
|
||||
unsafe { ptr::copy_nonoverlapping(self.data.ptr(), res.as_mut_ptr() as *mut N, $SZRows * $SZCols) };
|
||||
|
||||
unsafe { res.assume_init() }
|
||||
}
|
||||
}
|
||||
|
||||
@ -428,8 +435,8 @@ where
|
||||
}
|
||||
|
||||
impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a Matrix<N, R, C, S>>
|
||||
for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
|
||||
where
|
||||
for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
|
||||
where
|
||||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
@ -438,8 +445,10 @@ for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
|
||||
RStride: Dim,
|
||||
CStride: Dim,
|
||||
S: Storage<N, R, C>,
|
||||
ShapeConstraint: DimEq<R, RSlice> + DimEq<C, CSlice>
|
||||
+ DimEq<RStride, S::RStride> + DimEq<CStride, S::CStride>
|
||||
ShapeConstraint: DimEq<R, RSlice>
|
||||
+ DimEq<C, CSlice>
|
||||
+ DimEq<RStride, S::RStride>
|
||||
+ DimEq<CStride, S::CStride>,
|
||||
{
|
||||
fn from(m: &'a Matrix<N, R, C, S>) -> Self {
|
||||
let (row, col) = m.data.shape();
|
||||
@ -452,17 +461,19 @@ for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
|
||||
let cstride_slice = CStride::from_usize(cstride);
|
||||
|
||||
unsafe {
|
||||
let data = SliceStorage::from_raw_parts(m.data.ptr(),
|
||||
let data = SliceStorage::from_raw_parts(
|
||||
m.data.ptr(),
|
||||
(row_slice, col_slice),
|
||||
(rstride_slice, cstride_slice));
|
||||
(rstride_slice, cstride_slice),
|
||||
);
|
||||
Matrix::from_data_statically_unchecked(data)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a mut Matrix<N, R, C, S>>
|
||||
for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
|
||||
where
|
||||
for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
|
||||
where
|
||||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
@ -471,8 +482,10 @@ for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
|
||||
RStride: Dim,
|
||||
CStride: Dim,
|
||||
S: Storage<N, R, C>,
|
||||
ShapeConstraint: DimEq<R, RSlice> + DimEq<C, CSlice>
|
||||
+ DimEq<RStride, S::RStride> + DimEq<CStride, S::CStride>
|
||||
ShapeConstraint: DimEq<R, RSlice>
|
||||
+ DimEq<C, CSlice>
|
||||
+ DimEq<RStride, S::RStride>
|
||||
+ DimEq<CStride, S::CStride>,
|
||||
{
|
||||
fn from(m: &'a mut Matrix<N, R, C, S>) -> Self {
|
||||
let (row, col) = m.data.shape();
|
||||
@ -485,17 +498,19 @@ for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
|
||||
let cstride_slice = CStride::from_usize(cstride);
|
||||
|
||||
unsafe {
|
||||
let data = SliceStorage::from_raw_parts(m.data.ptr(),
|
||||
let data = SliceStorage::from_raw_parts(
|
||||
m.data.ptr(),
|
||||
(row_slice, col_slice),
|
||||
(rstride_slice, cstride_slice));
|
||||
(rstride_slice, cstride_slice),
|
||||
);
|
||||
Matrix::from_data_statically_unchecked(data)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a mut Matrix<N, R, C, S>>
|
||||
for MatrixSliceMut<'a, N, RSlice, CSlice, RStride, CStride>
|
||||
where
|
||||
for MatrixSliceMut<'a, N, RSlice, CSlice, RStride, CStride>
|
||||
where
|
||||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
@ -504,8 +519,10 @@ for MatrixSliceMut<'a, N, RSlice, CSlice, RStride, CStride>
|
||||
RStride: Dim,
|
||||
CStride: Dim,
|
||||
S: StorageMut<N, R, C>,
|
||||
ShapeConstraint: DimEq<R, RSlice> + DimEq<C, CSlice>
|
||||
+ DimEq<RStride, S::RStride> + DimEq<CStride, S::CStride>
|
||||
ShapeConstraint: DimEq<R, RSlice>
|
||||
+ DimEq<C, CSlice>
|
||||
+ DimEq<RStride, S::RStride>
|
||||
+ DimEq<CStride, S::CStride>,
|
||||
{
|
||||
fn from(m: &'a mut Matrix<N, R, C, S>) -> Self {
|
||||
let (row, col) = m.data.shape();
|
||||
@ -518,29 +535,34 @@ for MatrixSliceMut<'a, N, RSlice, CSlice, RStride, CStride>
|
||||
let cstride_slice = CStride::from_usize(cstride);
|
||||
|
||||
unsafe {
|
||||
let data = SliceStorageMut::from_raw_parts(m.data.ptr_mut(),
|
||||
let data = SliceStorageMut::from_raw_parts(
|
||||
m.data.ptr_mut(),
|
||||
(row_slice, col_slice),
|
||||
(rstride_slice, cstride_slice));
|
||||
(rstride_slice, cstride_slice),
|
||||
);
|
||||
Matrix::from_data_statically_unchecked(data)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorage<N, R, C>> Into<&'a [N]> for &'a Matrix<N, R, C, S> {
|
||||
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorage<N, R, C>> Into<&'a [N]>
|
||||
for &'a Matrix<N, R, C, S>
|
||||
{
|
||||
#[inline]
|
||||
fn into(self) -> &'a [N] {
|
||||
self.as_slice()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorageMut<N, R, C>> Into<&'a mut [N]> for &'a mut Matrix<N, R, C, S> {
|
||||
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorageMut<N, R, C>> Into<&'a mut [N]>
|
||||
for &'a mut Matrix<N, R, C, S>
|
||||
{
|
||||
#[inline]
|
||||
fn into(self) -> &'a mut [N] {
|
||||
self.as_mut_slice()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<'a, N: Scalar + Copy> From<&'a [N]> for DVectorSlice<'a, N> {
|
||||
#[inline]
|
||||
fn from(slice: &'a [N]) -> Self {
|
||||
@ -554,3 +576,108 @@ impl<'a, N: Scalar + Copy> From<&'a mut [N]> for DVectorSliceMut<'a, N> {
|
||||
Self::from_slice(slice, slice.len())
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + PrimitiveSimdValue, R: Dim, C: Dim> From<[MatrixMN<N::Element, R, C>; 2]>
|
||||
for MatrixMN<N, R, C>
|
||||
where
|
||||
N: From<[<N as SimdValue>::Element; 2]>,
|
||||
N::Element: Scalar + SimdValue,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
#[inline]
|
||||
fn from(arr: [MatrixMN<N::Element, R, C>; 2]) -> Self {
|
||||
let (nrows, ncols) = arr[0].data.shape();
|
||||
|
||||
Self::from_fn_generic(nrows, ncols, |i, j| {
|
||||
[
|
||||
arr[0][(i, j)].inlined_clone(),
|
||||
arr[1][(i, j)].inlined_clone(),
|
||||
]
|
||||
.into()
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + PrimitiveSimdValue, R: Dim, C: Dim> From<[MatrixMN<N::Element, R, C>; 4]>
|
||||
for MatrixMN<N, R, C>
|
||||
where
|
||||
N: From<[<N as SimdValue>::Element; 4]>,
|
||||
N::Element: Scalar + SimdValue,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
#[inline]
|
||||
fn from(arr: [MatrixMN<N::Element, R, C>; 4]) -> Self {
|
||||
let (nrows, ncols) = arr[0].data.shape();
|
||||
|
||||
Self::from_fn_generic(nrows, ncols, |i, j| {
|
||||
[
|
||||
arr[0][(i, j)].inlined_clone(),
|
||||
arr[1][(i, j)].inlined_clone(),
|
||||
arr[2][(i, j)].inlined_clone(),
|
||||
arr[3][(i, j)].inlined_clone(),
|
||||
]
|
||||
.into()
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + PrimitiveSimdValue, R: Dim, C: Dim> From<[MatrixMN<N::Element, R, C>; 8]>
|
||||
for MatrixMN<N, R, C>
|
||||
where
|
||||
N: From<[<N as SimdValue>::Element; 8]>,
|
||||
N::Element: Scalar + SimdValue,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
#[inline]
|
||||
fn from(arr: [MatrixMN<N::Element, R, C>; 8]) -> Self {
|
||||
let (nrows, ncols) = arr[0].data.shape();
|
||||
|
||||
Self::from_fn_generic(nrows, ncols, |i, j| {
|
||||
[
|
||||
arr[0][(i, j)].inlined_clone(),
|
||||
arr[1][(i, j)].inlined_clone(),
|
||||
arr[2][(i, j)].inlined_clone(),
|
||||
arr[3][(i, j)].inlined_clone(),
|
||||
arr[4][(i, j)].inlined_clone(),
|
||||
arr[5][(i, j)].inlined_clone(),
|
||||
arr[6][(i, j)].inlined_clone(),
|
||||
arr[7][(i, j)].inlined_clone(),
|
||||
]
|
||||
.into()
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + PrimitiveSimdValue, R: Dim, C: Dim> From<[MatrixMN<N::Element, R, C>; 16]>
|
||||
for MatrixMN<N, R, C>
|
||||
where
|
||||
N: From<[<N as SimdValue>::Element; 16]>,
|
||||
N::Element: Scalar + SimdValue,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
fn from(arr: [MatrixMN<N::Element, R, C>; 16]) -> Self {
|
||||
let (nrows, ncols) = arr[0].data.shape();
|
||||
|
||||
Self::from_fn_generic(nrows, ncols, |i, j| {
|
||||
[
|
||||
arr[0][(i, j)].inlined_clone(),
|
||||
arr[1][(i, j)].inlined_clone(),
|
||||
arr[2][(i, j)].inlined_clone(),
|
||||
arr[3][(i, j)].inlined_clone(),
|
||||
arr[4][(i, j)].inlined_clone(),
|
||||
arr[5][(i, j)].inlined_clone(),
|
||||
arr[6][(i, j)].inlined_clone(),
|
||||
arr[7][(i, j)].inlined_clone(),
|
||||
arr[8][(i, j)].inlined_clone(),
|
||||
arr[9][(i, j)].inlined_clone(),
|
||||
arr[10][(i, j)].inlined_clone(),
|
||||
arr[11][(i, j)].inlined_clone(),
|
||||
arr[12][(i, j)].inlined_clone(),
|
||||
arr[13][(i, j)].inlined_clone(),
|
||||
arr[14][(i, j)].inlined_clone(),
|
||||
arr[15][(i, j)].inlined_clone(),
|
||||
]
|
||||
.into()
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -15,13 +15,13 @@ use generic_array::ArrayLength;
|
||||
use typenum::Prod;
|
||||
|
||||
use crate::base::allocator::{Allocator, Reallocator};
|
||||
use crate::base::array_storage::ArrayStorage;
|
||||
#[cfg(any(feature = "alloc", feature = "std"))]
|
||||
use crate::base::dimension::Dynamic;
|
||||
use crate::base::dimension::{Dim, DimName};
|
||||
use crate::base::array_storage::ArrayStorage;
|
||||
use crate::base::storage::{Storage, StorageMut};
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
use crate::base::vec_storage::VecStorage;
|
||||
use crate::base::storage::{Storage, StorageMut};
|
||||
use crate::base::Scalar;
|
||||
|
||||
/*
|
||||
@ -46,7 +46,8 @@ where
|
||||
|
||||
#[inline]
|
||||
unsafe fn allocate_uninitialized(_: R, _: C) -> Self::Buffer {
|
||||
mem::uninitialized()
|
||||
// TODO: Undefined behavior, see #556
|
||||
mem::MaybeUninit::<Self::Buffer>::uninit().assume_init()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -54,8 +55,7 @@ where
|
||||
nrows: R,
|
||||
ncols: C,
|
||||
iter: I,
|
||||
) -> Self::Buffer
|
||||
{
|
||||
) -> Self::Buffer {
|
||||
let mut res = unsafe { Self::allocate_uninitialized(nrows, ncols) };
|
||||
let mut count = 0;
|
||||
|
||||
@ -94,8 +94,7 @@ impl<N: Scalar, C: Dim> Allocator<N, Dynamic, C> for DefaultAllocator {
|
||||
nrows: Dynamic,
|
||||
ncols: C,
|
||||
iter: I,
|
||||
) -> Self::Buffer
|
||||
{
|
||||
) -> Self::Buffer {
|
||||
let it = iter.into_iter();
|
||||
let res: Vec<N> = it.collect();
|
||||
assert!(res.len() == nrows.value() * ncols.value(),
|
||||
@ -125,8 +124,7 @@ impl<N: Scalar, R: DimName> Allocator<N, R, Dynamic> for DefaultAllocator {
|
||||
nrows: R,
|
||||
ncols: Dynamic,
|
||||
iter: I,
|
||||
) -> Self::Buffer
|
||||
{
|
||||
) -> Self::Buffer {
|
||||
let it = iter.into_iter();
|
||||
let res: Vec<N> = it.collect();
|
||||
assert!(res.len() == nrows.value() * ncols.value(),
|
||||
@ -157,8 +155,7 @@ where
|
||||
rto: RTo,
|
||||
cto: CTo,
|
||||
buf: <Self as Allocator<N, RFrom, CFrom>>::Buffer,
|
||||
) -> ArrayStorage<N, RTo, CTo>
|
||||
{
|
||||
) -> ArrayStorage<N, RTo, CTo> {
|
||||
let mut res = <Self as Allocator<N, RTo, CTo>>::allocate_uninitialized(rto, cto);
|
||||
|
||||
let (rfrom, cfrom) = buf.shape();
|
||||
@ -186,8 +183,7 @@ where
|
||||
rto: Dynamic,
|
||||
cto: CTo,
|
||||
buf: ArrayStorage<N, RFrom, CFrom>,
|
||||
) -> VecStorage<N, Dynamic, CTo>
|
||||
{
|
||||
) -> VecStorage<N, Dynamic, CTo> {
|
||||
let mut res = <Self as Allocator<N, Dynamic, CTo>>::allocate_uninitialized(rto, cto);
|
||||
|
||||
let (rfrom, cfrom) = buf.shape();
|
||||
@ -215,8 +211,7 @@ where
|
||||
rto: RTo,
|
||||
cto: Dynamic,
|
||||
buf: ArrayStorage<N, RFrom, CFrom>,
|
||||
) -> VecStorage<N, RTo, Dynamic>
|
||||
{
|
||||
) -> VecStorage<N, RTo, Dynamic> {
|
||||
let mut res = <Self as Allocator<N, RTo, Dynamic>>::allocate_uninitialized(rto, cto);
|
||||
|
||||
let (rfrom, cfrom) = buf.shape();
|
||||
@ -239,8 +234,7 @@ impl<N: Scalar, CFrom: Dim, CTo: Dim> Reallocator<N, Dynamic, CFrom, Dynamic, CT
|
||||
rto: Dynamic,
|
||||
cto: CTo,
|
||||
buf: VecStorage<N, Dynamic, CFrom>,
|
||||
) -> VecStorage<N, Dynamic, CTo>
|
||||
{
|
||||
) -> VecStorage<N, Dynamic, CTo> {
|
||||
let new_buf = buf.resize(rto.value() * cto.value());
|
||||
VecStorage::new(rto, cto, new_buf)
|
||||
}
|
||||
@ -255,8 +249,7 @@ impl<N: Scalar, CFrom: Dim, RTo: DimName> Reallocator<N, Dynamic, CFrom, RTo, Dy
|
||||
rto: RTo,
|
||||
cto: Dynamic,
|
||||
buf: VecStorage<N, Dynamic, CFrom>,
|
||||
) -> VecStorage<N, RTo, Dynamic>
|
||||
{
|
||||
) -> VecStorage<N, RTo, Dynamic> {
|
||||
let new_buf = buf.resize(rto.value() * cto.value());
|
||||
VecStorage::new(rto, cto, new_buf)
|
||||
}
|
||||
@ -271,8 +264,7 @@ impl<N: Scalar, RFrom: DimName, CTo: Dim> Reallocator<N, RFrom, Dynamic, Dynamic
|
||||
rto: Dynamic,
|
||||
cto: CTo,
|
||||
buf: VecStorage<N, RFrom, Dynamic>,
|
||||
) -> VecStorage<N, Dynamic, CTo>
|
||||
{
|
||||
) -> VecStorage<N, Dynamic, CTo> {
|
||||
let new_buf = buf.resize(rto.value() * cto.value());
|
||||
VecStorage::new(rto, cto, new_buf)
|
||||
}
|
||||
@ -287,8 +279,7 @@ impl<N: Scalar, RFrom: DimName, RTo: DimName> Reallocator<N, RFrom, Dynamic, RTo
|
||||
rto: RTo,
|
||||
cto: Dynamic,
|
||||
buf: VecStorage<N, RFrom, Dynamic>,
|
||||
) -> VecStorage<N, RTo, Dynamic>
|
||||
{
|
||||
) -> VecStorage<N, RTo, Dynamic> {
|
||||
let new_buf = buf.resize(rto.value() * cto.value());
|
||||
VecStorage::new(rto, cto, new_buf)
|
||||
}
|
||||
|
@ -30,7 +30,9 @@ impl Dynamic {
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
impl Serialize for Dynamic {
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where S: Serializer {
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
self.value.serialize(serializer)
|
||||
}
|
||||
}
|
||||
@ -38,7 +40,9 @@ impl Serialize for Dynamic {
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
impl<'de> Deserialize<'de> for Dynamic {
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where D: Deserializer<'de> {
|
||||
where
|
||||
D: Deserializer<'de>,
|
||||
{
|
||||
usize::deserialize(deserializer).map(|x| Dynamic { value: x })
|
||||
}
|
||||
}
|
||||
@ -190,7 +194,6 @@ pub trait DimName: Dim {
|
||||
type Value: NamedDim<Name = Self>;
|
||||
|
||||
/// The name of this dimension, i.e., the singleton `Self`.
|
||||
#[inline]
|
||||
fn name() -> Self;
|
||||
|
||||
// FIXME: this is not a very idiomatic name.
|
||||
|
@ -22,7 +22,9 @@ impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Extracts the upper triangular part of this matrix (including the diagonal).
|
||||
#[inline]
|
||||
pub fn upper_triangle(&self) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.fill_lower_triangle(N::zero(), 1);
|
||||
|
||||
@ -32,7 +34,9 @@ impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Extracts the lower triangular part of this matrix (including the diagonal).
|
||||
#[inline]
|
||||
pub fn lower_triangle(&self) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.fill_upper_triangle(N::zero(), 1);
|
||||
|
||||
@ -64,7 +68,10 @@ impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
let src = self.column(j);
|
||||
|
||||
for (destination, source) in irows.clone().enumerate() {
|
||||
unsafe { *res.vget_unchecked_mut(destination) = src.vget_unchecked(*source).inlined_clone() }
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(destination) =
|
||||
src.vget_unchecked(*source).inlined_clone()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -104,7 +111,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Fills `self` with the identity matrix.
|
||||
#[inline]
|
||||
pub fn fill_with_identity(&mut self)
|
||||
where N: Zero + One {
|
||||
where
|
||||
N: Zero + One,
|
||||
{
|
||||
self.fill(N::zero());
|
||||
self.fill_diagonal(N::one());
|
||||
}
|
||||
@ -371,7 +380,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
|
||||
unsafe {
|
||||
Matrix::from_data(DefaultAllocator::reallocate_copy(
|
||||
nrows.sub(Dynamic::from_usize(offset / ncols.value ())),
|
||||
nrows.sub(Dynamic::from_usize(offset / ncols.value())),
|
||||
ncols,
|
||||
m.data,
|
||||
))
|
||||
@ -693,7 +702,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize(self, new_nrows: usize, new_ncols: usize, val: N) -> DMatrix<N>
|
||||
where DefaultAllocator: Reallocator<N, R, C, Dynamic, Dynamic> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, C, Dynamic, Dynamic>,
|
||||
{
|
||||
self.resize_generic(Dynamic::new(new_nrows), Dynamic::new(new_ncols), val)
|
||||
}
|
||||
|
||||
@ -703,7 +714,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// rows than `self`, then the extra rows are filled with `val`.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize_vertically(self, new_nrows: usize, val: N) -> MatrixMN<N, Dynamic, C>
|
||||
where DefaultAllocator: Reallocator<N, R, C, Dynamic, C> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, C, Dynamic, C>,
|
||||
{
|
||||
let ncols = self.data.shape().1;
|
||||
self.resize_generic(Dynamic::new(new_nrows), ncols, val)
|
||||
}
|
||||
@ -714,7 +727,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// columns than `self`, then the extra columns are filled with `val`.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize_horizontally(self, new_ncols: usize, val: N) -> MatrixMN<N, R, Dynamic>
|
||||
where DefaultAllocator: Reallocator<N, R, C, R, Dynamic> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, C, R, Dynamic>,
|
||||
{
|
||||
let nrows = self.data.shape().0;
|
||||
self.resize_generic(nrows, Dynamic::new(new_ncols), val)
|
||||
}
|
||||
@ -724,7 +739,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
|
||||
/// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
|
||||
pub fn fixed_resize<R2: DimName, C2: DimName>(self, val: N) -> MatrixMN<N, R2, C2>
|
||||
where DefaultAllocator: Reallocator<N, R, C, R2, C2> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, C, R2, C2>,
|
||||
{
|
||||
self.resize_generic(R2::name(), C2::name(), val)
|
||||
}
|
||||
|
||||
@ -805,7 +822,9 @@ impl<N: Scalar> DMatrix<N> {
|
||||
///
|
||||
/// Defined only for owned fully-dynamic matrices, i.e., `DMatrix`.
|
||||
pub fn resize_mut(&mut self, new_nrows: usize, new_ncols: usize, val: N)
|
||||
where DefaultAllocator: Reallocator<N, Dynamic, Dynamic, Dynamic, Dynamic> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, Dynamic, Dynamic, Dynamic, Dynamic>,
|
||||
{
|
||||
let placeholder = unsafe { Self::new_uninitialized(0, 0) };
|
||||
let old = mem::replace(self, placeholder);
|
||||
let new = old.resize(new_nrows, new_ncols, val);
|
||||
@ -815,7 +834,8 @@ impl<N: Scalar> DMatrix<N> {
|
||||
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
impl<N: Scalar, C: Dim> MatrixMN<N, Dynamic, C>
|
||||
where DefaultAllocator: Allocator<N, Dynamic, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C>,
|
||||
{
|
||||
/// Changes the number of rows of this matrix in-place.
|
||||
///
|
||||
@ -825,7 +845,9 @@ where DefaultAllocator: Allocator<N, Dynamic, C>
|
||||
/// Defined only for owned matrices with a dynamic number of rows (for example, `DVector`).
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize_vertically_mut(&mut self, new_nrows: usize, val: N)
|
||||
where DefaultAllocator: Reallocator<N, Dynamic, C, Dynamic, C> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, Dynamic, C, Dynamic, C>,
|
||||
{
|
||||
let placeholder =
|
||||
unsafe { Self::new_uninitialized_generic(Dynamic::new(0), self.data.shape().1) };
|
||||
let old = mem::replace(self, placeholder);
|
||||
@ -836,7 +858,8 @@ where DefaultAllocator: Allocator<N, Dynamic, C>
|
||||
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
impl<N: Scalar, R: Dim> MatrixMN<N, R, Dynamic>
|
||||
where DefaultAllocator: Allocator<N, R, Dynamic>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic>,
|
||||
{
|
||||
/// Changes the number of column of this matrix in-place.
|
||||
///
|
||||
@ -846,7 +869,9 @@ where DefaultAllocator: Allocator<N, R, Dynamic>
|
||||
/// Defined only for owned matrices with a dynamic number of columns (for example, `DVector`).
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize_horizontally_mut(&mut self, new_ncols: usize, val: N)
|
||||
where DefaultAllocator: Reallocator<N, R, Dynamic, R, Dynamic> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, Dynamic, R, Dynamic>,
|
||||
{
|
||||
let placeholder =
|
||||
unsafe { Self::new_uninitialized_generic(self.data.shape().0, Dynamic::new(0)) };
|
||||
let old = mem::replace(self, placeholder);
|
||||
@ -861,8 +886,7 @@ unsafe fn compress_rows<N: Scalar>(
|
||||
ncols: usize,
|
||||
i: usize,
|
||||
nremove: usize,
|
||||
)
|
||||
{
|
||||
) {
|
||||
let new_nrows = nrows - nremove;
|
||||
|
||||
if new_nrows == 0 || ncols == 0 {
|
||||
@ -901,8 +925,7 @@ unsafe fn extend_rows<N: Scalar>(
|
||||
ncols: usize,
|
||||
i: usize,
|
||||
ninsert: usize,
|
||||
)
|
||||
{
|
||||
) {
|
||||
let new_nrows = nrows + ninsert;
|
||||
|
||||
if new_nrows == 0 || ncols == 0 {
|
||||
|
@ -18,7 +18,9 @@ pub fn reject<G: Gen, F: FnMut(&T) -> bool, T: Arbitrary>(g: &mut G, f: F) -> T
|
||||
#[doc(hidden)]
|
||||
#[inline]
|
||||
pub fn reject_rand<G: Rng + ?Sized, F: FnMut(&T) -> bool, T>(g: &mut G, f: F) -> T
|
||||
where Standard: Distribution<T> {
|
||||
where
|
||||
Standard: Distribution<T>,
|
||||
{
|
||||
use std::iter;
|
||||
iter::repeat(()).map(|_| g.gen()).find(f).unwrap()
|
||||
}
|
||||
|
@ -1,13 +1,14 @@
|
||||
//! Indexing
|
||||
|
||||
use crate::base::{Dim, DimName, DimDiff, DimSub, Dynamic, Matrix, MatrixSlice, MatrixSliceMut, Scalar, U1};
|
||||
use crate::base::storage::{Storage, StorageMut};
|
||||
use crate::base::{
|
||||
Dim, DimDiff, DimName, DimSub, Dynamic, Matrix, MatrixSlice, MatrixSliceMut, Scalar, U1,
|
||||
};
|
||||
|
||||
use std::ops;
|
||||
|
||||
// N.B.: Not a public trait!
|
||||
trait DimRange<D: Dim>
|
||||
{
|
||||
trait DimRange<D: Dim> {
|
||||
/// The number of elements indexed by this range.
|
||||
type Length: Dim;
|
||||
|
||||
@ -68,15 +69,27 @@ impl<D: Dim> DimRange<D> for ops::Range<usize> {
|
||||
|
||||
#[test]
|
||||
fn dimrange_range_usize() {
|
||||
use std::usize::MAX;
|
||||
use crate::base::dimension::U0;
|
||||
use std::usize::MAX;
|
||||
assert_eq!(DimRange::contained_by(&(0..0), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(0..1), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(0..1), U1), true);
|
||||
assert_eq!(DimRange::contained_by(&((MAX - 1)..MAX), Dynamic::new(MAX)), true);
|
||||
assert_eq!(DimRange::length(&((MAX - 1)..MAX), Dynamic::new(MAX)), Dynamic::new(1));
|
||||
assert_eq!(DimRange::length(&(MAX..(MAX - 1)), Dynamic::new(MAX)), Dynamic::new(0));
|
||||
assert_eq!(DimRange::length(&(MAX..MAX), Dynamic::new(MAX)), Dynamic::new(0));
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&((MAX - 1)..MAX), Dynamic::new(MAX)),
|
||||
true
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&((MAX - 1)..MAX), Dynamic::new(MAX)),
|
||||
Dynamic::new(1)
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(MAX..(MAX - 1)), Dynamic::new(MAX)),
|
||||
Dynamic::new(0)
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(MAX..MAX), Dynamic::new(MAX)),
|
||||
Dynamic::new(0)
|
||||
);
|
||||
}
|
||||
|
||||
impl<D: Dim> DimRange<D> for ops::RangeFrom<usize> {
|
||||
@ -100,18 +113,28 @@ impl<D: Dim> DimRange<D> for ops::RangeFrom<usize> {
|
||||
|
||||
#[test]
|
||||
fn dimrange_rangefrom_usize() {
|
||||
use std::usize::MAX;
|
||||
use crate::base::dimension::U0;
|
||||
use std::usize::MAX;
|
||||
assert_eq!(DimRange::contained_by(&(0..), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(0..), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(0..), U1), true);
|
||||
assert_eq!(DimRange::contained_by(&((MAX - 1)..), Dynamic::new(MAX)), true);
|
||||
assert_eq!(DimRange::length(&((MAX - 1)..), Dynamic::new(MAX)), Dynamic::new(1));
|
||||
assert_eq!(DimRange::length(&(MAX..), Dynamic::new(MAX)), Dynamic::new(0));
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&((MAX - 1)..), Dynamic::new(MAX)),
|
||||
true
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&((MAX - 1)..), Dynamic::new(MAX)),
|
||||
Dynamic::new(1)
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(MAX..), Dynamic::new(MAX)),
|
||||
Dynamic::new(0)
|
||||
);
|
||||
}
|
||||
|
||||
impl<D: Dim, T: Dim> DimRange<D> for ops::RangeFrom<T>
|
||||
where D: DimSub<T>
|
||||
where
|
||||
D: DimSub<T>,
|
||||
{
|
||||
type Length = DimDiff<D, T>;
|
||||
|
||||
@ -133,7 +156,7 @@ where D: DimSub<T>
|
||||
|
||||
#[test]
|
||||
fn dimrange_rangefrom_dimname() {
|
||||
use crate::base::dimension::{U5, U4};
|
||||
use crate::base::dimension::{U4, U5};
|
||||
assert_eq!(DimRange::length(&(U1..), U5), U4);
|
||||
}
|
||||
|
||||
@ -173,8 +196,7 @@ impl<D: Dim> DimRange<D> for ops::RangeInclusive<usize> {
|
||||
|
||||
#[inline(always)]
|
||||
fn length(&self, _: D) -> Self::Length {
|
||||
Dynamic::new(
|
||||
if self.end() < self.start() {
|
||||
Dynamic::new(if self.end() < self.start() {
|
||||
0
|
||||
} else {
|
||||
self.end().wrapping_sub(self.start().wrapping_sub(1))
|
||||
@ -189,21 +211,38 @@ impl<D: Dim> DimRange<D> for ops::RangeInclusive<usize> {
|
||||
|
||||
#[test]
|
||||
fn dimrange_rangeinclusive_usize() {
|
||||
use std::usize::MAX;
|
||||
use crate::base::dimension::U0;
|
||||
use std::usize::MAX;
|
||||
assert_eq!(DimRange::contained_by(&(0..=0), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(0..=0), U1), true);
|
||||
assert_eq!(DimRange::contained_by(&(MAX..=MAX), Dynamic::new(MAX)), false);
|
||||
assert_eq!(DimRange::contained_by(&((MAX-1)..=MAX), Dynamic::new(MAX)), false);
|
||||
assert_eq!(DimRange::contained_by(&((MAX-1)..=(MAX-1)), Dynamic::new(MAX)), true);
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&(MAX..=MAX), Dynamic::new(MAX)),
|
||||
false
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&((MAX - 1)..=MAX), Dynamic::new(MAX)),
|
||||
false
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&((MAX - 1)..=(MAX - 1)), Dynamic::new(MAX)),
|
||||
true
|
||||
);
|
||||
assert_eq!(DimRange::length(&(0..=0), U1), Dynamic::new(1));
|
||||
assert_eq!(DimRange::length(&((MAX - 1)..=MAX), Dynamic::new(MAX)), Dynamic::new(2));
|
||||
assert_eq!(DimRange::length(&(MAX..=(MAX - 1)), Dynamic::new(MAX)), Dynamic::new(0));
|
||||
assert_eq!(DimRange::length(&(MAX..=MAX), Dynamic::new(MAX)), Dynamic::new(1));
|
||||
assert_eq!(
|
||||
DimRange::length(&((MAX - 1)..=MAX), Dynamic::new(MAX)),
|
||||
Dynamic::new(2)
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(MAX..=(MAX - 1)), Dynamic::new(MAX)),
|
||||
Dynamic::new(0)
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(MAX..=MAX), Dynamic::new(MAX)),
|
||||
Dynamic::new(1)
|
||||
);
|
||||
}
|
||||
|
||||
impl<D: Dim> DimRange<D> for ops::RangeTo<usize>
|
||||
{
|
||||
impl<D: Dim> DimRange<D> for ops::RangeTo<usize> {
|
||||
type Length = Dynamic;
|
||||
|
||||
#[inline(always)]
|
||||
@ -224,18 +263,26 @@ impl<D: Dim> DimRange<D> for ops::RangeTo<usize>
|
||||
|
||||
#[test]
|
||||
fn dimrange_rangeto_usize() {
|
||||
use std::usize::MAX;
|
||||
use crate::base::dimension::U0;
|
||||
use std::usize::MAX;
|
||||
assert_eq!(DimRange::contained_by(&(..0), U0), true);
|
||||
assert_eq!(DimRange::contained_by(&(..1), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(..0), U1), true);
|
||||
assert_eq!(DimRange::contained_by(&(..(MAX - 1)), Dynamic::new(MAX)), true);
|
||||
assert_eq!(DimRange::length(&(..(MAX - 1)), Dynamic::new(MAX)), Dynamic::new(MAX - 1));
|
||||
assert_eq!(DimRange::length(&(..MAX), Dynamic::new(MAX)), Dynamic::new(MAX));
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&(..(MAX - 1)), Dynamic::new(MAX)),
|
||||
true
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(..(MAX - 1)), Dynamic::new(MAX)),
|
||||
Dynamic::new(MAX - 1)
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(..MAX), Dynamic::new(MAX)),
|
||||
Dynamic::new(MAX)
|
||||
);
|
||||
}
|
||||
|
||||
impl<D: Dim> DimRange<D> for ops::RangeToInclusive<usize>
|
||||
{
|
||||
impl<D: Dim> DimRange<D> for ops::RangeToInclusive<usize> {
|
||||
type Length = Dynamic;
|
||||
|
||||
#[inline(always)]
|
||||
@ -256,21 +303,29 @@ impl<D: Dim> DimRange<D> for ops::RangeToInclusive<usize>
|
||||
|
||||
#[test]
|
||||
fn dimrange_rangetoinclusive_usize() {
|
||||
use std::usize::MAX;
|
||||
use crate::base::dimension::U0;
|
||||
use std::usize::MAX;
|
||||
assert_eq!(DimRange::contained_by(&(..=0), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(..=1), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(..=0), U1), true);
|
||||
assert_eq!(DimRange::contained_by(&(..=(MAX)), Dynamic::new(MAX)), false);
|
||||
assert_eq!(DimRange::contained_by(&(..=(MAX - 1)), Dynamic::new(MAX)), true);
|
||||
assert_eq!(DimRange::length(&(..=(MAX - 1)), Dynamic::new(MAX)), Dynamic::new(MAX));
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&(..=(MAX)), Dynamic::new(MAX)),
|
||||
false
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&(..=(MAX - 1)), Dynamic::new(MAX)),
|
||||
true
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(..=(MAX - 1)), Dynamic::new(MAX)),
|
||||
Dynamic::new(MAX)
|
||||
);
|
||||
}
|
||||
|
||||
/// A helper trait used for indexing operations.
|
||||
pub trait MatrixIndex<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>>: Sized {
|
||||
|
||||
/// The output type returned by methods.
|
||||
type Output : 'a;
|
||||
type Output: 'a;
|
||||
|
||||
/// Produces true if the given matrix is contained by this index.
|
||||
#[doc(hidden)]
|
||||
@ -282,7 +337,7 @@ pub trait MatrixIndex<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>>: Sized
|
||||
#[inline(always)]
|
||||
fn get(self, matrix: &'a Matrix<N, R, C, S>) -> Option<Self::Output> {
|
||||
if self.contained_by(matrix) {
|
||||
Some(unsafe{self.get_unchecked(matrix)})
|
||||
Some(unsafe { self.get_unchecked(matrix) })
|
||||
} else {
|
||||
None
|
||||
}
|
||||
@ -303,9 +358,11 @@ pub trait MatrixIndex<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>>: Sized
|
||||
}
|
||||
|
||||
/// A helper trait used for indexing operations.
|
||||
pub trait MatrixIndexMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>>: MatrixIndex<'a, N, R, C, S> {
|
||||
pub trait MatrixIndexMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>>:
|
||||
MatrixIndex<'a, N, R, C, S>
|
||||
{
|
||||
/// The output type returned by methods.
|
||||
type OutputMut : 'a;
|
||||
type OutputMut: 'a;
|
||||
|
||||
/// Produces a mutable view of the data at this location, without
|
||||
/// performing any bounds checking.
|
||||
@ -318,7 +375,7 @@ pub trait MatrixIndexMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>>:
|
||||
#[inline(always)]
|
||||
fn get_mut(self, matrix: &'a mut Matrix<N, R, C, S>) -> Option<Self::OutputMut> {
|
||||
if self.contained_by(matrix) {
|
||||
Some(unsafe{self.get_unchecked_mut(matrix)})
|
||||
Some(unsafe { self.get_unchecked_mut(matrix) })
|
||||
} else {
|
||||
None
|
||||
}
|
||||
@ -432,14 +489,13 @@ pub trait MatrixIndexMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>>:
|
||||
/// 4, 7,
|
||||
/// 5, 8)));
|
||||
/// ```
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
{
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Produces a view of the data at the given index, or
|
||||
/// `None` if the index is out of bounds.
|
||||
#[inline]
|
||||
pub fn get<'a, I>(&'a self, index: I) -> Option<I::Output>
|
||||
where
|
||||
I: MatrixIndex<'a, N, R, C, S>
|
||||
I: MatrixIndex<'a, N, R, C, S>,
|
||||
{
|
||||
index.get(self)
|
||||
}
|
||||
@ -450,7 +506,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
pub fn get_mut<'a, I>(&'a mut self, index: I) -> Option<I::OutputMut>
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
I: MatrixIndexMut<'a, N, R, C, S>
|
||||
I: MatrixIndexMut<'a, N, R, C, S>,
|
||||
{
|
||||
index.get_mut(self)
|
||||
}
|
||||
@ -460,7 +516,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
#[inline]
|
||||
pub fn index<'a, I>(&'a self, index: I) -> I::Output
|
||||
where
|
||||
I: MatrixIndex<'a, N, R, C, S>
|
||||
I: MatrixIndex<'a, N, R, C, S>,
|
||||
{
|
||||
index.index(self)
|
||||
}
|
||||
@ -471,7 +527,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
pub fn index_mut<'a, I>(&'a mut self, index: I) -> I::OutputMut
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
I: MatrixIndexMut<'a, N, R, C, S>
|
||||
I: MatrixIndexMut<'a, N, R, C, S>,
|
||||
{
|
||||
index.index_mut(self)
|
||||
}
|
||||
@ -481,7 +537,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
#[inline]
|
||||
pub unsafe fn get_unchecked<'a, I>(&'a self, index: I) -> I::Output
|
||||
where
|
||||
I: MatrixIndex<'a, N, R, C, S>
|
||||
I: MatrixIndex<'a, N, R, C, S>,
|
||||
{
|
||||
index.get_unchecked(self)
|
||||
}
|
||||
@ -492,7 +548,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
pub unsafe fn get_unchecked_mut<'a, I>(&'a mut self, index: I) -> I::OutputMut
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
I: MatrixIndexMut<'a, N, R, C, S>
|
||||
I: MatrixIndexMut<'a, N, R, C, S>,
|
||||
{
|
||||
index.get_unchecked_mut(self)
|
||||
}
|
||||
@ -505,7 +561,7 @@ where
|
||||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: Storage<N, R, C>
|
||||
S: Storage<N, R, C>,
|
||||
{
|
||||
type Output = &'a N;
|
||||
|
||||
@ -527,14 +583,15 @@ where
|
||||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: StorageMut<N, R, C>
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
type OutputMut = &'a mut N;
|
||||
|
||||
#[doc(hidden)]
|
||||
#[inline(always)]
|
||||
unsafe fn get_unchecked_mut(self, matrix: &'a mut Matrix<N, R, C, S>) -> Self::OutputMut
|
||||
where S: StorageMut<N, R, C>,
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
matrix.data.get_unchecked_linear_mut(self)
|
||||
}
|
||||
@ -547,7 +604,7 @@ where
|
||||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: Storage<N, R, C>
|
||||
S: Storage<N, R, C>,
|
||||
{
|
||||
type Output = &'a N;
|
||||
|
||||
@ -572,14 +629,15 @@ where
|
||||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: StorageMut<N, R, C>
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
type OutputMut = &'a mut N;
|
||||
|
||||
#[doc(hidden)]
|
||||
#[inline(always)]
|
||||
unsafe fn get_unchecked_mut(self, matrix: &'a mut Matrix<N, R, C, S>) -> Self::OutputMut
|
||||
where S: StorageMut<N, R, C>,
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
let (row, col) = self;
|
||||
matrix.data.get_unchecked_mut(row, col)
|
||||
@ -684,7 +742,7 @@ macro_rules! impl_index_pairs {
|
||||
}
|
||||
}
|
||||
|
||||
impl_index_pairs!{
|
||||
impl_index_pairs! {
|
||||
index R with {
|
||||
[<> usize => U1],
|
||||
[<> ops::Range<usize> => Dynamic],
|
||||
|
@ -5,7 +5,7 @@ use std::mem;
|
||||
|
||||
use crate::base::dimension::{Dim, U1};
|
||||
use crate::base::storage::{Storage, StorageMut};
|
||||
use crate::base::{Scalar, Matrix, MatrixSlice, MatrixSliceMut};
|
||||
use crate::base::{Matrix, MatrixSlice, MatrixSliceMut, Scalar};
|
||||
|
||||
macro_rules! iterator {
|
||||
(struct $Name:ident for $Storage:ident.$ptr: ident -> $Ptr:ty, $Ref:ty, $SRef: ty) => {
|
||||
@ -125,7 +125,6 @@ macro_rules! iterator {
|
||||
iterator!(struct MatrixIter for Storage.ptr -> *const N, &'a N, &'a S);
|
||||
iterator!(struct MatrixIterMut for StorageMut.ptr_mut -> *mut N, &'a mut N, &'a mut S);
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Row iterators.
|
||||
@ -135,18 +134,15 @@ iterator!(struct MatrixIterMut for StorageMut.ptr_mut -> *mut N, &'a mut N, &'a
|
||||
/// An iterator through the rows of a matrix.
|
||||
pub struct RowIter<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> {
|
||||
mat: &'a Matrix<N, R, C, S>,
|
||||
curr: usize
|
||||
curr: usize,
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> RowIter<'a, N, R, C, S> {
|
||||
pub(crate) fn new(mat: &'a Matrix<N, R, C, S>) -> Self {
|
||||
RowIter {
|
||||
mat, curr: 0
|
||||
}
|
||||
RowIter { mat, curr: 0 }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for RowIter<'a, N, R, C, S> {
|
||||
type Item = MatrixSlice<'a, N, U1, C, S::RStride, S::CStride>;
|
||||
|
||||
@ -163,7 +159,10 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for RowIt
|
||||
|
||||
#[inline]
|
||||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||||
(self.mat.nrows() - self.curr, Some(self.mat.nrows() - self.curr))
|
||||
(
|
||||
self.mat.nrows() - self.curr,
|
||||
Some(self.mat.nrows() - self.curr),
|
||||
)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -172,19 +171,20 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for RowIt
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator for RowIter<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator
|
||||
for RowIter<'a, N, R, C, S>
|
||||
{
|
||||
#[inline]
|
||||
fn len(&self) -> usize {
|
||||
self.mat.nrows() - self.curr
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// An iterator through the mutable rows of a matrix.
|
||||
pub struct RowIterMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> {
|
||||
mat: *mut Matrix<N, R, C, S>,
|
||||
curr: usize,
|
||||
phantom: PhantomData<&'a mut Matrix<N, R, C, S>>
|
||||
phantom: PhantomData<&'a mut Matrix<N, R, C, S>>,
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> RowIterMut<'a, N, R, C, S> {
|
||||
@ -192,19 +192,18 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> RowIterMut<'a,
|
||||
RowIterMut {
|
||||
mat,
|
||||
curr: 0,
|
||||
phantom: PhantomData
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
fn nrows(&self) -> usize {
|
||||
unsafe {
|
||||
(*self.mat).nrows()
|
||||
}
|
||||
unsafe { (*self.mat).nrows() }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for RowIterMut<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator
|
||||
for RowIterMut<'a, N, R, C, S>
|
||||
{
|
||||
type Item = MatrixSliceMut<'a, N, U1, C, S::RStride, S::CStride>;
|
||||
|
||||
#[inline]
|
||||
@ -229,14 +228,15 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for Ro
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator for RowIterMut<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator
|
||||
for RowIterMut<'a, N, R, C, S>
|
||||
{
|
||||
#[inline]
|
||||
fn len(&self) -> usize {
|
||||
self.nrows() - self.curr
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Column iterators.
|
||||
@ -246,19 +246,18 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterat
|
||||
/// An iterator through the columns of a matrix.
|
||||
pub struct ColumnIter<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> {
|
||||
mat: &'a Matrix<N, R, C, S>,
|
||||
curr: usize
|
||||
curr: usize,
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ColumnIter<'a, N, R, C, S> {
|
||||
pub(crate) fn new(mat: &'a Matrix<N, R, C, S>) -> Self {
|
||||
ColumnIter {
|
||||
mat, curr: 0
|
||||
}
|
||||
ColumnIter { mat, curr: 0 }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for ColumnIter<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator
|
||||
for ColumnIter<'a, N, R, C, S>
|
||||
{
|
||||
type Item = MatrixSlice<'a, N, R, U1, S::RStride, S::CStride>;
|
||||
|
||||
#[inline]
|
||||
@ -274,7 +273,10 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for Colum
|
||||
|
||||
#[inline]
|
||||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||||
(self.mat.ncols() - self.curr, Some(self.mat.ncols() - self.curr))
|
||||
(
|
||||
self.mat.ncols() - self.curr,
|
||||
Some(self.mat.ncols() - self.curr),
|
||||
)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -283,19 +285,20 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for Colum
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator for ColumnIter<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator
|
||||
for ColumnIter<'a, N, R, C, S>
|
||||
{
|
||||
#[inline]
|
||||
fn len(&self) -> usize {
|
||||
self.mat.ncols() - self.curr
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// An iterator through the mutable columns of a matrix.
|
||||
pub struct ColumnIterMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> {
|
||||
mat: *mut Matrix<N, R, C, S>,
|
||||
curr: usize,
|
||||
phantom: PhantomData<&'a mut Matrix<N, R, C, S>>
|
||||
phantom: PhantomData<&'a mut Matrix<N, R, C, S>>,
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ColumnIterMut<'a, N, R, C, S> {
|
||||
@ -303,19 +306,18 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ColumnIterMut<'
|
||||
ColumnIterMut {
|
||||
mat,
|
||||
curr: 0,
|
||||
phantom: PhantomData
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
fn ncols(&self) -> usize {
|
||||
unsafe {
|
||||
(*self.mat).ncols()
|
||||
}
|
||||
unsafe { (*self.mat).ncols() }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for ColumnIterMut<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator
|
||||
for ColumnIterMut<'a, N, R, C, S>
|
||||
{
|
||||
type Item = MatrixSliceMut<'a, N, R, U1, S::RStride, S::CStride>;
|
||||
|
||||
#[inline]
|
||||
@ -340,10 +342,11 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for Co
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator for ColumnIterMut<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator
|
||||
for ColumnIterMut<'a, N, R, C, S>
|
||||
{
|
||||
#[inline]
|
||||
fn len(&self) -> usize {
|
||||
self.ncols() - self.curr
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -16,16 +16,20 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
||||
#[cfg(feature = "abomonation-serialize")]
|
||||
use abomonation::Abomonation;
|
||||
|
||||
use alga::general::{ClosedAdd, ClosedMul, ClosedSub, RealField, Ring, ComplexField, Field};
|
||||
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub, Field, RealField};
|
||||
use simba::simd::SimdPartialOrd;
|
||||
|
||||
use crate::base::allocator::{Allocator, SameShapeAllocator, SameShapeC, SameShapeR};
|
||||
use crate::base::constraint::{DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
|
||||
use crate::base::dimension::{Dim, DimAdd, DimSum, IsNotStaticOne, U1, U2, U3};
|
||||
use crate::base::iter::{MatrixIter, MatrixIterMut, RowIter, RowIterMut, ColumnIter, ColumnIterMut};
|
||||
use crate::base::iter::{
|
||||
ColumnIter, ColumnIterMut, MatrixIter, MatrixIterMut, RowIter, RowIterMut,
|
||||
};
|
||||
use crate::base::storage::{
|
||||
ContiguousStorage, ContiguousStorageMut, Owned, SameShapeStorage, Storage, StorageMut,
|
||||
};
|
||||
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, Scalar, Unit, VectorN};
|
||||
use crate::SimdComplexField;
|
||||
|
||||
/// A square matrix.
|
||||
pub type SquareMatrix<N, D, S> = Matrix<N, D, D, S>;
|
||||
@ -99,7 +103,9 @@ where
|
||||
S: Serialize,
|
||||
{
|
||||
fn serialize<T>(&self, serializer: T) -> Result<T::Ok, T::Error>
|
||||
where T: Serializer {
|
||||
where
|
||||
T: Serializer,
|
||||
{
|
||||
self.data.serialize(serializer)
|
||||
}
|
||||
}
|
||||
@ -113,7 +119,9 @@ where
|
||||
S: Deserialize<'de>,
|
||||
{
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where D: Deserializer<'de> {
|
||||
where
|
||||
D: Deserializer<'de>,
|
||||
{
|
||||
S::deserialize(deserializer).map(|x| Matrix {
|
||||
data: x,
|
||||
_phantoms: PhantomData,
|
||||
@ -279,6 +287,16 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
|
||||
/// Computes the row and column coordinates of the i-th element of this matrix seen as a
|
||||
/// vector.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Matrix2;
|
||||
/// let m = Matrix2::new(1, 2,
|
||||
/// 3, 4);
|
||||
/// let i = m.vector_to_matrix_index(3);
|
||||
/// assert_eq!(i, (1, 1));
|
||||
/// assert_eq!(m[i], m[3]);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn vector_to_matrix_index(&self, i: usize) -> (usize, usize) {
|
||||
let (nrows, ncols) = self.shape();
|
||||
@ -298,6 +316,15 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
///
|
||||
/// If the matrix is not empty, this pointer is guaranteed to be aligned
|
||||
/// and non-null.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Matrix2;
|
||||
/// let m = Matrix2::new(1, 2,
|
||||
/// 3, 4);
|
||||
/// let ptr = m.as_ptr();
|
||||
/// assert_eq!(unsafe { *ptr }, m[0]);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn as_ptr(&self) -> *const N {
|
||||
self.data.ptr()
|
||||
@ -344,7 +371,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Moves this matrix into one that owns its data.
|
||||
#[inline]
|
||||
pub fn into_owned(self) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
Matrix::from_data(self.data.into_owned())
|
||||
}
|
||||
|
||||
@ -378,7 +407,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Clones this matrix to one that owns its data.
|
||||
#[inline]
|
||||
pub fn clone_owned(&self) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
Matrix::from_data(self.data.clone_owned())
|
||||
}
|
||||
|
||||
@ -414,7 +445,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Returns a matrix containing the result of `f` applied to each of its entries.
|
||||
#[inline]
|
||||
pub fn map<N2: Scalar, F: FnMut(N) -> N2>(&self, mut f: F) -> MatrixMN<N2, R, C>
|
||||
where DefaultAllocator: Allocator<N2, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N2, R, C>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
||||
let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) };
|
||||
@ -431,6 +464,24 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
res
|
||||
}
|
||||
|
||||
/// Similar to `self.iter().fold(init, f)` except that `init` is replaced by a closure.
|
||||
///
|
||||
/// The initialization closure is given the first component of this matrix:
|
||||
/// - If the matrix has no component (0 rows or 0 columns) then `init_f` is called with `None`
|
||||
/// and its return value is the value returned by this method.
|
||||
/// - If the matrix has has least one component, then `init_f` is called with the first component
|
||||
/// to compute the initial value. Folding then continues on all the remaining components of the matrix.
|
||||
#[inline]
|
||||
pub fn fold_with<N2>(
|
||||
&self,
|
||||
init_f: impl FnOnce(Option<&N>) -> N2,
|
||||
f: impl FnMut(N2, &N) -> N2,
|
||||
) -> N2 {
|
||||
let mut it = self.iter();
|
||||
let init = init_f(it.next());
|
||||
it.fold(init, f)
|
||||
}
|
||||
|
||||
/// Returns a matrix containing the result of `f` applied to each of its entries. Unlike `map`,
|
||||
/// `f` also gets passed the row and column index, i.e. `f(row, col, value)`.
|
||||
#[inline]
|
||||
@ -553,13 +604,18 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
|
||||
/// Folds a function `f` on each pairs of entries from `self` and `rhs`.
|
||||
#[inline]
|
||||
pub fn zip_fold<N2, R2, C2, S2, Acc>(&self, rhs: &Matrix<N2, R2, C2, S2>, init: Acc, mut f: impl FnMut(Acc, N, N2) -> Acc) -> Acc
|
||||
pub fn zip_fold<N2, R2, C2, S2, Acc>(
|
||||
&self,
|
||||
rhs: &Matrix<N2, R2, C2, S2>,
|
||||
init: Acc,
|
||||
mut f: impl FnMut(Acc, N, N2) -> Acc,
|
||||
) -> Acc
|
||||
where
|
||||
N2: Scalar,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N2, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
||||
@ -612,7 +668,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use transpose_mut()?"]
|
||||
pub fn transpose(&self) -> MatrixMN<N, C, R>
|
||||
where DefaultAllocator: Allocator<N, C, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C, R>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
||||
unsafe {
|
||||
@ -718,7 +776,8 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
for j in 0..ncols {
|
||||
for i in 0..nrows {
|
||||
unsafe {
|
||||
*self.get_unchecked_mut((i, j)) = slice.get_unchecked(i + j * nrows).inlined_clone();
|
||||
*self.get_unchecked_mut((i, j)) =
|
||||
slice.get_unchecked(i + j * nrows).inlined_clone();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -774,7 +833,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
// FIXME: rename `apply` to `apply_mut` and `apply_into` to `apply`?
|
||||
/// Returns `self` with each of its components replaced by the result of a closure `f` applied on it.
|
||||
#[inline]
|
||||
pub fn apply_into<F: FnMut(N) -> N>(mut self, f: F) -> Self{
|
||||
pub fn apply_into<F: FnMut(N) -> N>(mut self, f: F) -> Self {
|
||||
self.apply(f);
|
||||
self
|
||||
}
|
||||
@ -797,12 +856,17 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Replaces each component of `self` by the result of a closure `f` applied on its components
|
||||
/// joined with the components from `rhs`.
|
||||
#[inline]
|
||||
pub fn zip_apply<N2, R2, C2, S2>(&mut self, rhs: &Matrix<N2, R2, C2, S2>, mut f: impl FnMut(N, N2) -> N)
|
||||
where N2: Scalar,
|
||||
pub fn zip_apply<N2, R2, C2, S2>(
|
||||
&mut self,
|
||||
rhs: &Matrix<N2, R2, C2, S2>,
|
||||
mut f: impl FnMut(N, N2) -> N,
|
||||
) where
|
||||
N2: Scalar,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N2, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2> {
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
{
|
||||
let (nrows, ncols) = self.shape();
|
||||
|
||||
assert!(
|
||||
@ -821,12 +885,16 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Replaces each component of `self` by the result of a closure `f` applied on its components
|
||||
/// joined with the components from `b` and `c`.
|
||||
#[inline]
|
||||
pub fn zip_zip_apply<N2, R2, C2, S2, N3, R3, C3, S3>(&mut self, b: &Matrix<N2, R2, C2, S2>, c: &Matrix<N3, R3, C3, S3>, mut f: impl FnMut(N, N2, N3) -> N)
|
||||
where N2: Scalar,
|
||||
pub fn zip_zip_apply<N2, R2, C2, S2, N3, R3, C3, S3>(
|
||||
&mut self,
|
||||
b: &Matrix<N2, R2, C2, S2>,
|
||||
c: &Matrix<N3, R3, C3, S3>,
|
||||
mut f: impl FnMut(N, N2, N3) -> N,
|
||||
) where
|
||||
N2: Scalar,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N2, R2, C2>,
|
||||
@ -835,7 +903,8 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
C3: Dim,
|
||||
S3: Storage<N3, R3, C3>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2> {
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
{
|
||||
let (nrows, ncols) = self.shape();
|
||||
|
||||
assert!(
|
||||
@ -914,7 +983,7 @@ impl<N: Scalar, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Takes the adjoint (aka. conjugate-transpose) of `self` and store the result into `out`.
|
||||
#[inline]
|
||||
pub fn adjoint_to<R2, C2, SB>(&self, out: &mut Matrix<N, R2, C2, SB>)
|
||||
@ -934,7 +1003,7 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
for i in 0..nrows {
|
||||
for j in 0..ncols {
|
||||
unsafe {
|
||||
*out.get_unchecked_mut((j, i)) = self.get_unchecked((i, j)).conjugate();
|
||||
*out.get_unchecked_mut((j, i)) = self.get_unchecked((i, j)).simd_conjugate();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -944,7 +1013,9 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use adjoint_mut()?"]
|
||||
pub fn adjoint(&self) -> MatrixMN<N, C, R>
|
||||
where DefaultAllocator: Allocator<N, C, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C, R>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
||||
unsafe {
|
||||
@ -972,7 +1043,9 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
#[deprecated(note = "Renamed `self.adjoint()`.")]
|
||||
#[inline]
|
||||
pub fn conjugate_transpose(&self) -> MatrixMN<N, C, R>
|
||||
where DefaultAllocator: Allocator<N, C, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C, R>,
|
||||
{
|
||||
self.adjoint()
|
||||
}
|
||||
|
||||
@ -980,48 +1053,54 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use conjugate_mut()?"]
|
||||
pub fn conjugate(&self) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
self.map(|e| e.conjugate())
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
self.map(|e| e.simd_conjugate())
|
||||
}
|
||||
|
||||
/// Divides each component of the complex matrix `self` by the given real.
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use unscale_mut()?"]
|
||||
pub fn unscale(&self, real: N::RealField) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
self.map(|e| e.unscale(real))
|
||||
pub fn unscale(&self, real: N::SimdRealField) -> MatrixMN<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
self.map(|e| e.simd_unscale(real))
|
||||
}
|
||||
|
||||
/// Multiplies each component of the complex matrix `self` by the given real.
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use scale_mut()?"]
|
||||
pub fn scale(&self, real: N::RealField) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
self.map(|e| e.scale(real))
|
||||
pub fn scale(&self, real: N::SimdRealField) -> MatrixMN<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
self.map(|e| e.simd_scale(real))
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: SimdComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// The conjugate of the complex matrix `self` computed in-place.
|
||||
#[inline]
|
||||
pub fn conjugate_mut(&mut self) {
|
||||
self.apply(|e| e.conjugate())
|
||||
self.apply(|e| e.simd_conjugate())
|
||||
}
|
||||
|
||||
/// Divides each component of the complex matrix `self` by the given real.
|
||||
#[inline]
|
||||
pub fn unscale_mut(&mut self, real: N::RealField) {
|
||||
self.apply(|e| e.unscale(real))
|
||||
pub fn unscale_mut(&mut self, real: N::SimdRealField) {
|
||||
self.apply(|e| e.simd_unscale(real))
|
||||
}
|
||||
|
||||
/// Multiplies each component of the complex matrix `self` by the given real.
|
||||
#[inline]
|
||||
pub fn scale_mut(&mut self, real: N::RealField) {
|
||||
self.apply(|e| e.scale(real))
|
||||
pub fn scale_mut(&mut self, real: N::SimdRealField) {
|
||||
self.apply(|e| e.simd_scale(real))
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
|
||||
impl<N: SimdComplexField, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
|
||||
/// Sets `self` to its adjoint.
|
||||
#[deprecated(note = "Renamed to `self.adjoint_mut()`.")]
|
||||
pub fn conjugate_transform_mut(&mut self) {
|
||||
@ -1042,8 +1121,8 @@ impl<N: ComplexField, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
|
||||
unsafe {
|
||||
let ref_ij = self.get_unchecked_mut((i, j)) as *mut N;
|
||||
let ref_ji = self.get_unchecked_mut((j, i)) as *mut N;
|
||||
let conj_ij = (*ref_ij).conjugate();
|
||||
let conj_ji = (*ref_ji).conjugate();
|
||||
let conj_ij = (*ref_ij).simd_conjugate();
|
||||
let conj_ji = (*ref_ji).simd_conjugate();
|
||||
*ref_ij = conj_ji;
|
||||
*ref_ji = conj_ij;
|
||||
}
|
||||
@ -1051,7 +1130,7 @@ impl<N: ComplexField, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
|
||||
|
||||
{
|
||||
let diag = unsafe { self.get_unchecked_mut((i, i)) };
|
||||
*diag = diag.conjugate();
|
||||
*diag = diag.simd_conjugate();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1061,7 +1140,9 @@ impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
/// The diagonal of this matrix.
|
||||
#[inline]
|
||||
pub fn diagonal(&self) -> VectorN<N, D>
|
||||
where DefaultAllocator: Allocator<N, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
self.map_diagonal(|e| e)
|
||||
}
|
||||
|
||||
@ -1070,7 +1151,9 @@ impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
/// This is a more efficient version of `self.diagonal().map(f)` since this
|
||||
/// allocates only once.
|
||||
pub fn map_diagonal<N2: Scalar>(&self, mut f: impl FnMut(N) -> N2) -> VectorN<N2, D>
|
||||
where DefaultAllocator: Allocator<N2, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N2, D>,
|
||||
{
|
||||
assert!(
|
||||
self.is_square(),
|
||||
"Unable to get the diagonal of a non-square matrix."
|
||||
@ -1091,7 +1174,9 @@ impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
/// Computes a trace of a square matrix, i.e., the sum of its diagonal elements.
|
||||
#[inline]
|
||||
pub fn trace(&self) -> N
|
||||
where N: Ring {
|
||||
where
|
||||
N: Scalar + Zero + ClosedAdd,
|
||||
{
|
||||
assert!(
|
||||
self.is_square(),
|
||||
"Cannot compute the trace of non-square matrix."
|
||||
@ -1108,12 +1193,17 @@ impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
impl<N: SimdComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
/// The symmetric part of `self`, i.e., `0.5 * (self + self.transpose())`.
|
||||
#[inline]
|
||||
pub fn symmetric_part(&self) -> MatrixMN<N, D, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> {
|
||||
assert!(self.is_square(), "Cannot compute the symmetric part of a non-square matrix.");
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
assert!(
|
||||
self.is_square(),
|
||||
"Cannot compute the symmetric part of a non-square matrix."
|
||||
);
|
||||
let mut tr = self.transpose();
|
||||
tr += self;
|
||||
tr *= crate::convert::<_, N>(0.5);
|
||||
@ -1123,8 +1213,13 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
/// The hermitian part of `self`, i.e., `0.5 * (self + self.adjoint())`.
|
||||
#[inline]
|
||||
pub fn hermitian_part(&self) -> MatrixMN<N, D, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> {
|
||||
assert!(self.is_square(), "Cannot compute the hermitian part of a non-square matrix.");
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
assert!(
|
||||
self.is_square(),
|
||||
"Cannot compute the hermitian part of a non-square matrix."
|
||||
);
|
||||
|
||||
let mut tr = self.adjoint();
|
||||
tr += self;
|
||||
@ -1133,20 +1228,26 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + Zero + One, D: DimAdd<U1> + IsNotStaticOne, S: Storage<N, D, D>> Matrix<N, D, D, S> {
|
||||
|
||||
impl<N: Scalar + Zero + One, D: DimAdd<U1> + IsNotStaticOne, S: Storage<N, D, D>>
|
||||
Matrix<N, D, D, S>
|
||||
{
|
||||
/// Yields the homogeneous matrix for this matrix, i.e., appending an additional dimension and
|
||||
/// and setting the diagonal element to `1`.
|
||||
#[inline]
|
||||
pub fn to_homogeneous(&self) -> MatrixN<N, DimSum<D, U1>>
|
||||
where DefaultAllocator: Allocator<N, DimSum<D, U1>, DimSum<D, U1>> {
|
||||
assert!(self.is_square(), "Only square matrices can currently be transformed to homogeneous coordinates.");
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimSum<D, U1>, DimSum<D, U1>>,
|
||||
{
|
||||
assert!(
|
||||
self.is_square(),
|
||||
"Only square matrices can currently be transformed to homogeneous coordinates."
|
||||
);
|
||||
let dim = DimSum::<D, U1>::from_usize(self.nrows() + 1);
|
||||
let mut res = MatrixN::identity_generic(dim, dim);
|
||||
res.generic_slice_mut::<D, D>((0, 0), self.data.shape()).copy_from(&self);
|
||||
res.generic_slice_mut::<D, D>((0, 0), self.data.shape())
|
||||
.copy_from(&self);
|
||||
res
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
impl<N: Scalar + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> {
|
||||
@ -1154,7 +1255,9 @@ impl<N: Scalar + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> {
|
||||
/// coordinates.
|
||||
#[inline]
|
||||
pub fn to_homogeneous(&self) -> VectorN<N, DimSum<D, U1>>
|
||||
where DefaultAllocator: Allocator<N, DimSum<D, U1>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimSum<D, U1>>,
|
||||
{
|
||||
self.push(N::zero())
|
||||
}
|
||||
|
||||
@ -1179,7 +1282,9 @@ impl<N: Scalar + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> {
|
||||
/// Constructs a new vector of higher dimension by appending `element` to the end of `self`.
|
||||
#[inline]
|
||||
pub fn push(&self, element: N) -> VectorN<N, DimSum<D, U1>>
|
||||
where DefaultAllocator: Allocator<N, DimSum<D, U1>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimSum<D, U1>>,
|
||||
{
|
||||
let len = self.len();
|
||||
let hnrows = DimSum::<D, U1>::from_usize(len + 1);
|
||||
let mut res = unsafe { VectorN::<N, _>::new_uninitialized_generic(hnrows, U1) };
|
||||
@ -1229,8 +1334,7 @@ where
|
||||
other: &Self,
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool
|
||||
{
|
||||
) -> bool {
|
||||
self.relative_eq(other, epsilon, max_relative)
|
||||
}
|
||||
}
|
||||
@ -1347,7 +1451,8 @@ impl<N, R: Dim, C: Dim, S> Eq for Matrix<N, R, C, S>
|
||||
where
|
||||
N: Scalar + Eq,
|
||||
S: Storage<N, R, C>,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N, R, R2, C, C2, S, S2> PartialEq<Matrix<N, R2, C2, S2>> for Matrix<N, R, C, S>
|
||||
where
|
||||
@ -1357,7 +1462,7 @@ where
|
||||
R: Dim,
|
||||
R2: Dim,
|
||||
S: Storage<N, R, C>,
|
||||
S2: Storage<N, R2, C2>
|
||||
S2: Storage<N, R2, C2>,
|
||||
{
|
||||
#[inline]
|
||||
fn eq(&self, right: &Matrix<N, R2, C2, S2>) -> bool {
|
||||
@ -1377,7 +1482,9 @@ macro_rules! impl_fmt {
|
||||
#[cfg(feature = "std")]
|
||||
fn val_width<N: Scalar + $trait>(val: &N, f: &mut fmt::Formatter) -> usize {
|
||||
match f.precision() {
|
||||
Some(precision) => format!($fmt_str_with_precision, val, precision).chars().count(),
|
||||
Some(precision) => format!($fmt_str_with_precision, val, precision)
|
||||
.chars()
|
||||
.count(),
|
||||
None => format!($fmt_str_without_precision, val).chars().count(),
|
||||
}
|
||||
}
|
||||
@ -1421,7 +1528,9 @@ macro_rules! impl_fmt {
|
||||
let pad = max_length_with_space - number_length;
|
||||
write!(f, " {:>thepad$}", "", thepad = pad)?;
|
||||
match f.precision() {
|
||||
Some(precision) => write!(f, $fmt_str_with_precision, (*self)[(i, j)], precision)?,
|
||||
Some(precision) => {
|
||||
write!(f, $fmt_str_with_precision, (*self)[(i, j)], precision)?
|
||||
}
|
||||
None => write!(f, $fmt_str_without_precision, (*self)[(i, j)])?,
|
||||
}
|
||||
}
|
||||
@ -1451,16 +1560,21 @@ impl_fmt!(fmt::Pointer, "{:p}", "{:.1$p}");
|
||||
#[test]
|
||||
fn lower_exp() {
|
||||
let test = crate::Matrix2::new(1e6, 2e5, 2e-5, 1.);
|
||||
assert_eq!(format!("{:e}", test), r"
|
||||
assert_eq!(
|
||||
format!("{:e}", test),
|
||||
r"
|
||||
┌ ┐
|
||||
│ 1e6 2e5 │
|
||||
│ 2e-5 1e0 │
|
||||
└ ┘
|
||||
|
||||
")
|
||||
"
|
||||
)
|
||||
}
|
||||
|
||||
impl<N: Scalar + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: Storage<N, R, C>>
|
||||
Matrix<N, R, C, S>
|
||||
{
|
||||
/// The perpendicular product between two 2D column vectors, i.e. `a.x * b.y - a.y * b.x`.
|
||||
#[inline]
|
||||
pub fn perp<R2, C2, SB>(&self, b: &Matrix<N, R2, C2, SB>) -> N
|
||||
@ -1477,7 +1591,8 @@ impl<N: Scalar + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
|
||||
unsafe {
|
||||
self.get_unchecked((0, 0)).inlined_clone() * b.get_unchecked((1, 0)).inlined_clone()
|
||||
- self.get_unchecked((1, 0)).inlined_clone() * b.get_unchecked((0, 0)).inlined_clone()
|
||||
- self.get_unchecked((1, 0)).inlined_clone()
|
||||
* b.get_unchecked((0, 0)).inlined_clone()
|
||||
}
|
||||
}
|
||||
|
||||
@ -1520,9 +1635,12 @@ impl<N: Scalar + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
let by = b.get_unchecked((1, 0));
|
||||
let bz = b.get_unchecked((2, 0));
|
||||
|
||||
*res.get_unchecked_mut((0, 0)) = ay.inlined_clone() * bz.inlined_clone() - az.inlined_clone() * by.inlined_clone();
|
||||
*res.get_unchecked_mut((1, 0)) = az.inlined_clone() * bx.inlined_clone() - ax.inlined_clone() * bz.inlined_clone();
|
||||
*res.get_unchecked_mut((2, 0)) = ax.inlined_clone() * by.inlined_clone() - ay.inlined_clone() * bx.inlined_clone();
|
||||
*res.get_unchecked_mut((0, 0)) = ay.inlined_clone() * bz.inlined_clone()
|
||||
- az.inlined_clone() * by.inlined_clone();
|
||||
*res.get_unchecked_mut((1, 0)) = az.inlined_clone() * bx.inlined_clone()
|
||||
- ax.inlined_clone() * bz.inlined_clone();
|
||||
*res.get_unchecked_mut((2, 0)) = ax.inlined_clone() * by.inlined_clone()
|
||||
- ay.inlined_clone() * bx.inlined_clone();
|
||||
|
||||
res
|
||||
}
|
||||
@ -1541,9 +1659,12 @@ impl<N: Scalar + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
let by = b.get_unchecked((0, 1));
|
||||
let bz = b.get_unchecked((0, 2));
|
||||
|
||||
*res.get_unchecked_mut((0, 0)) = ay.inlined_clone() * bz.inlined_clone() - az.inlined_clone() * by.inlined_clone();
|
||||
*res.get_unchecked_mut((0, 1)) = az.inlined_clone() * bx.inlined_clone() - ax.inlined_clone() * bz.inlined_clone();
|
||||
*res.get_unchecked_mut((0, 2)) = ax.inlined_clone() * by.inlined_clone() - ay.inlined_clone() * bx.inlined_clone();
|
||||
*res.get_unchecked_mut((0, 0)) = ay.inlined_clone() * bz.inlined_clone()
|
||||
- az.inlined_clone() * by.inlined_clone();
|
||||
*res.get_unchecked_mut((0, 1)) = az.inlined_clone() * bx.inlined_clone()
|
||||
- ax.inlined_clone() * bz.inlined_clone();
|
||||
*res.get_unchecked_mut((0, 2)) = ax.inlined_clone() * by.inlined_clone()
|
||||
- ay.inlined_clone() * bx.inlined_clone();
|
||||
|
||||
res
|
||||
}
|
||||
@ -1552,7 +1673,8 @@ impl<N: Scalar + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
|
||||
impl<N: Scalar + Field, S: Storage<N, U3>> Vector<N, U3, S>
|
||||
where DefaultAllocator: Allocator<N, U3>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, U3>,
|
||||
{
|
||||
/// Computes the matrix `M` such that for all vector `v` we have `M * v == self.cross(&v)`.
|
||||
#[inline]
|
||||
@ -1571,10 +1693,10 @@ where DefaultAllocator: Allocator<N, U3>
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// The smallest angle between two vectors.
|
||||
#[inline]
|
||||
pub fn angle<R2: Dim, C2: Dim, SB>(&self, other: &Matrix<N, R2, C2, SB>) -> N::RealField
|
||||
pub fn angle<R2: Dim, C2: Dim, SB>(&self, other: &Matrix<N, R2, C2, SB>) -> N::SimdRealField
|
||||
where
|
||||
SB: Storage<N, R2, C2>,
|
||||
ShapeConstraint: DimEq<R, R2> + DimEq<C, C2>,
|
||||
@ -1584,17 +1706,11 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
let n2 = other.norm();
|
||||
|
||||
if n1.is_zero() || n2.is_zero() {
|
||||
N::RealField::zero()
|
||||
N::SimdRealField::zero()
|
||||
} else {
|
||||
let cang = prod.real() / (n1 * n2);
|
||||
|
||||
if cang > N::RealField::one() {
|
||||
N::RealField::zero()
|
||||
} else if cang < -N::RealField::one() {
|
||||
N::RealField::pi()
|
||||
} else {
|
||||
cang.acos()
|
||||
}
|
||||
let cang = prod.simd_real() / (n1 * n2);
|
||||
cang.simd_clamp(-N::SimdRealField::one(), N::SimdRealField::one())
|
||||
.simd_acos()
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1615,7 +1731,9 @@ impl<N: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Stor
|
||||
/// assert_eq!(x.lerp(&y, 0.1), Vector3::new(1.9, 3.8, 5.7));
|
||||
/// ```
|
||||
pub fn lerp<S2: Storage<N, D>>(&self, rhs: &Vector<N, D, S2>, t: N) -> VectorN<N, D>
|
||||
where DefaultAllocator: Allocator<N, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.axpy(t.inlined_clone(), rhs, N::one() - t);
|
||||
res
|
||||
@ -1723,8 +1841,7 @@ where
|
||||
other: &Self,
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool
|
||||
{
|
||||
) -> bool {
|
||||
self.as_ref()
|
||||
.relative_eq(other.as_ref(), epsilon, max_relative)
|
||||
}
|
||||
|
@ -6,8 +6,8 @@ use num::{One, Zero};
|
||||
use alga::general::{
|
||||
AbstractGroup, AbstractGroupAbelian, AbstractLoop, AbstractMagma, AbstractModule,
|
||||
AbstractMonoid, AbstractQuasigroup, AbstractSemigroup, Additive, ClosedAdd, ClosedMul,
|
||||
ClosedNeg, Field, Identity, TwoSidedInverse, JoinSemilattice, Lattice, MeetSemilattice, Module,
|
||||
Multiplicative, RingCommutative, ComplexField
|
||||
ClosedNeg, ComplexField, Field, Identity, JoinSemilattice, Lattice, MeetSemilattice, Module,
|
||||
Multiplicative, RingCommutative, TwoSidedInverse,
|
||||
};
|
||||
use alga::linear::{
|
||||
FiniteDimInnerSpace, FiniteDimVectorSpace, InnerSpace, NormedSpace, VectorSpace,
|
||||
@ -146,19 +146,25 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, R: DimName, C: DimName> NormedSpace for MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>
|
||||
impl<
|
||||
N: ComplexField + simba::scalar::ComplexField<RealField = <N as ComplexField>::RealField>,
|
||||
R: DimName,
|
||||
C: DimName,
|
||||
> NormedSpace for MatrixMN<N, R, C>
|
||||
where
|
||||
<N as ComplexField>::RealField: simba::scalar::RealField,
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
type RealField = N::RealField;
|
||||
type RealField = <N as ComplexField>::RealField;
|
||||
type ComplexField = N;
|
||||
|
||||
#[inline]
|
||||
fn norm_squared(&self) -> N::RealField {
|
||||
fn norm_squared(&self) -> <N as ComplexField>::RealField {
|
||||
self.norm_squared()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn norm(&self) -> N::RealField {
|
||||
fn norm(&self) -> <N as ComplexField>::RealField {
|
||||
self.norm()
|
||||
}
|
||||
|
||||
@ -169,27 +175,36 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn normalize_mut(&mut self) -> N::RealField {
|
||||
fn normalize_mut(&mut self) -> <N as ComplexField>::RealField {
|
||||
self.normalize_mut()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use try_normalize_mut()?"]
|
||||
fn try_normalize(&self, min_norm: N::RealField) -> Option<Self> {
|
||||
fn try_normalize(&self, min_norm: <N as ComplexField>::RealField) -> Option<Self> {
|
||||
self.try_normalize(min_norm)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option<N::RealField> {
|
||||
fn try_normalize_mut(
|
||||
&mut self,
|
||||
min_norm: <N as ComplexField>::RealField,
|
||||
) -> Option<<N as ComplexField>::RealField> {
|
||||
self.try_normalize_mut(min_norm)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, R: DimName, C: DimName> InnerSpace for MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>
|
||||
impl<
|
||||
N: ComplexField + simba::scalar::ComplexField<RealField = <N as ComplexField>::RealField>,
|
||||
R: DimName,
|
||||
C: DimName,
|
||||
> InnerSpace for MatrixMN<N, R, C>
|
||||
where
|
||||
<N as ComplexField>::RealField: simba::scalar::RealField,
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
#[inline]
|
||||
fn angle(&self, other: &Self) -> N::RealField {
|
||||
fn angle(&self, other: &Self) -> <N as ComplexField>::RealField {
|
||||
self.angle(other)
|
||||
}
|
||||
|
||||
@ -203,8 +218,14 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
// In particular:
|
||||
// − use `x()` instead of `::canonical_basis_element`
|
||||
// − use `::new(x, y, z)` instead of `::from_slice`
|
||||
impl<N: ComplexField, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>
|
||||
impl<
|
||||
N: ComplexField + simba::scalar::ComplexField<RealField = <N as ComplexField>::RealField>,
|
||||
R: DimName,
|
||||
C: DimName,
|
||||
> FiniteDimInnerSpace for MatrixMN<N, R, C>
|
||||
where
|
||||
<N as ComplexField>::RealField: simba::scalar::RealField,
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
#[inline]
|
||||
fn orthonormalize(vs: &mut [Self]) -> usize {
|
||||
@ -219,7 +240,10 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
}
|
||||
}
|
||||
|
||||
if vs[i].try_normalize_mut(N::RealField::zero()).is_some() {
|
||||
if vs[i]
|
||||
.try_normalize_mut(<N as ComplexField>::RealField::zero())
|
||||
.is_some()
|
||||
{
|
||||
// FIXME: this will be efficient on dynamically-allocated vectors but for
|
||||
// statically-allocated ones, `.clone_from` would be better.
|
||||
vs.swap(nbasis_elements, i);
|
||||
@ -237,7 +261,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
|
||||
#[inline]
|
||||
fn orthonormal_subspace_basis<F>(vs: &[Self], mut f: F)
|
||||
where F: FnMut(&Self) -> bool {
|
||||
where
|
||||
F: FnMut(&Self) -> bool,
|
||||
{
|
||||
// FIXME: is this necessary?
|
||||
assert!(
|
||||
vs.len() <= Self::dimension(),
|
||||
@ -272,7 +298,7 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
let v = &vs[0];
|
||||
let mut a;
|
||||
|
||||
if v[0].norm1() > v[1].norm1() {
|
||||
if ComplexField::norm1(v[0]) > ComplexField::norm1(v[1]) {
|
||||
a = Self::from_column_slice(&[v[2], N::zero(), -v[0]]);
|
||||
} else {
|
||||
a = Self::from_column_slice(&[N::zero(), -v[2], v[1]]);
|
||||
@ -304,7 +330,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
elt -= v * elt.dot(v)
|
||||
}
|
||||
|
||||
if let Some(subsp_elt) = elt.try_normalize(N::RealField::zero()) {
|
||||
if let Some(subsp_elt) =
|
||||
elt.try_normalize(<N as ComplexField>::RealField::zero())
|
||||
{
|
||||
if !f(&subsp_elt) {
|
||||
return;
|
||||
};
|
||||
|
65
src/base/matrix_simba.rs
Normal file
65
src/base/matrix_simba.rs
Normal file
@ -0,0 +1,65 @@
|
||||
#[cfg(all(feature = "alloc", not(feature = "std")))]
|
||||
use alloc::vec::Vec;
|
||||
|
||||
use simba::simd::SimdValue;
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::Dim;
|
||||
use crate::base::{DefaultAllocator, MatrixMN, Scalar};
|
||||
|
||||
/*
|
||||
*
|
||||
* Simd structures.
|
||||
*
|
||||
*/
|
||||
impl<N, R, C> SimdValue for MatrixMN<N, R, C>
|
||||
where
|
||||
N: Scalar + SimdValue,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
N::Element: Scalar,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
type Element = MatrixMN<N::Element, R, C>;
|
||||
type SimdBool = N::SimdBool;
|
||||
|
||||
#[inline]
|
||||
fn lanes() -> usize {
|
||||
N::lanes()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn splat(val: Self::Element) -> Self {
|
||||
val.map(N::splat)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn extract(&self, i: usize) -> Self::Element {
|
||||
self.map(|e| e.extract(i))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element {
|
||||
self.map(|e| e.extract_unchecked(i))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn replace(&mut self, i: usize, val: Self::Element) {
|
||||
self.zip_apply(&val, |mut a, b| {
|
||||
a.replace(i, b);
|
||||
a
|
||||
})
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element) {
|
||||
self.zip_apply(&val, |mut a, b| {
|
||||
a.replace_unchecked(i, b);
|
||||
a
|
||||
})
|
||||
}
|
||||
|
||||
fn select(self, cond: Self::SimdBool, other: Self) -> Self {
|
||||
self.zip_map(&other, |a, b| a.select(cond, b))
|
||||
}
|
||||
}
|
@ -4,9 +4,9 @@ use std::slice;
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::default_allocator::DefaultAllocator;
|
||||
use crate::base::dimension::{Dim, DimName, Dynamic, U1, IsNotStaticOne};
|
||||
use crate::base::dimension::{Dim, DimName, Dynamic, IsNotStaticOne, U1};
|
||||
use crate::base::iter::MatrixIter;
|
||||
use crate::base::storage::{Owned, Storage, StorageMut, ContiguousStorage, ContiguousStorageMut};
|
||||
use crate::base::storage::{ContiguousStorage, ContiguousStorageMut, Owned, Storage, StorageMut};
|
||||
use crate::base::{Matrix, Scalar};
|
||||
|
||||
macro_rules! slice_storage_impl(
|
||||
@ -198,13 +198,31 @@ unsafe impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> StorageMu
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1> for SliceStorage<'a, N, R, U1, U1, CStride> { }
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1> for SliceStorageMut<'a, N, R, U1, U1, CStride> { }
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorageMut<N, R, U1> for SliceStorageMut<'a, N, R, U1, U1, CStride> { }
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1>
|
||||
for SliceStorage<'a, N, R, U1, U1, CStride>
|
||||
{
|
||||
}
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1>
|
||||
for SliceStorageMut<'a, N, R, U1, U1, CStride>
|
||||
{
|
||||
}
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorageMut<N, R, U1>
|
||||
for SliceStorageMut<'a, N, R, U1, U1, CStride>
|
||||
{
|
||||
}
|
||||
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C> for SliceStorage<'a, N, R, C, U1, R> { }
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C> for SliceStorageMut<'a, N, R, C, U1, R> { }
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorageMut<N, R, C> for SliceStorageMut<'a, N, R, C, U1, R> { }
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C>
|
||||
for SliceStorage<'a, N, R, C, U1, R>
|
||||
{
|
||||
}
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C>
|
||||
for SliceStorageMut<'a, N, R, C, U1, R>
|
||||
{
|
||||
}
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorageMut<N, R, C>
|
||||
for SliceStorageMut<'a, N, R, C, U1, R>
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
#[inline]
|
||||
@ -213,8 +231,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
start: (usize, usize),
|
||||
shape: (usize, usize),
|
||||
steps: (usize, usize),
|
||||
)
|
||||
{
|
||||
) {
|
||||
let my_shape = self.shape();
|
||||
// NOTE: we don't do any subtraction to avoid underflow for zero-sized matrices.
|
||||
//
|
||||
@ -811,8 +828,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
pub fn rows_range<RowRange: SliceRange<R>>(
|
||||
&self,
|
||||
rows: RowRange,
|
||||
) -> MatrixSlice<N, RowRange::Size, C, S::RStride, S::CStride>
|
||||
{
|
||||
) -> MatrixSlice<N, RowRange::Size, C, S::RStride, S::CStride> {
|
||||
self.slice_range(rows, ..)
|
||||
}
|
||||
|
||||
@ -821,8 +837,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
pub fn columns_range<ColRange: SliceRange<C>>(
|
||||
&self,
|
||||
cols: ColRange,
|
||||
) -> MatrixSlice<N, R, ColRange::Size, S::RStride, S::CStride>
|
||||
{
|
||||
) -> MatrixSlice<N, R, ColRange::Size, S::RStride, S::CStride> {
|
||||
self.slice_range(.., cols)
|
||||
}
|
||||
}
|
||||
@ -851,8 +866,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
pub fn rows_range_mut<RowRange: SliceRange<R>>(
|
||||
&mut self,
|
||||
rows: RowRange,
|
||||
) -> MatrixSliceMut<N, RowRange::Size, C, S::RStride, S::CStride>
|
||||
{
|
||||
) -> MatrixSliceMut<N, RowRange::Size, C, S::RStride, S::CStride> {
|
||||
self.slice_range_mut(rows, ..)
|
||||
}
|
||||
|
||||
@ -861,16 +875,14 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
pub fn columns_range_mut<ColRange: SliceRange<C>>(
|
||||
&mut self,
|
||||
cols: ColRange,
|
||||
) -> MatrixSliceMut<N, R, ColRange::Size, S::RStride, S::CStride>
|
||||
{
|
||||
) -> MatrixSliceMut<N, R, ColRange::Size, S::RStride, S::CStride> {
|
||||
self.slice_range_mut(.., cols)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<'a, N, R, C, RStride, CStride> From<MatrixSliceMut<'a, N, R, C, RStride, CStride>>
|
||||
for MatrixSlice<'a, N, R, C, RStride, CStride>
|
||||
where
|
||||
for MatrixSlice<'a, N, R, C, RStride, CStride>
|
||||
where
|
||||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
|
@ -12,6 +12,7 @@ pub mod storage;
|
||||
|
||||
mod alias;
|
||||
mod alias_slice;
|
||||
mod array_storage;
|
||||
mod cg;
|
||||
mod componentwise;
|
||||
mod construction;
|
||||
@ -20,25 +21,26 @@ mod conversion;
|
||||
mod edition;
|
||||
pub mod indexing;
|
||||
mod matrix;
|
||||
#[cfg(feature = "alga")]
|
||||
mod matrix_alga;
|
||||
mod array_storage;
|
||||
mod matrix_simba;
|
||||
mod matrix_slice;
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
mod vec_storage;
|
||||
mod norm;
|
||||
mod properties;
|
||||
mod scalar;
|
||||
mod statistics;
|
||||
mod swizzle;
|
||||
mod unit;
|
||||
mod statistics;
|
||||
mod norm;
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
mod vec_storage;
|
||||
|
||||
#[doc(hidden)]
|
||||
pub mod helper;
|
||||
|
||||
pub use self::matrix::*;
|
||||
pub use self::norm::*;
|
||||
pub use self::scalar::*;
|
||||
pub use self::unit::*;
|
||||
pub use self::norm::*;
|
||||
|
||||
pub use self::default_allocator::*;
|
||||
pub use self::dimension::*;
|
||||
|
482
src/base/norm.rs
482
src/base/norm.rs
@ -1,24 +1,41 @@
|
||||
#[cfg(all(feature = "alloc", not(feature = "std")))]
|
||||
use alloc::vec::Vec;
|
||||
|
||||
use num::Zero;
|
||||
use std::ops::Neg;
|
||||
|
||||
use crate::allocator::Allocator;
|
||||
use crate::{RealField, ComplexField};
|
||||
use crate::base::{DefaultAllocator, Dim, DimName, Matrix, MatrixMN, Normed, VectorN};
|
||||
use crate::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
|
||||
use crate::storage::{Storage, StorageMut};
|
||||
use crate::base::{DefaultAllocator, Matrix, Dim, MatrixMN};
|
||||
use crate::constraint::{SameNumberOfRows, SameNumberOfColumns, ShapeConstraint};
|
||||
|
||||
use crate::{ComplexField, Scalar, SimdComplexField, Unit};
|
||||
use simba::scalar::ClosedNeg;
|
||||
use simba::simd::{SimdOption, SimdPartialOrd};
|
||||
|
||||
// FIXME: this should be be a trait on alga?
|
||||
/// A trait for abstract matrix norms.
|
||||
///
|
||||
/// This may be moved to the alga crate in the future.
|
||||
pub trait Norm<N: ComplexField> {
|
||||
pub trait Norm<N: SimdComplexField> {
|
||||
/// Apply this norm to the given matrix.
|
||||
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
|
||||
where R: Dim, C: Dim, S: Storage<N, R, C>;
|
||||
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::SimdRealField
|
||||
where
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: Storage<N, R, C>;
|
||||
/// Use the metric induced by this norm to compute the metric distance between the two given matrices.
|
||||
fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::RealField
|
||||
where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
|
||||
R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
|
||||
fn metric_distance<R1, C1, S1, R2, C2, S2>(
|
||||
&self,
|
||||
m1: &Matrix<N, R1, C1, S1>,
|
||||
m2: &Matrix<N, R2, C2, S2>,
|
||||
) -> N::SimdRealField
|
||||
where
|
||||
R1: Dim,
|
||||
C1: Dim,
|
||||
S1: Storage<N, R1, C1>,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>;
|
||||
}
|
||||
|
||||
@ -29,81 +46,123 @@ pub struct LpNorm(pub i32);
|
||||
/// L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm.
|
||||
pub struct UniformNorm;
|
||||
|
||||
impl<N: ComplexField> Norm<N> for EuclideanNorm {
|
||||
impl<N: SimdComplexField> Norm<N> for EuclideanNorm {
|
||||
#[inline]
|
||||
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
|
||||
where R: Dim, C: Dim, S: Storage<N, R, C> {
|
||||
m.norm_squared().sqrt()
|
||||
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::SimdRealField
|
||||
where
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: Storage<N, R, C>,
|
||||
{
|
||||
m.norm_squared().simd_sqrt()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::RealField
|
||||
where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
|
||||
R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
|
||||
m1.zip_fold(m2, N::RealField::zero(), |acc, a, b| {
|
||||
fn metric_distance<R1, C1, S1, R2, C2, S2>(
|
||||
&self,
|
||||
m1: &Matrix<N, R1, C1, S1>,
|
||||
m2: &Matrix<N, R2, C2, S2>,
|
||||
) -> N::SimdRealField
|
||||
where
|
||||
R1: Dim,
|
||||
C1: Dim,
|
||||
S1: Storage<N, R1, C1>,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
|
||||
{
|
||||
m1.zip_fold(m2, N::SimdRealField::zero(), |acc, a, b| {
|
||||
let diff = a - b;
|
||||
acc + diff.modulus_squared()
|
||||
}).sqrt()
|
||||
acc + diff.simd_modulus_squared()
|
||||
})
|
||||
.simd_sqrt()
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField> Norm<N> for LpNorm {
|
||||
impl<N: SimdComplexField> Norm<N> for LpNorm {
|
||||
#[inline]
|
||||
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
|
||||
where R: Dim, C: Dim, S: Storage<N, R, C> {
|
||||
m.fold(N::RealField::zero(), |a, b| {
|
||||
a + b.modulus().powi(self.0)
|
||||
}).powf(crate::convert(1.0 / (self.0 as f64)))
|
||||
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::SimdRealField
|
||||
where
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: Storage<N, R, C>,
|
||||
{
|
||||
m.fold(N::SimdRealField::zero(), |a, b| {
|
||||
a + b.simd_modulus().simd_powi(self.0)
|
||||
})
|
||||
.simd_powf(crate::convert(1.0 / (self.0 as f64)))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::RealField
|
||||
where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
|
||||
R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
|
||||
m1.zip_fold(m2, N::RealField::zero(), |acc, a, b| {
|
||||
fn metric_distance<R1, C1, S1, R2, C2, S2>(
|
||||
&self,
|
||||
m1: &Matrix<N, R1, C1, S1>,
|
||||
m2: &Matrix<N, R2, C2, S2>,
|
||||
) -> N::SimdRealField
|
||||
where
|
||||
R1: Dim,
|
||||
C1: Dim,
|
||||
S1: Storage<N, R1, C1>,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
|
||||
{
|
||||
m1.zip_fold(m2, N::SimdRealField::zero(), |acc, a, b| {
|
||||
let diff = a - b;
|
||||
acc + diff.modulus().powi(self.0)
|
||||
}).powf(crate::convert(1.0 / (self.0 as f64)))
|
||||
acc + diff.simd_modulus().simd_powi(self.0)
|
||||
})
|
||||
.simd_powf(crate::convert(1.0 / (self.0 as f64)))
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField> Norm<N> for UniformNorm {
|
||||
impl<N: SimdComplexField> Norm<N> for UniformNorm {
|
||||
#[inline]
|
||||
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
|
||||
where R: Dim, C: Dim, S: Storage<N, R, C> {
|
||||
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::SimdRealField
|
||||
where
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: Storage<N, R, C>,
|
||||
{
|
||||
// NOTE: we don't use `m.amax()` here because for the complex
|
||||
// numbers this will return the max norm1 instead of the modulus.
|
||||
m.fold(N::RealField::zero(), |acc, a| acc.max(a.modulus()))
|
||||
m.fold(N::SimdRealField::zero(), |acc, a| {
|
||||
acc.simd_max(a.simd_modulus())
|
||||
})
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::RealField
|
||||
where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
|
||||
R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
|
||||
m1.zip_fold(m2, N::RealField::zero(), |acc, a, b| {
|
||||
let val = (a - b).modulus();
|
||||
if val > acc {
|
||||
val
|
||||
} else {
|
||||
acc
|
||||
}
|
||||
fn metric_distance<R1, C1, S1, R2, C2, S2>(
|
||||
&self,
|
||||
m1: &Matrix<N, R1, C1, S1>,
|
||||
m2: &Matrix<N, R2, C2, S2>,
|
||||
) -> N::SimdRealField
|
||||
where
|
||||
R1: Dim,
|
||||
C1: Dim,
|
||||
S1: Storage<N, R1, C1>,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
|
||||
{
|
||||
m1.zip_fold(m2, N::SimdRealField::zero(), |acc, a, b| {
|
||||
let val = (a - b).simd_modulus();
|
||||
acc.simd_max(val)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// The squared L2 norm of this vector.
|
||||
#[inline]
|
||||
pub fn norm_squared(&self) -> N::RealField {
|
||||
let mut res = N::RealField::zero();
|
||||
pub fn norm_squared(&self) -> N::SimdRealField {
|
||||
let mut res = N::SimdRealField::zero();
|
||||
|
||||
for i in 0..self.ncols() {
|
||||
let col = self.column(i);
|
||||
res += col.dotc(&col).real()
|
||||
res += col.dotc(&col).simd_real()
|
||||
}
|
||||
|
||||
res
|
||||
@ -113,17 +172,21 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
///
|
||||
/// Use `.apply_norm` to apply a custom norm.
|
||||
#[inline]
|
||||
pub fn norm(&self) -> N::RealField {
|
||||
self.norm_squared().sqrt()
|
||||
pub fn norm(&self) -> N::SimdRealField {
|
||||
self.norm_squared().simd_sqrt()
|
||||
}
|
||||
|
||||
/// Compute the distance between `self` and `rhs` using the metric induced by the euclidean norm.
|
||||
///
|
||||
/// Use `.apply_metric_distance` to apply a custom norm.
|
||||
#[inline]
|
||||
pub fn metric_distance<R2, C2, S2>(&self, rhs: &Matrix<N, R2, C2, S2>) -> N::RealField
|
||||
where R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2> {
|
||||
pub fn metric_distance<R2, C2, S2>(&self, rhs: &Matrix<N, R2, C2, S2>) -> N::SimdRealField
|
||||
where
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
{
|
||||
self.apply_metric_distance(rhs, &EuclideanNorm)
|
||||
}
|
||||
|
||||
@ -140,7 +203,7 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// assert_eq!(v.apply_norm(&EuclideanNorm), v.norm());
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn apply_norm(&self, norm: &impl Norm<N>) -> N::RealField {
|
||||
pub fn apply_norm(&self, norm: &impl Norm<N>) -> N::SimdRealField {
|
||||
norm.norm(self)
|
||||
}
|
||||
|
||||
@ -159,9 +222,17 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// assert_eq!(v1.apply_metric_distance(&v2, &EuclideanNorm), (v1 - v2).norm());
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn apply_metric_distance<R2, C2, S2>(&self, rhs: &Matrix<N, R2, C2, S2>, norm: &impl Norm<N>) -> N::RealField
|
||||
where R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2> {
|
||||
pub fn apply_metric_distance<R2, C2, S2>(
|
||||
&self,
|
||||
rhs: &Matrix<N, R2, C2, S2>,
|
||||
norm: &impl Norm<N>,
|
||||
) -> N::SimdRealField
|
||||
where
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S2: Storage<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
|
||||
{
|
||||
norm.metric_distance(self, rhs)
|
||||
}
|
||||
|
||||
@ -171,7 +242,7 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
///
|
||||
/// This function is simply implemented as a call to `norm()`
|
||||
#[inline]
|
||||
pub fn magnitude(&self) -> N::RealField {
|
||||
pub fn magnitude(&self) -> N::SimdRealField {
|
||||
self.norm()
|
||||
}
|
||||
|
||||
@ -181,18 +252,63 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
///
|
||||
/// This function is simply implemented as a call to `norm_squared()`
|
||||
#[inline]
|
||||
pub fn magnitude_squared(&self) -> N::RealField {
|
||||
pub fn magnitude_squared(&self) -> N::SimdRealField {
|
||||
self.norm_squared()
|
||||
}
|
||||
|
||||
/// Sets the magnitude of this vector.
|
||||
#[inline]
|
||||
pub fn set_magnitude(&mut self, magnitude: N::SimdRealField)
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
let n = self.norm();
|
||||
self.scale_mut(magnitude / n)
|
||||
}
|
||||
|
||||
/// Returns a normalized version of this matrix.
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use normalize_mut()?"]
|
||||
pub fn normalize(&self) -> MatrixMN<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
self.unscale(self.norm())
|
||||
}
|
||||
|
||||
/// The Lp norm of this matrix.
|
||||
#[inline]
|
||||
pub fn lp_norm(&self, p: i32) -> N::SimdRealField {
|
||||
self.apply_norm(&LpNorm(p))
|
||||
}
|
||||
|
||||
/// Attempts to normalize `self`.
|
||||
///
|
||||
/// The components of this matrix can be SIMD types.
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use simd_try_normalize_mut()?"]
|
||||
pub fn simd_try_normalize(&self, min_norm: N::SimdRealField) -> SimdOption<MatrixMN<N, R, C>>
|
||||
where
|
||||
N::Element: Scalar,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
let n = self.norm();
|
||||
let le = n.simd_le(min_norm);
|
||||
let val = self.unscale(n);
|
||||
SimdOption::new(val, le)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Sets the magnitude of this vector unless it is smaller than `min_magnitude`.
|
||||
///
|
||||
/// If `self.magnitude()` is smaller than `min_magnitude`, it will be left unchanged.
|
||||
/// Otherwise this is equivalent to: `*self = self.normalize() * magnitude.
|
||||
#[inline]
|
||||
pub fn try_set_magnitude(&mut self, magnitude: N::RealField, min_magnitude: N::RealField)
|
||||
where S: StorageMut<N, R, C> {
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
let n = self.norm();
|
||||
|
||||
if n >= min_magnitude {
|
||||
@ -200,19 +316,15 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a normalized version of this matrix.
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use normalize_mut()?"]
|
||||
pub fn normalize(&self) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
self.unscale(self.norm())
|
||||
}
|
||||
|
||||
/// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`.
|
||||
///
|
||||
/// The components of this matrix cannot be SIMD types (see `simd_try_normalize`) instead.
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use try_normalize_mut()?"]
|
||||
pub fn try_normalize(&self, min_norm: N::RealField) -> Option<MatrixMN<N, R, C>>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
let n = self.norm();
|
||||
|
||||
if n <= min_norm {
|
||||
@ -221,25 +333,41 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
Some(self.unscale(n))
|
||||
}
|
||||
}
|
||||
|
||||
/// The Lp norm of this matrix.
|
||||
#[inline]
|
||||
pub fn lp_norm(&self, p: i32) -> N::RealField {
|
||||
self.apply_norm(&LpNorm(p))
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: SimdComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Normalizes this matrix in-place and returns its norm.
|
||||
///
|
||||
/// The components of the matrix cannot be SIMD types (see `simd_try_normalize_mut` instead).
|
||||
#[inline]
|
||||
pub fn normalize_mut(&mut self) -> N::RealField {
|
||||
pub fn normalize_mut(&mut self) -> N::SimdRealField {
|
||||
let n = self.norm();
|
||||
self.unscale_mut(n);
|
||||
|
||||
n
|
||||
}
|
||||
|
||||
/// Normalizes this matrix in-place and return its norm.
|
||||
///
|
||||
/// The components of the matrix can be SIMD types.
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use simd_try_normalize_mut()?"]
|
||||
pub fn simd_try_normalize_mut(
|
||||
&mut self,
|
||||
min_norm: N::SimdRealField,
|
||||
) -> SimdOption<N::SimdRealField>
|
||||
where
|
||||
N::Element: Scalar,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
let n = self.norm();
|
||||
let le = n.simd_le(min_norm);
|
||||
self.apply(|e| e.simd_unscale(n).select(le, e));
|
||||
SimdOption::new(n, le)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`.
|
||||
///
|
||||
/// If the normalization succeeded, returns the old norm of this matrix.
|
||||
@ -255,3 +383,189 @@ impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S>
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: SimdComplexField, R: Dim, C: Dim> Normed for MatrixMN<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
type Norm = N::SimdRealField;
|
||||
|
||||
#[inline]
|
||||
fn norm(&self) -> N::SimdRealField {
|
||||
self.norm()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn norm_squared(&self) -> N::SimdRealField {
|
||||
self.norm_squared()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn scale_mut(&mut self, n: Self::Norm) {
|
||||
self.scale_mut(n)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn unscale_mut(&mut self, n: Self::Norm) {
|
||||
self.unscale_mut(n)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + ClosedNeg, R: Dim, C: Dim> Neg for Unit<MatrixMN<N, R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
type Output = Unit<MatrixMN<N, R, C>>;
|
||||
|
||||
#[inline]
|
||||
fn neg(self) -> Self::Output {
|
||||
Unit::new_unchecked(-self.value)
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: specialization will greatly simplify this implementation in the future.
|
||||
// In particular:
|
||||
// − use `x()` instead of `::canonical_basis_element`
|
||||
// − use `::new(x, y, z)` instead of `::from_slice`
|
||||
impl<N: ComplexField, D: DimName> VectorN<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// The i-the canonical basis element.
|
||||
#[inline]
|
||||
fn canonical_basis_element(i: usize) -> Self {
|
||||
assert!(i < D::dim(), "Index out of bound.");
|
||||
|
||||
let mut res = Self::zero();
|
||||
unsafe {
|
||||
*res.data.get_unchecked_linear_mut(i) = N::one();
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
/// Orthonormalizes the given family of vectors. The largest free family of vectors is moved at
|
||||
/// the beginning of the array and its size is returned. Vectors at an indices larger or equal to
|
||||
/// this length can be modified to an arbitrary value.
|
||||
#[inline]
|
||||
pub fn orthonormalize(vs: &mut [Self]) -> usize {
|
||||
let mut nbasis_elements = 0;
|
||||
|
||||
for i in 0..vs.len() {
|
||||
{
|
||||
let (elt, basis) = vs[..i + 1].split_last_mut().unwrap();
|
||||
|
||||
for basis_element in &basis[..nbasis_elements] {
|
||||
*elt -= &*basis_element * elt.dot(basis_element)
|
||||
}
|
||||
}
|
||||
|
||||
if vs[i].try_normalize_mut(N::RealField::zero()).is_some() {
|
||||
// FIXME: this will be efficient on dynamically-allocated vectors but for
|
||||
// statically-allocated ones, `.clone_from` would be better.
|
||||
vs.swap(nbasis_elements, i);
|
||||
nbasis_elements += 1;
|
||||
|
||||
// All the other vectors will be dependent.
|
||||
if nbasis_elements == D::dim() {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
nbasis_elements
|
||||
}
|
||||
|
||||
/// Applies the given closure to each element of the orthonormal basis of the subspace
|
||||
/// orthogonal to free family of vectors `vs`. If `vs` is not a free family, the result is
|
||||
/// unspecified.
|
||||
// FIXME: return an iterator instead when `-> impl Iterator` will be supported by Rust.
|
||||
#[inline]
|
||||
pub fn orthonormal_subspace_basis<F>(vs: &[Self], mut f: F)
|
||||
where
|
||||
F: FnMut(&Self) -> bool,
|
||||
{
|
||||
// FIXME: is this necessary?
|
||||
assert!(
|
||||
vs.len() <= D::dim(),
|
||||
"The given set of vectors has no chance of being a free family."
|
||||
);
|
||||
|
||||
match D::dim() {
|
||||
1 => {
|
||||
if vs.len() == 0 {
|
||||
let _ = f(&Self::canonical_basis_element(0));
|
||||
}
|
||||
}
|
||||
2 => {
|
||||
if vs.len() == 0 {
|
||||
let _ = f(&Self::canonical_basis_element(0))
|
||||
&& f(&Self::canonical_basis_element(1));
|
||||
} else if vs.len() == 1 {
|
||||
let v = &vs[0];
|
||||
let res = Self::from_column_slice(&[-v[1], v[0]]);
|
||||
|
||||
let _ = f(&res.normalize());
|
||||
}
|
||||
|
||||
// Otherwise, nothing.
|
||||
}
|
||||
3 => {
|
||||
if vs.len() == 0 {
|
||||
let _ = f(&Self::canonical_basis_element(0))
|
||||
&& f(&Self::canonical_basis_element(1))
|
||||
&& f(&Self::canonical_basis_element(2));
|
||||
} else if vs.len() == 1 {
|
||||
let v = &vs[0];
|
||||
let mut a;
|
||||
|
||||
if v[0].norm1() > v[1].norm1() {
|
||||
a = Self::from_column_slice(&[v[2], N::zero(), -v[0]]);
|
||||
} else {
|
||||
a = Self::from_column_slice(&[N::zero(), -v[2], v[1]]);
|
||||
};
|
||||
|
||||
let _ = a.normalize_mut();
|
||||
|
||||
if f(&a.cross(v)) {
|
||||
let _ = f(&a);
|
||||
}
|
||||
} else if vs.len() == 2 {
|
||||
let _ = f(&vs[0].cross(&vs[1]).normalize());
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
{
|
||||
// XXX: use a GenericArray instead.
|
||||
let mut known_basis = Vec::new();
|
||||
|
||||
for v in vs.iter() {
|
||||
known_basis.push(v.normalize())
|
||||
}
|
||||
|
||||
for i in 0..D::dim() - vs.len() {
|
||||
let mut elt = Self::canonical_basis_element(i);
|
||||
|
||||
for v in &known_basis {
|
||||
elt -= v * elt.dot(v)
|
||||
}
|
||||
|
||||
if let Some(subsp_elt) = elt.try_normalize(N::RealField::zero()) {
|
||||
if !f(&subsp_elt) {
|
||||
return;
|
||||
};
|
||||
|
||||
known_basis.push(subsp_elt);
|
||||
}
|
||||
}
|
||||
}
|
||||
#[cfg(all(not(feature = "std"), not(feature = "alloc")))]
|
||||
{
|
||||
panic!("Cannot compute the orthogonal subspace basis of a vector with a dimension greater than 3 \
|
||||
if #![no_std] is enabled and the 'alloc' feature is not enabled.")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
109
src/base/ops.rs
109
src/base/ops.rs
@ -1,11 +1,11 @@
|
||||
use num::{One, Signed, Zero};
|
||||
use std::cmp::{PartialOrd, Ordering};
|
||||
use num::{One, Zero};
|
||||
use std::iter;
|
||||
use std::ops::{
|
||||
Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
|
||||
};
|
||||
|
||||
use alga::general::{ComplexField, ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub};
|
||||
use simba::scalar::{ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub};
|
||||
use simba::simd::{SimdPartialOrd, SimdSigned};
|
||||
|
||||
use crate::base::allocator::{Allocator, SameShapeAllocator, SameShapeC, SameShapeR};
|
||||
use crate::base::constraint::{
|
||||
@ -14,6 +14,7 @@ use crate::base::constraint::{
|
||||
use crate::base::dimension::{Dim, DimMul, DimName, DimProd, Dynamic};
|
||||
use crate::base::storage::{ContiguousStorageMut, Storage, StorageMut};
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, MatrixSum, Scalar, VectorSliceN};
|
||||
use crate::SimdComplexField;
|
||||
|
||||
/*
|
||||
*
|
||||
@ -445,7 +446,9 @@ where
|
||||
/// # use nalgebra::DMatrix;
|
||||
/// iter::empty::<&DMatrix<f64>>().sum::<DMatrix<f64>>(); // panics!
|
||||
/// ```
|
||||
fn sum<I: Iterator<Item = &'a MatrixMN<N, Dynamic, C>>>(mut iter: I) -> MatrixMN<N, Dynamic, C> {
|
||||
fn sum<I: Iterator<Item = &'a MatrixMN<N, Dynamic, C>>>(
|
||||
mut iter: I,
|
||||
) -> MatrixMN<N, Dynamic, C> {
|
||||
if let Some(first) = iter.next() {
|
||||
iter.fold(first.clone(), |acc, x| acc + x)
|
||||
} else {
|
||||
@ -693,7 +696,7 @@ where
|
||||
#[inline]
|
||||
pub fn ad_mul<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<N, R2, C2, SB>) -> MatrixMN<N, C1, C2>
|
||||
where
|
||||
N: ComplexField,
|
||||
N: SimdComplexField,
|
||||
SB: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, C1, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2>,
|
||||
@ -710,7 +713,10 @@ where
|
||||
&self,
|
||||
rhs: &Matrix<N, R2, C2, SB>,
|
||||
out: &mut Matrix<N, R3, C3, SC>,
|
||||
dot: impl Fn(&VectorSliceN<N, R1, SA::RStride, SA::CStride>, &VectorSliceN<N, R2, SB::RStride, SB::CStride>) -> N,
|
||||
dot: impl Fn(
|
||||
&VectorSliceN<N, R1, SA::RStride, SA::CStride>,
|
||||
&VectorSliceN<N, R2, SB::RStride, SB::CStride>,
|
||||
) -> N,
|
||||
) where
|
||||
SB: Storage<N, R2, C2>,
|
||||
SC: StorageMut<N, R3, C3>,
|
||||
@ -760,7 +766,7 @@ where
|
||||
rhs: &Matrix<N, R2, C2, SB>,
|
||||
out: &mut Matrix<N, R3, C3, SC>,
|
||||
) where
|
||||
N: ComplexField,
|
||||
N: SimdComplexField,
|
||||
SB: Storage<N, R2, C2>,
|
||||
SC: StorageMut<N, R3, C3>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + DimEq<C1, R3> + DimEq<C2, C3>,
|
||||
@ -813,7 +819,8 @@ where
|
||||
let coeff = self.get_unchecked((i1, j1)).inlined_clone();
|
||||
|
||||
for i2 in 0..nrows2.value() {
|
||||
*data_res = coeff.inlined_clone() * rhs.get_unchecked((i2, j2)).inlined_clone();
|
||||
*data_res = coeff.inlined_clone()
|
||||
* rhs.get_unchecked((i2, j2)).inlined_clone();
|
||||
data_res = data_res.offset(1);
|
||||
}
|
||||
}
|
||||
@ -831,7 +838,9 @@ impl<N: Scalar + ClosedAdd, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C,
|
||||
#[inline]
|
||||
#[must_use = "Did you mean to use add_scalar_mut()?"]
|
||||
pub fn add_scalar(&self, rhs: N) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.add_scalar_mut(rhs);
|
||||
res
|
||||
@ -840,7 +849,9 @@ impl<N: Scalar + ClosedAdd, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C,
|
||||
/// Adds a scalar to `self` in-place.
|
||||
#[inline]
|
||||
pub fn add_scalar_mut(&mut self, rhs: N)
|
||||
where S: StorageMut<N, R, C> {
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
for e in self.iter_mut() {
|
||||
*e += rhs.inlined_clone()
|
||||
}
|
||||
@ -868,23 +879,6 @@ where
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
#[inline(always)]
|
||||
fn xcmp<N2>(&self, abs: impl Fn(N) -> N2, ordering: Ordering) -> N2
|
||||
where N2: Scalar + PartialOrd + Zero {
|
||||
let mut iter = self.iter();
|
||||
let mut max = iter.next().cloned().map_or(N2::zero(), &abs);
|
||||
|
||||
for e in iter {
|
||||
let ae = abs(e.inlined_clone());
|
||||
|
||||
if ae.partial_cmp(&max) == Some(ordering) {
|
||||
max = ae;
|
||||
}
|
||||
}
|
||||
|
||||
max
|
||||
}
|
||||
|
||||
/// Returns the absolute value of the component with the largest absolute value.
|
||||
/// # Example
|
||||
/// ```
|
||||
@ -894,8 +888,13 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn amax(&self) -> N
|
||||
where N: PartialOrd + Signed {
|
||||
self.xcmp(|e| e.abs(), Ordering::Greater)
|
||||
where
|
||||
N: Zero + SimdSigned + SimdPartialOrd,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.unwrap_or(&N::zero()).simd_abs(),
|
||||
|a, b| a.simd_max(b.simd_abs()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the the 1-norm of the complex component with the largest 1-norm.
|
||||
@ -908,9 +907,14 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Complex::new(1.0, 3.0)).camax(), 5.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn camax(&self) -> N::RealField
|
||||
where N: ComplexField {
|
||||
self.xcmp(|e| e.norm1(), Ordering::Greater)
|
||||
pub fn camax(&self) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.unwrap_or(&N::zero()).simd_norm1(),
|
||||
|a, b| a.simd_max(b.simd_norm1()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the component with the largest value.
|
||||
@ -923,8 +927,13 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn max(&self) -> N
|
||||
where N: PartialOrd + Zero {
|
||||
self.xcmp(|e| e, Ordering::Greater)
|
||||
where
|
||||
N: SimdPartialOrd + Zero,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.inlined_clone()).unwrap_or(N::zero()),
|
||||
|a, b| a.simd_max(b.inlined_clone()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the absolute value of the component with the smallest absolute value.
|
||||
@ -936,8 +945,13 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn amin(&self) -> N
|
||||
where N: PartialOrd + Signed {
|
||||
self.xcmp(|e| e.abs(), Ordering::Less)
|
||||
where
|
||||
N: Zero + SimdPartialOrd + SimdSigned,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.simd_abs()).unwrap_or(N::zero()),
|
||||
|a, b| a.simd_min(b.simd_abs()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the the 1-norm of the complex component with the smallest 1-norm.
|
||||
@ -950,9 +964,17 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Complex::new(1.0, 3.0)).camin(), 3.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn camin(&self) -> N::RealField
|
||||
where N: ComplexField {
|
||||
self.xcmp(|e| e.norm1(), Ordering::Less)
|
||||
pub fn camin(&self) -> N::SimdRealField
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| {
|
||||
e.map(|e| e.simd_norm1())
|
||||
.unwrap_or(N::SimdRealField::zero())
|
||||
},
|
||||
|a, b| a.simd_min(b.simd_norm1()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns the component with the smallest value.
|
||||
@ -965,7 +987,12 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn min(&self) -> N
|
||||
where N: PartialOrd + Zero {
|
||||
self.xcmp(|e| e, Ordering::Less)
|
||||
where
|
||||
N: SimdPartialOrd + Zero,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.inlined_clone()).unwrap_or(N::zero()),
|
||||
|a, b| a.simd_min(b.inlined_clone()),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
@ -2,7 +2,7 @@
|
||||
use approx::RelativeEq;
|
||||
use num::{One, Zero};
|
||||
|
||||
use alga::general::{ClosedAdd, ClosedMul, RealField, ComplexField};
|
||||
use simba::scalar::{ClosedAdd, ClosedMul, ComplexField, RealField};
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::{Dim, DimMin};
|
||||
@ -102,7 +102,8 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
|
||||
impl<N: RealField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Checks that this matrix is orthogonal and has a determinant equal to 1.
|
||||
#[inline]
|
||||
|
@ -1,21 +1,28 @@
|
||||
use crate::{Scalar, Dim, Matrix, VectorN, RowVectorN, DefaultAllocator, U1, VectorSliceN};
|
||||
use alga::general::{AdditiveMonoid, Field, SupersetOf};
|
||||
use crate::storage::Storage;
|
||||
use crate::allocator::Allocator;
|
||||
use crate::storage::Storage;
|
||||
use crate::{DefaultAllocator, Dim, Matrix, RowVectorN, Scalar, VectorN, VectorSliceN, U1};
|
||||
use num::Zero;
|
||||
use simba::scalar::{ClosedAdd, Field, SupersetOf};
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Returns a row vector where each element is the result of the application of `f` on the
|
||||
/// corresponding column of the original matrix.
|
||||
#[inline]
|
||||
pub fn compress_rows(&self, f: impl Fn(VectorSliceN<N, R, S::RStride, S::CStride>) -> N) -> RowVectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, U1, C> {
|
||||
|
||||
pub fn compress_rows(
|
||||
&self,
|
||||
f: impl Fn(VectorSliceN<N, R, S::RStride, S::CStride>) -> N,
|
||||
) -> RowVectorN<N, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, U1, C>,
|
||||
{
|
||||
let ncols = self.data.shape().1;
|
||||
let mut res = unsafe { RowVectorN::new_uninitialized_generic(U1, ncols) };
|
||||
|
||||
for i in 0..ncols.value() {
|
||||
// FIXME: avoid bound checking of column.
|
||||
unsafe { *res.get_unchecked_mut((0, i)) = f(self.column(i)); }
|
||||
unsafe {
|
||||
*res.get_unchecked_mut((0, i)) = f(self.column(i));
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
@ -26,15 +33,21 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
///
|
||||
/// This is the same as `self.compress_rows(f).transpose()`.
|
||||
#[inline]
|
||||
pub fn compress_rows_tr(&self, f: impl Fn(VectorSliceN<N, R, S::RStride, S::CStride>) -> N) -> VectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, C> {
|
||||
|
||||
pub fn compress_rows_tr(
|
||||
&self,
|
||||
f: impl Fn(VectorSliceN<N, R, S::RStride, S::CStride>) -> N,
|
||||
) -> VectorN<N, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C>,
|
||||
{
|
||||
let ncols = self.data.shape().1;
|
||||
let mut res = unsafe { VectorN::new_uninitialized_generic(ncols, U1) };
|
||||
|
||||
for i in 0..ncols.value() {
|
||||
// FIXME: avoid bound checking of column.
|
||||
unsafe { *res.vget_unchecked_mut(i) = f(self.column(i)); }
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(i) = f(self.column(i));
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
@ -42,8 +55,14 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
|
||||
/// Returns a column vector resulting from the folding of `f` on each column of this matrix.
|
||||
#[inline]
|
||||
pub fn compress_columns(&self, init: VectorN<N, R>, f: impl Fn(&mut VectorN<N, R>, VectorSliceN<N, R, S::RStride, S::CStride>)) -> VectorN<N, R>
|
||||
where DefaultAllocator: Allocator<N, R> {
|
||||
pub fn compress_columns(
|
||||
&self,
|
||||
init: VectorN<N, R>,
|
||||
f: impl Fn(&mut VectorN<N, R>, VectorSliceN<N, R, S::RStride, S::CStride>),
|
||||
) -> VectorN<N, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R>,
|
||||
{
|
||||
let mut res = init;
|
||||
|
||||
for i in 0..self.ncols() {
|
||||
@ -54,7 +73,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + AdditiveMonoid, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: Scalar + ClosedAdd + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/*
|
||||
*
|
||||
* Sum computation.
|
||||
@ -95,7 +114,9 @@ impl<N: Scalar + AdditiveMonoid, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N,
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn row_sum(&self) -> RowVectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, U1, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, U1, C>,
|
||||
{
|
||||
self.compress_rows(|col| col.sum())
|
||||
}
|
||||
|
||||
@ -116,7 +137,9 @@ impl<N: Scalar + AdditiveMonoid, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N,
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn row_sum_tr(&self) -> VectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C>,
|
||||
{
|
||||
self.compress_rows_tr(|col| col.sum())
|
||||
}
|
||||
|
||||
@ -137,7 +160,9 @@ impl<N: Scalar + AdditiveMonoid, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N,
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn column_sum(&self) -> VectorN<N, R>
|
||||
where DefaultAllocator: Allocator<N, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R>,
|
||||
{
|
||||
let nrows = self.data.shape().0;
|
||||
self.compress_columns(VectorN::zeros_generic(nrows, U1), |out, col| {
|
||||
*out += col;
|
||||
@ -168,7 +193,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
if self.len() == 0 {
|
||||
N::zero()
|
||||
} else {
|
||||
let val = self.iter().cloned().fold((N::zero(), N::zero()), |a, b| (a.0 + b.inlined_clone() * b.inlined_clone(), a.1 + b));
|
||||
let val = self.iter().cloned().fold((N::zero(), N::zero()), |a, b| {
|
||||
(a.0 + b.inlined_clone() * b.inlined_clone(), a.1 + b)
|
||||
});
|
||||
let denom = N::one() / crate::convert::<_, N>(self.len() as f64);
|
||||
let vd = val.1 * denom.inlined_clone();
|
||||
val.0 * denom - vd.inlined_clone() * vd
|
||||
@ -189,7 +216,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn row_variance(&self) -> RowVectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, U1, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, U1, C>,
|
||||
{
|
||||
self.compress_rows(|col| col.variance())
|
||||
}
|
||||
|
||||
@ -206,7 +235,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn row_variance_tr(&self) -> VectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C>,
|
||||
{
|
||||
self.compress_rows_tr(|col| col.variance())
|
||||
}
|
||||
|
||||
@ -224,7 +255,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn column_variance(&self) -> VectorN<N, R>
|
||||
where DefaultAllocator: Allocator<N, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
||||
let mut mean = self.column_mean();
|
||||
@ -235,7 +268,8 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
for i in 0..nrows.value() {
|
||||
unsafe {
|
||||
let val = col.vget_unchecked(i);
|
||||
*out.vget_unchecked_mut(i) += denom.inlined_clone() * val.inlined_clone() * val.inlined_clone()
|
||||
*out.vget_unchecked_mut(i) +=
|
||||
denom.inlined_clone() * val.inlined_clone() * val.inlined_clone()
|
||||
}
|
||||
}
|
||||
})
|
||||
@ -281,7 +315,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn row_mean(&self) -> RowVectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, U1, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, U1, C>,
|
||||
{
|
||||
self.compress_rows(|col| col.mean())
|
||||
}
|
||||
|
||||
@ -298,7 +334,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn row_mean_tr(&self) -> VectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C>,
|
||||
{
|
||||
self.compress_rows_tr(|col| col.mean())
|
||||
}
|
||||
|
||||
@ -315,7 +353,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn column_mean(&self) -> VectorN<N, R>
|
||||
where DefaultAllocator: Allocator<N, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
let denom = N::one() / crate::convert::<_, N>(ncols.value() as f64);
|
||||
self.compress_columns(VectorN::zeros_generic(nrows, U1), |out, col| {
|
||||
|
@ -94,22 +94,22 @@ pub unsafe trait Storage<N: Scalar, R: Dim, C: Dim = U1>: Debug + Sized {
|
||||
}
|
||||
|
||||
/// Indicates whether this data buffer stores its elements contiguously.
|
||||
#[inline]
|
||||
fn is_contiguous(&self) -> bool;
|
||||
|
||||
/// Retrieves the data buffer as a contiguous slice.
|
||||
///
|
||||
/// The matrix components may not be stored in a contiguous way, depending on the strides.
|
||||
#[inline]
|
||||
fn as_slice(&self) -> &[N];
|
||||
|
||||
/// Builds a matrix data storage that does not contain any reference.
|
||||
fn into_owned(self) -> Owned<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>;
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>;
|
||||
|
||||
/// Clones this data storage to one that does not contain any reference.
|
||||
fn clone_owned(&self) -> Owned<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>;
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>;
|
||||
}
|
||||
|
||||
/// Trait implemented by matrix data storage that can provide a mutable access to its elements.
|
||||
@ -166,7 +166,6 @@ pub unsafe trait StorageMut<N: Scalar, R: Dim, C: Dim = U1>: Storage<N, R, C> {
|
||||
/// Retrieves the mutable data buffer as a contiguous slice.
|
||||
///
|
||||
/// Matrix components may not be contiguous, depending on its strides.
|
||||
#[inline]
|
||||
fn as_mut_slice(&mut self) -> &mut [N];
|
||||
}
|
||||
|
||||
|
193
src/base/unit.rs
193
src/base/unit.rs
@ -1,8 +1,7 @@
|
||||
use approx::RelativeEq;
|
||||
#[cfg(feature = "abomonation-serialize")]
|
||||
use std::io::{Result as IOResult, Write};
|
||||
use std::mem;
|
||||
use std::ops::{Deref, Neg};
|
||||
use std::ops::Deref;
|
||||
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
||||
@ -10,8 +9,9 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
||||
#[cfg(feature = "abomonation-serialize")]
|
||||
use abomonation::Abomonation;
|
||||
|
||||
use alga::general::{SubsetOf, ComplexField};
|
||||
use alga::linear::NormedSpace;
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::DefaultAllocator;
|
||||
use crate::{Dim, MatrixMN, RealField, Scalar, SimdComplexField, SimdRealField};
|
||||
|
||||
/// A wrapper that ensures the underlying algebraic entity has a unit norm.
|
||||
///
|
||||
@ -19,13 +19,15 @@ use alga::linear::NormedSpace;
|
||||
#[repr(transparent)]
|
||||
#[derive(Eq, PartialEq, Clone, Hash, Debug, Copy)]
|
||||
pub struct Unit<T> {
|
||||
value: T,
|
||||
pub(crate) value: T,
|
||||
}
|
||||
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
impl<T: Serialize> Serialize for Unit<T> {
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where S: Serializer {
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
self.value.serialize(serializer)
|
||||
}
|
||||
}
|
||||
@ -33,7 +35,9 @@ impl<T: Serialize> Serialize for Unit<T> {
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Unit<T> {
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where D: Deserializer<'de> {
|
||||
where
|
||||
D: Deserializer<'de>,
|
||||
{
|
||||
T::deserialize(deserializer).map(|x| Unit { value: x })
|
||||
}
|
||||
}
|
||||
@ -53,60 +57,86 @@ impl<T: Abomonation> Abomonation for Unit<T> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: NormedSpace> Unit<T> {
|
||||
/// Normalize the given value and return it wrapped on a `Unit` structure.
|
||||
/// Trait implemented by entities scan be be normalized and put in an `Unit` struct.
|
||||
pub trait Normed {
|
||||
/// The type of the norm.
|
||||
type Norm: SimdRealField;
|
||||
/// Computes the norm.
|
||||
fn norm(&self) -> Self::Norm;
|
||||
/// Computes the squared norm.
|
||||
fn norm_squared(&self) -> Self::Norm;
|
||||
/// Multiply `self` by n.
|
||||
fn scale_mut(&mut self, n: Self::Norm);
|
||||
/// Divides `self` by n.
|
||||
fn unscale_mut(&mut self, n: Self::Norm);
|
||||
}
|
||||
|
||||
impl<T: Normed> Unit<T> {
|
||||
/// Normalize the given vector and return it wrapped on a `Unit` structure.
|
||||
#[inline]
|
||||
pub fn new_normalize(value: T) -> Self {
|
||||
Self::new_and_get(value).0
|
||||
}
|
||||
|
||||
/// Attempts to normalize the given value and return it wrapped on a `Unit` structure.
|
||||
/// Attempts to normalize the given vector and return it wrapped on a `Unit` structure.
|
||||
///
|
||||
/// Returns `None` if the norm was smaller or equal to `min_norm`.
|
||||
#[inline]
|
||||
pub fn try_new(value: T, min_norm: T::RealField) -> Option<Self> {
|
||||
pub fn try_new(value: T, min_norm: T::Norm) -> Option<Self>
|
||||
where
|
||||
T::Norm: RealField,
|
||||
{
|
||||
Self::try_new_and_get(value, min_norm).map(|res| res.0)
|
||||
}
|
||||
|
||||
/// Normalize the given value and return it wrapped on a `Unit` structure and its norm.
|
||||
/// Normalize the given vector and return it wrapped on a `Unit` structure and its norm.
|
||||
#[inline]
|
||||
pub fn new_and_get(mut value: T) -> (Self, T::RealField) {
|
||||
let n = value.normalize_mut();
|
||||
|
||||
(Unit { value: value }, n)
|
||||
pub fn new_and_get(mut value: T) -> (Self, T::Norm) {
|
||||
let n = value.norm();
|
||||
value.unscale_mut(n);
|
||||
(Unit { value }, n)
|
||||
}
|
||||
|
||||
/// Normalize the given value and return it wrapped on a `Unit` structure and its norm.
|
||||
/// Normalize the given vector and return it wrapped on a `Unit` structure and its norm.
|
||||
///
|
||||
/// Returns `None` if the norm was smaller or equal to `min_norm`.
|
||||
#[inline]
|
||||
pub fn try_new_and_get(mut value: T, min_norm: T::RealField) -> Option<(Self, T::RealField)> {
|
||||
if let Some(n) = value.try_normalize_mut(min_norm) {
|
||||
Some((Unit { value: value }, n))
|
||||
pub fn try_new_and_get(mut value: T, min_norm: T::Norm) -> Option<(Self, T::Norm)>
|
||||
where
|
||||
T::Norm: RealField,
|
||||
{
|
||||
let sq_norm = value.norm_squared();
|
||||
|
||||
if sq_norm > min_norm * min_norm {
|
||||
let n = sq_norm.simd_sqrt();
|
||||
value.unscale_mut(n);
|
||||
Some((Unit { value }, n))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Normalizes this value again. This is useful when repeated computations
|
||||
/// Normalizes this vector again. This is useful when repeated computations
|
||||
/// might cause a drift in the norm because of float inaccuracies.
|
||||
///
|
||||
/// Returns the norm before re-normalization. See `.renormalize_fast` for a faster alternative
|
||||
/// that may be slightly less accurate if `self` drifted significantly from having a unit length.
|
||||
#[inline]
|
||||
pub fn renormalize(&mut self) -> T::RealField {
|
||||
self.value.normalize_mut()
|
||||
pub fn renormalize(&mut self) -> T::Norm {
|
||||
let n = self.norm();
|
||||
self.value.unscale_mut(n);
|
||||
n
|
||||
}
|
||||
|
||||
/// Normalizes this value again using a first-order Taylor approximation.
|
||||
/// Normalizes this vector again using a first-order Taylor approximation.
|
||||
/// This is useful when repeated computations might cause a drift in the norm
|
||||
/// because of float inaccuracies.
|
||||
#[inline]
|
||||
pub fn renormalize_fast(&mut self) {
|
||||
let sq_norm = self.value.norm_squared();
|
||||
let _3: T::RealField = crate::convert(3.0);
|
||||
let _0_5: T::RealField = crate::convert(0.5);
|
||||
self.value *= T::ComplexField::from_real(_0_5 * (_3 - sq_norm));
|
||||
let _3: T::Norm = crate::convert(3.0);
|
||||
let _0_5: T::Norm = crate::convert(0.5);
|
||||
self.value.scale_mut(_0_5 * (_3 - sq_norm));
|
||||
}
|
||||
}
|
||||
|
||||
@ -114,7 +144,7 @@ impl<T> Unit<T> {
|
||||
/// Wraps the given value, assuming it is already normalized.
|
||||
#[inline]
|
||||
pub fn new_unchecked(value: T) -> Self {
|
||||
Unit { value: value }
|
||||
Unit { value }
|
||||
}
|
||||
|
||||
/// Wraps the given reference, assuming it is already normalized.
|
||||
@ -131,7 +161,7 @@ impl<T> Unit<T> {
|
||||
|
||||
/// Retrieves the underlying value.
|
||||
/// Deprecated: use [Unit::into_inner] instead.
|
||||
#[deprecated(note="use `.into_inner()` instead")]
|
||||
#[deprecated(note = "use `.into_inner()` instead")]
|
||||
#[inline]
|
||||
pub fn unwrap(self) -> T {
|
||||
self.value
|
||||
@ -153,13 +183,14 @@ impl<T> AsRef<T> for Unit<T> {
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
/*
|
||||
*
|
||||
* Conversions.
|
||||
*
|
||||
*/
|
||||
impl<T: NormedSpace> SubsetOf<T> for Unit<T>
|
||||
where T::Field: RelativeEq
|
||||
where T::RealField: RelativeEq
|
||||
{
|
||||
#[inline]
|
||||
fn to_superset(&self) -> T {
|
||||
@ -172,7 +203,7 @@ where T::Field: RelativeEq
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn from_superset_unchecked(value: &T) -> Self {
|
||||
fn from_superset_unchecked(value: &T) -> Self {
|
||||
Unit::new_normalize(value.clone()) // We still need to re-normalize because the condition is inexact.
|
||||
}
|
||||
}
|
||||
@ -205,7 +236,7 @@ where T::Field: RelativeEq
|
||||
// self.value.ulps_eq(&other.value, epsilon, max_ulps)
|
||||
// }
|
||||
// }
|
||||
|
||||
*/
|
||||
// FIXME:re-enable this impl when specialization is possible.
|
||||
// Currently, it is disabled so that we can have a nice output for the `UnitQuaternion` display.
|
||||
/*
|
||||
@ -217,15 +248,6 @@ impl<T: fmt::Display> fmt::Display for Unit<T> {
|
||||
}
|
||||
*/
|
||||
|
||||
impl<T: Neg> Neg for Unit<T> {
|
||||
type Output = Unit<T::Output>;
|
||||
|
||||
#[inline]
|
||||
fn neg(self) -> Self::Output {
|
||||
Self::Output::new_unchecked(-self.value)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Deref for Unit<T> {
|
||||
type Target = T;
|
||||
|
||||
@ -234,3 +256,92 @@ impl<T> Deref for Unit<T> {
|
||||
unsafe { mem::transmute(self) }
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: we can't use a generic implementation for `Unit<T>` because
|
||||
// num_complex::Complex does not implement `From[Complex<...>...]` (and can't
|
||||
// because of the orphan rules).
|
||||
impl<N: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
|
||||
From<[Unit<MatrixMN<N::Element, R, C>>; 2]> for Unit<MatrixMN<N, R, C>>
|
||||
where
|
||||
N: From<[<N as simba::simd::SimdValue>::Element; 2]>,
|
||||
N::Element: Scalar,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
#[inline]
|
||||
fn from(arr: [Unit<MatrixMN<N::Element, R, C>>; 2]) -> Self {
|
||||
Self::new_unchecked(MatrixMN::from([
|
||||
arr[0].clone().into_inner(),
|
||||
arr[1].clone().into_inner(),
|
||||
]))
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
|
||||
From<[Unit<MatrixMN<N::Element, R, C>>; 4]> for Unit<MatrixMN<N, R, C>>
|
||||
where
|
||||
N: From<[<N as simba::simd::SimdValue>::Element; 4]>,
|
||||
N::Element: Scalar,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
#[inline]
|
||||
fn from(arr: [Unit<MatrixMN<N::Element, R, C>>; 4]) -> Self {
|
||||
Self::new_unchecked(MatrixMN::from([
|
||||
arr[0].clone().into_inner(),
|
||||
arr[1].clone().into_inner(),
|
||||
arr[2].clone().into_inner(),
|
||||
arr[3].clone().into_inner(),
|
||||
]))
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
|
||||
From<[Unit<MatrixMN<N::Element, R, C>>; 8]> for Unit<MatrixMN<N, R, C>>
|
||||
where
|
||||
N: From<[<N as simba::simd::SimdValue>::Element; 8]>,
|
||||
N::Element: Scalar,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
#[inline]
|
||||
fn from(arr: [Unit<MatrixMN<N::Element, R, C>>; 8]) -> Self {
|
||||
Self::new_unchecked(MatrixMN::from([
|
||||
arr[0].clone().into_inner(),
|
||||
arr[1].clone().into_inner(),
|
||||
arr[2].clone().into_inner(),
|
||||
arr[3].clone().into_inner(),
|
||||
arr[4].clone().into_inner(),
|
||||
arr[5].clone().into_inner(),
|
||||
arr[6].clone().into_inner(),
|
||||
arr[7].clone().into_inner(),
|
||||
]))
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
|
||||
From<[Unit<MatrixMN<N::Element, R, C>>; 16]> for Unit<MatrixMN<N, R, C>>
|
||||
where
|
||||
N: From<[<N as simba::simd::SimdValue>::Element; 16]>,
|
||||
N::Element: Scalar,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
|
||||
{
|
||||
#[inline]
|
||||
fn from(arr: [Unit<MatrixMN<N::Element, R, C>>; 16]) -> Self {
|
||||
Self::new_unchecked(MatrixMN::from([
|
||||
arr[0].clone().into_inner(),
|
||||
arr[1].clone().into_inner(),
|
||||
arr[2].clone().into_inner(),
|
||||
arr[3].clone().into_inner(),
|
||||
arr[4].clone().into_inner(),
|
||||
arr[5].clone().into_inner(),
|
||||
arr[6].clone().into_inner(),
|
||||
arr[7].clone().into_inner(),
|
||||
arr[8].clone().into_inner(),
|
||||
arr[9].clone().into_inner(),
|
||||
arr[10].clone().into_inner(),
|
||||
arr[11].clone().into_inner(),
|
||||
arr[12].clone().into_inner(),
|
||||
arr[13].clone().into_inner(),
|
||||
arr[14].clone().into_inner(),
|
||||
arr[15].clone().into_inner(),
|
||||
]))
|
||||
}
|
||||
}
|
||||
|
@ -5,11 +5,11 @@ use std::io::{Result as IOResult, Write};
|
||||
use alloc::vec::Vec;
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
use crate::base::default_allocator::DefaultAllocator;
|
||||
use crate::base::dimension::{Dim, DimName, Dynamic, U1};
|
||||
use crate::base::storage::{ContiguousStorage, ContiguousStorageMut, Owned, Storage, StorageMut};
|
||||
use crate::base::{Scalar, Vector};
|
||||
use crate::base::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
|
||||
#[cfg(feature = "abomonation-serialize")]
|
||||
use abomonation::Abomonation;
|
||||
@ -29,7 +29,7 @@ pub struct VecStorage<N, R: Dim, C: Dim> {
|
||||
ncols: C,
|
||||
}
|
||||
|
||||
#[deprecated(note="renamed to `VecStorage`")]
|
||||
#[deprecated(note = "renamed to `VecStorage`")]
|
||||
/// Renamed to [VecStorage].
|
||||
pub type MatrixVec<N, R, C> = VecStorage<N, R, C>;
|
||||
|
||||
@ -89,8 +89,7 @@ impl<N, R: Dim, C: Dim> VecStorage<N, R, C> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N, R: Dim, C: Dim> Into<Vec<N>> for VecStorage<N, R, C>
|
||||
{
|
||||
impl<N, R: Dim, C: Dim> Into<Vec<N>> for VecStorage<N, R, C> {
|
||||
fn into(self) -> Vec<N> {
|
||||
self.data
|
||||
}
|
||||
@ -103,7 +102,8 @@ impl<N, R: Dim, C: Dim> Into<Vec<N>> for VecStorage<N, R, C>
|
||||
*
|
||||
*/
|
||||
unsafe impl<N: Scalar, C: Dim> Storage<N, Dynamic, C> for VecStorage<N, Dynamic, C>
|
||||
where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>,
|
||||
{
|
||||
type RStride = U1;
|
||||
type CStride = Dynamic;
|
||||
@ -130,13 +130,17 @@ where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
|
||||
#[inline]
|
||||
fn into_owned(self) -> Owned<N, Dynamic, C>
|
||||
where DefaultAllocator: Allocator<N, Dynamic, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C>,
|
||||
{
|
||||
self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn clone_owned(&self) -> Owned<N, Dynamic, C>
|
||||
where DefaultAllocator: Allocator<N, Dynamic, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C>,
|
||||
{
|
||||
self.clone()
|
||||
}
|
||||
|
||||
@ -147,7 +151,8 @@ where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
}
|
||||
|
||||
unsafe impl<N: Scalar, R: DimName> Storage<N, R, Dynamic> for VecStorage<N, R, Dynamic>
|
||||
where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>,
|
||||
{
|
||||
type RStride = U1;
|
||||
type CStride = R;
|
||||
@ -174,13 +179,17 @@ where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
|
||||
#[inline]
|
||||
fn into_owned(self) -> Owned<N, R, Dynamic>
|
||||
where DefaultAllocator: Allocator<N, R, Dynamic> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic>,
|
||||
{
|
||||
self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn clone_owned(&self) -> Owned<N, R, Dynamic>
|
||||
where DefaultAllocator: Allocator<N, R, Dynamic> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic>,
|
||||
{
|
||||
self.clone()
|
||||
}
|
||||
|
||||
@ -196,7 +205,8 @@ where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
*
|
||||
*/
|
||||
unsafe impl<N: Scalar, C: Dim> StorageMut<N, Dynamic, C> for VecStorage<N, Dynamic, C>
|
||||
where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>,
|
||||
{
|
||||
#[inline]
|
||||
fn ptr_mut(&mut self) -> *mut N {
|
||||
@ -209,14 +219,19 @@ where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl<N: Scalar, C: Dim> ContiguousStorage<N, Dynamic, C> for VecStorage<N, Dynamic, C> where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
{}
|
||||
unsafe impl<N: Scalar, C: Dim> ContiguousStorage<N, Dynamic, C> for VecStorage<N, Dynamic, C> where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
{
|
||||
}
|
||||
|
||||
unsafe impl<N: Scalar, C: Dim> ContiguousStorageMut<N, Dynamic, C> for VecStorage<N, Dynamic, C> where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
{}
|
||||
unsafe impl<N: Scalar, C: Dim> ContiguousStorageMut<N, Dynamic, C> for VecStorage<N, Dynamic, C> where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
{
|
||||
}
|
||||
|
||||
unsafe impl<N: Scalar, R: DimName> StorageMut<N, R, Dynamic> for VecStorage<N, R, Dynamic>
|
||||
where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>,
|
||||
{
|
||||
#[inline]
|
||||
fn ptr_mut(&mut self) -> *mut N {
|
||||
@ -244,14 +259,17 @@ impl<N: Abomonation, R: Dim, C: Dim> Abomonation for VecStorage<N, R, C> {
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl<N: Scalar, R: DimName> ContiguousStorage<N, R, Dynamic> for VecStorage<N, R, Dynamic> where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
{}
|
||||
|
||||
unsafe impl<N: Scalar, R: DimName> ContiguousStorageMut<N, R, Dynamic> for VecStorage<N, R, Dynamic> where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
{}
|
||||
|
||||
impl<N, R: Dim> Extend<N> for VecStorage<N, R, Dynamic>
|
||||
unsafe impl<N: Scalar, R: DimName> ContiguousStorage<N, R, Dynamic> for VecStorage<N, R, Dynamic> where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
{
|
||||
}
|
||||
|
||||
unsafe impl<N: Scalar, R: DimName> ContiguousStorageMut<N, R, Dynamic> for VecStorage<N, R, Dynamic> where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
{
|
||||
}
|
||||
|
||||
impl<N, R: Dim> Extend<N> for VecStorage<N, R, Dynamic> {
|
||||
/// Extends the number of columns of the `VecStorage` with elements
|
||||
/// from the given iterator.
|
||||
///
|
||||
@ -259,8 +277,7 @@ impl<N, R: Dim> Extend<N> for VecStorage<N, R, Dynamic>
|
||||
/// This function panics if the number of elements yielded by the
|
||||
/// given iterator is not a multiple of the number of rows of the
|
||||
/// `VecStorage`.
|
||||
fn extend<I: IntoIterator<Item=N>>(&mut self, iter: I)
|
||||
{
|
||||
fn extend<I: IntoIterator<Item = N>>(&mut self, iter: I) {
|
||||
self.data.extend(iter);
|
||||
self.ncols = Dynamic::new(self.data.len() / self.nrows.value());
|
||||
assert!(self.data.len() % self.nrows.value() == 0,
|
||||
@ -268,8 +285,7 @@ impl<N, R: Dim> Extend<N> for VecStorage<N, R, Dynamic>
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: 'a + Copy, R: Dim> Extend<&'a N> for VecStorage<N, R, Dynamic>
|
||||
{
|
||||
impl<'a, N: 'a + Copy, R: Dim> Extend<&'a N> for VecStorage<N, R, Dynamic> {
|
||||
/// Extends the number of columns of the `VecStorage` with elements
|
||||
/// from the given iterator.
|
||||
///
|
||||
@ -277,8 +293,7 @@ impl<'a, N: 'a + Copy, R: Dim> Extend<&'a N> for VecStorage<N, R, Dynamic>
|
||||
/// This function panics if the number of elements yielded by the
|
||||
/// given iterator is not a multiple of the number of rows of the
|
||||
/// `VecStorage`.
|
||||
fn extend<I: IntoIterator<Item=&'a N>>(&mut self, iter: I)
|
||||
{
|
||||
fn extend<I: IntoIterator<Item = &'a N>>(&mut self, iter: I) {
|
||||
self.extend(iter.into_iter().copied())
|
||||
}
|
||||
}
|
||||
@ -298,8 +313,7 @@ where
|
||||
/// This function panics if the number of rows of each `Vector`
|
||||
/// yielded by the iterator is not equal to the number of rows
|
||||
/// of this `VecStorage`.
|
||||
fn extend<I: IntoIterator<Item=Vector<N, RV, SV>>>(&mut self, iter: I)
|
||||
{
|
||||
fn extend<I: IntoIterator<Item = Vector<N, RV, SV>>>(&mut self, iter: I) {
|
||||
let nrows = self.nrows.value();
|
||||
let iter = iter.into_iter();
|
||||
let (lower, _upper) = iter.size_hint();
|
||||
@ -312,12 +326,10 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N> Extend<N> for VecStorage<N, Dynamic, U1>
|
||||
{
|
||||
impl<N> Extend<N> for VecStorage<N, Dynamic, U1> {
|
||||
/// Extends the number of rows of the `VecStorage` with elements
|
||||
/// from the given iterator.
|
||||
fn extend<I: IntoIterator<Item=N>>(&mut self, iter: I)
|
||||
{
|
||||
fn extend<I: IntoIterator<Item = N>>(&mut self, iter: I) {
|
||||
self.data.extend(iter);
|
||||
self.nrows = Dynamic::new(self.data.len());
|
||||
}
|
||||
|
@ -3,23 +3,25 @@ use crate::base::storage::Owned;
|
||||
#[cfg(feature = "arbitrary")]
|
||||
use quickcheck::{Arbitrary, Gen};
|
||||
|
||||
use alga::general::ComplexField;
|
||||
use crate::base::Scalar;
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::{Dim, Dynamic, U2};
|
||||
use crate::base::Scalar;
|
||||
use crate::base::{DefaultAllocator, MatrixN};
|
||||
use crate::linalg::givens::GivensRotation;
|
||||
use simba::scalar::ComplexField;
|
||||
|
||||
/// A random orthogonal matrix.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct RandomOrthogonal<N: Scalar, D: Dim = Dynamic>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
m: MatrixN<N, D>,
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: Dim> RandomOrthogonal<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Retrieve the generated matrix.
|
||||
pub fn unwrap(self) -> MatrixN<N, D> {
|
||||
|
@ -3,24 +3,26 @@ use crate::base::storage::Owned;
|
||||
#[cfg(feature = "arbitrary")]
|
||||
use quickcheck::{Arbitrary, Gen};
|
||||
|
||||
use alga::general::ComplexField;
|
||||
use crate::base::Scalar;
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::{Dim, Dynamic};
|
||||
use crate::base::Scalar;
|
||||
use crate::base::{DefaultAllocator, MatrixN};
|
||||
use simba::scalar::ComplexField;
|
||||
|
||||
use crate::debug::RandomOrthogonal;
|
||||
|
||||
/// A random, well-conditioned, symmetric definite-positive matrix.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct RandomSDP<N: Scalar, D: Dim = Dynamic>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
m: MatrixN<N, D>,
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: Dim> RandomSDP<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Retrieve the generated matrix.
|
||||
pub fn unwrap(self) -> MatrixN<N, D> {
|
||||
|
164
src/geometry/abstract_rotation.rs
Normal file
164
src/geometry/abstract_rotation.rs
Normal file
@ -0,0 +1,164 @@
|
||||
use crate::allocator::Allocator;
|
||||
use crate::geometry::{Rotation, UnitComplex, UnitQuaternion};
|
||||
use crate::{DefaultAllocator, DimName, Point, Scalar, SimdRealField, VectorN, U2, U3};
|
||||
|
||||
use simba::scalar::ClosedMul;
|
||||
|
||||
/// Trait implemented by rotations that can be used inside of an `Isometry` or `Similarity`.
|
||||
pub trait AbstractRotation<N: Scalar, D: DimName>: PartialEq + ClosedMul + Clone {
|
||||
/// The rotation identity.
|
||||
fn identity() -> Self;
|
||||
/// The rotation inverse.
|
||||
fn inverse(&self) -> Self;
|
||||
/// Change `self` to its inverse.
|
||||
fn inverse_mut(&mut self);
|
||||
/// Apply the rotation to the given vector.
|
||||
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>;
|
||||
/// Apply the rotation to the given point.
|
||||
fn transform_point(&self, p: &Point<N, D>) -> Point<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>;
|
||||
/// Apply the inverse rotation to the given vector.
|
||||
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>;
|
||||
/// Apply the inverse rotation to the given point.
|
||||
fn inverse_transform_point(&self, p: &Point<N, D>) -> Point<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>;
|
||||
}
|
||||
|
||||
impl<N: SimdRealField, D: DimName> AbstractRotation<N, D> for Rotation<N, D>
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn identity() -> Self {
|
||||
Self::identity()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse(&self) -> Self {
|
||||
self.inverse()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) {
|
||||
self.inverse_mut()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
self * v
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn transform_point(&self, p: &Point<N, D>) -> Point<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
self * p
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
self.inverse_transform_vector(v)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_transform_point(&self, p: &Point<N, D>) -> Point<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
self.inverse_transform_point(p)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: SimdRealField> AbstractRotation<N, U3> for UnitQuaternion<N>
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
#[inline]
|
||||
fn identity() -> Self {
|
||||
Self::identity()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse(&self) -> Self {
|
||||
self.inverse()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) {
|
||||
self.inverse_mut()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn transform_vector(&self, v: &VectorN<N, U3>) -> VectorN<N, U3> {
|
||||
self * v
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn transform_point(&self, p: &Point<N, U3>) -> Point<N, U3> {
|
||||
self * p
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_transform_vector(&self, v: &VectorN<N, U3>) -> VectorN<N, U3> {
|
||||
self.inverse_transform_vector(v)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_transform_point(&self, p: &Point<N, U3>) -> Point<N, U3> {
|
||||
self.inverse_transform_point(p)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: SimdRealField> AbstractRotation<N, U2> for UnitComplex<N>
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
#[inline]
|
||||
fn identity() -> Self {
|
||||
Self::identity()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse(&self) -> Self {
|
||||
self.inverse()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) {
|
||||
self.inverse_mut()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn transform_vector(&self, v: &VectorN<N, U2>) -> VectorN<N, U2> {
|
||||
self * v
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn transform_point(&self, p: &Point<N, U2>) -> Point<N, U2> {
|
||||
self * p
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_transform_vector(&self, v: &VectorN<N, U2>) -> VectorN<N, U2> {
|
||||
self.inverse_transform_vector(v)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_transform_point(&self, p: &Point<N, U2>) -> Point<N, U2> {
|
||||
self.inverse_transform_point(p)
|
||||
}
|
||||
}
|
@ -3,7 +3,6 @@ use std::fmt;
|
||||
use std::hash;
|
||||
#[cfg(feature = "abomonation-serialize")]
|
||||
use std::io::{Result as IOResult, Write};
|
||||
use std::marker::PhantomData;
|
||||
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
use serde::{Deserialize, Serialize};
|
||||
@ -11,14 +10,14 @@ use serde::{Deserialize, Serialize};
|
||||
#[cfg(feature = "abomonation-serialize")]
|
||||
use abomonation::Abomonation;
|
||||
|
||||
use alga::general::{RealField, SubsetOf};
|
||||
use alga::linear::Rotation;
|
||||
use simba::scalar::{RealField, SubsetOf};
|
||||
use simba::simd::SimdRealField;
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
|
||||
use crate::base::storage::Owned;
|
||||
use crate::base::{DefaultAllocator, MatrixN, VectorN};
|
||||
use crate::geometry::{Point, Translation};
|
||||
use crate::base::{DefaultAllocator, MatrixN, Scalar, VectorN};
|
||||
use crate::geometry::{AbstractRotation, Point, Translation};
|
||||
|
||||
/// A direct isometry, i.e., a rotation followed by a translation, aka. a rigid-body motion, aka. an element of a Special Euclidean (SE) group.
|
||||
#[repr(C)]
|
||||
@ -36,26 +35,20 @@ use crate::geometry::{Point, Translation};
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
Owned<N, D>: Deserialize<'de>"))
|
||||
)]
|
||||
pub struct Isometry<N: RealField, D: DimName, R>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
pub struct Isometry<N: Scalar, D: DimName, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// The pure rotational part of this isometry.
|
||||
pub rotation: R,
|
||||
/// The pure translational part of this isometry.
|
||||
pub translation: Translation<N, D>,
|
||||
|
||||
// One dummy private field just to prevent explicit construction.
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(skip_serializing, skip_deserializing)
|
||||
)]
|
||||
_noconstruct: PhantomData<N>,
|
||||
}
|
||||
|
||||
#[cfg(feature = "abomonation-serialize")]
|
||||
impl<N, D, R> Abomonation for Isometry<N, D, R>
|
||||
where
|
||||
N: RealField,
|
||||
N: SimdRealField,
|
||||
D: DimName,
|
||||
R: Abomonation,
|
||||
Translation<N, D>: Abomonation,
|
||||
@ -77,7 +70,8 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField + hash::Hash, D: DimName + hash::Hash, R: hash::Hash> hash::Hash for Isometry<N, D, R>
|
||||
impl<N: Scalar + hash::Hash, D: DimName + hash::Hash, R: hash::Hash> hash::Hash
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
Owned<N, D>: hash::Hash,
|
||||
@ -88,15 +82,17 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimName + Copy, R: Rotation<Point<N, D>> + Copy> Copy for Isometry<N, D, R>
|
||||
impl<N: Scalar + Copy, D: DimName + Copy, R: AbstractRotation<N, D> + Copy> Copy
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
Owned<N, D>: Copy,
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimName, R: Rotation<Point<N, D>> + Clone> Clone for Isometry<N, D, R>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
impl<N: Scalar, D: DimName, R: AbstractRotation<N, D> + Clone> Clone for Isometry<N, D, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn clone(&self) -> Self {
|
||||
@ -104,8 +100,9 @@ where DefaultAllocator: Allocator<N, D>
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimName, R: Rotation<Point<N, D>>> Isometry<N, D, R>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
impl<N: Scalar, D: DimName, R: AbstractRotation<N, D>> Isometry<N, D, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// Creates a new isometry from its rotational and translational parts.
|
||||
///
|
||||
@ -124,12 +121,17 @@ where DefaultAllocator: Allocator<N, D>
|
||||
#[inline]
|
||||
pub fn from_parts(translation: Translation<N, D>, rotation: R) -> Self {
|
||||
Self {
|
||||
rotation: rotation,
|
||||
translation: translation,
|
||||
_noconstruct: PhantomData,
|
||||
rotation,
|
||||
translation,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: SimdRealField, D: DimName, R: AbstractRotation<N, D>> Isometry<N, D, R>
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// Inverts `self`.
|
||||
///
|
||||
/// # Example
|
||||
@ -167,7 +169,7 @@ where DefaultAllocator: Allocator<N, D>
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn inverse_mut(&mut self) {
|
||||
self.rotation.two_sided_inverse_mut();
|
||||
self.rotation.inverse_mut();
|
||||
self.translation.inverse_mut();
|
||||
self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
|
||||
}
|
||||
@ -208,7 +210,7 @@ where DefaultAllocator: Allocator<N, D>
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn append_rotation_mut(&mut self, r: &R) {
|
||||
self.rotation = self.rotation.append_rotation(&r);
|
||||
self.rotation = r.clone() * self.rotation.clone();
|
||||
self.translation.vector = r.transform_vector(&self.translation.vector);
|
||||
}
|
||||
|
||||
@ -253,7 +255,7 @@ where DefaultAllocator: Allocator<N, D>
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
|
||||
self.rotation = self.rotation.append_rotation(r);
|
||||
self.rotation = r.clone() * self.rotation.clone();
|
||||
}
|
||||
|
||||
/// Transform the given point by this isometry.
|
||||
@ -352,8 +354,9 @@ where DefaultAllocator: Allocator<N, D>
|
||||
// and makes it hard to use it, e.g., for Transform × Isometry implementation.
|
||||
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
|
||||
// explicit struct construction is prevented by the dummy ZST field).
|
||||
impl<N: RealField, D: DimName, R> Isometry<N, D, R>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
impl<N: SimdRealField, D: DimName, R> Isometry<N, D, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// Converts this isometry into its equivalent homogeneous transformation matrix.
|
||||
///
|
||||
@ -385,16 +388,16 @@ where DefaultAllocator: Allocator<N, D>
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimName, R> Eq for Isometry<N, D, R>
|
||||
impl<N: SimdRealField, D: DimName, R> Eq for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>> + Eq,
|
||||
R: AbstractRotation<N, D> + Eq,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimName, R> PartialEq for Isometry<N, D, R>
|
||||
impl<N: SimdRealField, D: DimName, R> PartialEq for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>> + PartialEq,
|
||||
R: AbstractRotation<N, D> + PartialEq,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
@ -405,7 +408,7 @@ where
|
||||
|
||||
impl<N: RealField, D: DimName, R> AbsDiffEq for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>> + AbsDiffEq<Epsilon = N::Epsilon>,
|
||||
R: AbstractRotation<N, D> + AbsDiffEq<Epsilon = N::Epsilon>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
N::Epsilon: Copy,
|
||||
{
|
||||
@ -425,7 +428,7 @@ where
|
||||
|
||||
impl<N: RealField, D: DimName, R> RelativeEq for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>> + RelativeEq<Epsilon = N::Epsilon>,
|
||||
R: AbstractRotation<N, D> + RelativeEq<Epsilon = N::Epsilon>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
N::Epsilon: Copy,
|
||||
{
|
||||
@ -440,8 +443,7 @@ where
|
||||
other: &Self,
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool
|
||||
{
|
||||
) -> bool {
|
||||
self.translation
|
||||
.relative_eq(&other.translation, epsilon, max_relative)
|
||||
&& self
|
||||
@ -452,7 +454,7 @@ where
|
||||
|
||||
impl<N: RealField, D: DimName, R> UlpsEq for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>> + UlpsEq<Epsilon = N::Epsilon>,
|
||||
R: AbstractRotation<N, D> + UlpsEq<Epsilon = N::Epsilon>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
N::Epsilon: Copy,
|
||||
{
|
||||
|
@ -1,6 +1,6 @@
|
||||
use alga::general::{
|
||||
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
|
||||
AbstractSemigroup, Id, Identity, TwoSidedInverse, Multiplicative, RealField,
|
||||
AbstractSemigroup, Id, Identity, Multiplicative, RealField, TwoSidedInverse,
|
||||
};
|
||||
use alga::linear::Isometry as AlgaIsometry;
|
||||
use alga::linear::{
|
||||
@ -12,16 +12,17 @@ use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::DimName;
|
||||
use crate::base::{DefaultAllocator, VectorN};
|
||||
|
||||
use crate::geometry::{Isometry, Point, Translation};
|
||||
use crate::geometry::{AbstractRotation, Isometry, Point, Translation};
|
||||
|
||||
/*
|
||||
*
|
||||
* Algebraic structures.
|
||||
*
|
||||
*/
|
||||
impl<N: RealField, D: DimName, R> Identity<Multiplicative> for Isometry<N, D, R>
|
||||
impl<N: RealField + simba::scalar::RealField, D: DimName, R> Identity<Multiplicative>
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>>,
|
||||
R: Rotation<Point<N, D>> + AbstractRotation<N, D>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
@ -30,9 +31,10 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimName, R> TwoSidedInverse<Multiplicative> for Isometry<N, D, R>
|
||||
impl<N: RealField + simba::scalar::RealField, D: DimName, R> TwoSidedInverse<Multiplicative>
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>>,
|
||||
R: Rotation<Point<N, D>> + AbstractRotation<N, D>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
@ -47,9 +49,10 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimName, R> AbstractMagma<Multiplicative> for Isometry<N, D, R>
|
||||
impl<N: RealField + simba::scalar::RealField, D: DimName, R> AbstractMagma<Multiplicative>
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>>,
|
||||
R: Rotation<Point<N, D>> + AbstractRotation<N, D>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
@ -60,8 +63,8 @@ where
|
||||
|
||||
macro_rules! impl_multiplicative_structures(
|
||||
($($marker: ident<$operator: ident>),* $(,)*) => {$(
|
||||
impl<N: RealField, D: DimName, R> $marker<$operator> for Isometry<N, D, R>
|
||||
where R: Rotation<Point<N, D>>,
|
||||
impl<N: RealField + simba::scalar::RealField, D: DimName, R> $marker<$operator> for Isometry<N, D, R>
|
||||
where R: Rotation<Point<N, D>> + AbstractRotation<N, D>,
|
||||
DefaultAllocator: Allocator<N, D> { }
|
||||
)*}
|
||||
);
|
||||
@ -79,9 +82,10 @@ impl_multiplicative_structures!(
|
||||
* Transformation groups.
|
||||
*
|
||||
*/
|
||||
impl<N: RealField, D: DimName, R> Transformation<Point<N, D>> for Isometry<N, D, R>
|
||||
impl<N: RealField + simba::scalar::RealField, D: DimName, R> Transformation<Point<N, D>>
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>>,
|
||||
R: Rotation<Point<N, D>> + AbstractRotation<N, D>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
@ -95,9 +99,10 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Isometry<N, D, R>
|
||||
impl<N: RealField + simba::scalar::RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>>
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>>,
|
||||
R: Rotation<Point<N, D>> + AbstractRotation<N, D>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
@ -111,9 +116,10 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimName, R> AffineTransformation<Point<N, D>> for Isometry<N, D, R>
|
||||
impl<N: RealField + simba::scalar::RealField, D: DimName, R> AffineTransformation<Point<N, D>>
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>>,
|
||||
R: Rotation<Point<N, D>> + AbstractRotation<N, D>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
type Rotation = R;
|
||||
@ -126,7 +132,7 @@ where
|
||||
self.translation.clone(),
|
||||
self.rotation.clone(),
|
||||
Id::new(),
|
||||
R::identity(),
|
||||
<R as AbstractRotation<N, D>>::identity(),
|
||||
)
|
||||
}
|
||||
|
||||
@ -142,13 +148,13 @@ where
|
||||
|
||||
#[inline]
|
||||
fn append_rotation(&self, r: &Self::Rotation) -> Self {
|
||||
let shift = r.transform_vector(&self.translation.vector);
|
||||
let shift = Transformation::transform_vector(r, &self.translation.vector);
|
||||
Isometry::from_parts(Translation::from(shift), r.clone() * self.rotation.clone())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_rotation(&self, r: &Self::Rotation) -> Self {
|
||||
self * r
|
||||
Isometry::from_parts(self.translation.clone(), self.rotation.prepend_rotation(r))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -169,9 +175,10 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimName, R> Similarity<Point<N, D>> for Isometry<N, D, R>
|
||||
impl<N: RealField + simba::scalar::RealField, D: DimName, R> Similarity<Point<N, D>>
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>>,
|
||||
R: Rotation<Point<N, D>> + AbstractRotation<N, D>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
type Scaling = Id;
|
||||
@ -194,8 +201,8 @@ where
|
||||
|
||||
macro_rules! marker_impl(
|
||||
($($Trait: ident),*) => {$(
|
||||
impl<N: RealField, D: DimName, R> $Trait<Point<N, D>> for Isometry<N, D, R>
|
||||
where R: Rotation<Point<N, D>>,
|
||||
impl<N: RealField + simba::scalar::RealField, D: DimName, R> $Trait<Point<N, D>> for Isometry<N, D, R>
|
||||
where R: Rotation<Point<N, D>> + AbstractRotation<N, D>,
|
||||
DefaultAllocator: Allocator<N, D> { }
|
||||
)*}
|
||||
);
|
||||
|
@ -7,20 +7,22 @@ use num::One;
|
||||
use rand::distributions::{Distribution, Standard};
|
||||
use rand::Rng;
|
||||
|
||||
use alga::general::RealField;
|
||||
use alga::linear::Rotation as AlgaRotation;
|
||||
use simba::scalar::RealField;
|
||||
use simba::simd::SimdRealField;
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::{DimName, U2, U3};
|
||||
use crate::base::{DefaultAllocator, Vector2, Vector3};
|
||||
|
||||
use crate::geometry::{
|
||||
Isometry, Point, Point3, Rotation, Rotation2, Rotation3, Translation, UnitComplex,
|
||||
UnitQuaternion, Translation2, Translation3
|
||||
AbstractRotation, Isometry, Point, Point3, Rotation, Rotation2, Rotation3, Translation,
|
||||
Translation2, Translation3, UnitComplex, UnitQuaternion,
|
||||
};
|
||||
|
||||
impl<N: RealField, D: DimName, R: AlgaRotation<Point<N, D>>> Isometry<N, D, R>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
impl<N: SimdRealField, D: DimName, R: AbstractRotation<N, D>> Isometry<N, D, R>
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// Creates a new identity isometry.
|
||||
///
|
||||
@ -65,8 +67,10 @@ where DefaultAllocator: Allocator<N, D>
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimName, R: AlgaRotation<Point<N, D>>> One for Isometry<N, D, R>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
impl<N: SimdRealField, D: DimName, R: AbstractRotation<N, D>> One for Isometry<N, D, R>
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// Creates a new identity isometry.
|
||||
#[inline]
|
||||
@ -77,7 +81,7 @@ where DefaultAllocator: Allocator<N, D>
|
||||
|
||||
impl<N: RealField, D: DimName, R> Distribution<Isometry<N, D, R>> for Standard
|
||||
where
|
||||
R: AlgaRotation<Point<N, D>>,
|
||||
R: AbstractRotation<N, D>,
|
||||
Standard: Distribution<N> + Distribution<R>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
@ -90,8 +94,9 @@ where
|
||||
#[cfg(feature = "arbitrary")]
|
||||
impl<N, D: DimName, R> Arbitrary for Isometry<N, D, R>
|
||||
where
|
||||
N: RealField + Arbitrary + Send,
|
||||
R: AlgaRotation<Point<N, D>> + Arbitrary + Send,
|
||||
N: SimdRealField + Arbitrary + Send,
|
||||
N::Element: SimdRealField,
|
||||
R: AbstractRotation<N, D> + Arbitrary + Send,
|
||||
Owned<N, D>: Send,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
@ -108,7 +113,10 @@ where
|
||||
*/
|
||||
|
||||
// 2D rotation.
|
||||
impl<N: RealField> Isometry<N, U2, Rotation2<N>> {
|
||||
impl<N: SimdRealField> Isometry<N, U2, Rotation2<N>>
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
/// Creates a new 2D isometry from a translation and a rotation angle.
|
||||
///
|
||||
/// Its rotational part is represented as a 2x2 rotation matrix.
|
||||
@ -143,7 +151,10 @@ impl<N: RealField> Isometry<N, U2, Rotation2<N>> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField> Isometry<N, U2, UnitComplex<N>> {
|
||||
impl<N: SimdRealField> Isometry<N, U2, UnitComplex<N>>
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
/// Creates a new 2D isometry from a translation and a rotation angle.
|
||||
///
|
||||
/// Its rotational part is represented as an unit complex number.
|
||||
@ -181,7 +192,8 @@ impl<N: RealField> Isometry<N, U2, UnitComplex<N>> {
|
||||
// 3D rotation.
|
||||
macro_rules! isometry_construction_impl(
|
||||
($RotId: ident < $($RotParams: ident),*>, $RRDim: ty, $RCDim: ty) => {
|
||||
impl<N: RealField> Isometry<N, U3, $RotId<$($RotParams),*>> {
|
||||
impl<N: SimdRealField> Isometry<N, U3, $RotId<$($RotParams),*>>
|
||||
where N::Element: SimdRealField {
|
||||
/// Creates a new isometry from a translation and a rotation axis-angle.
|
||||
///
|
||||
/// # Example
|
||||
|
@ -1,11 +1,13 @@
|
||||
use alga::general::{RealField, SubsetOf, SupersetOf};
|
||||
use alga::linear::Rotation;
|
||||
use simba::scalar::{RealField, SubsetOf, SupersetOf};
|
||||
use simba::simd::{PrimitiveSimdValue, SimdRealField, SimdValue};
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::{DimMin, DimName, DimNameAdd, DimNameSum, U1};
|
||||
use crate::base::{DefaultAllocator, MatrixN};
|
||||
use crate::base::{DefaultAllocator, MatrixN, Scalar};
|
||||
|
||||
use crate::geometry::{Isometry, Point, Similarity, SuperTCategoryOf, TAffine, Transform, Translation};
|
||||
use crate::geometry::{
|
||||
AbstractRotation, Isometry, Similarity, SuperTCategoryOf, TAffine, Transform, Translation,
|
||||
};
|
||||
|
||||
/*
|
||||
* This file provides the following conversions:
|
||||
@ -21,8 +23,8 @@ impl<N1, N2, D: DimName, R1, R2> SubsetOf<Isometry<N2, D, R2>> for Isometry<N1,
|
||||
where
|
||||
N1: RealField,
|
||||
N2: RealField + SupersetOf<N1>,
|
||||
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
|
||||
R2: Rotation<Point<N2, D>>,
|
||||
R1: AbstractRotation<N1, D> + SubsetOf<R2>,
|
||||
R2: AbstractRotation<N2, D>,
|
||||
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
|
||||
{
|
||||
#[inline]
|
||||
@ -37,7 +39,7 @@ where
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R2>) -> Self {
|
||||
fn from_superset_unchecked(iso: &Isometry<N2, D, R2>) -> Self {
|
||||
Isometry::from_parts(
|
||||
iso.translation.to_subset_unchecked(),
|
||||
iso.rotation.to_subset_unchecked(),
|
||||
@ -49,8 +51,8 @@ impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Isometry<N1
|
||||
where
|
||||
N1: RealField,
|
||||
N2: RealField + SupersetOf<N1>,
|
||||
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
|
||||
R2: Rotation<Point<N2, D>>,
|
||||
R1: AbstractRotation<N1, D> + SubsetOf<R2>,
|
||||
R2: AbstractRotation<N2, D>,
|
||||
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
|
||||
{
|
||||
#[inline]
|
||||
@ -64,7 +66,7 @@ where
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self {
|
||||
fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self {
|
||||
crate::convert_ref_unchecked(&sim.isometry)
|
||||
}
|
||||
}
|
||||
@ -74,7 +76,7 @@ where
|
||||
N1: RealField,
|
||||
N2: RealField + SupersetOf<N1>,
|
||||
C: SuperTCategoryOf<TAffine>,
|
||||
R: Rotation<Point<N1, D>>
|
||||
R: AbstractRotation<N1, D>
|
||||
+ SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
|
||||
+ SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
|
||||
D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .is_special_orthogonal()
|
||||
@ -98,7 +100,7 @@ where
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
|
||||
fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
|
||||
Self::from_superset_unchecked(t.matrix())
|
||||
}
|
||||
}
|
||||
@ -107,7 +109,7 @@ impl<N1, N2, D, R> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Isometry<N1, D,
|
||||
where
|
||||
N1: RealField,
|
||||
N2: RealField + SupersetOf<N1>,
|
||||
R: Rotation<Point<N1, D>>
|
||||
R: AbstractRotation<N1, D>
|
||||
+ SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
|
||||
+ SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
|
||||
D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .is_special_orthogonal()
|
||||
@ -139,7 +141,7 @@ where
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
|
||||
fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
|
||||
let t = m.fixed_slice::<D, U1>(0, D::dim()).into_owned();
|
||||
let t = Translation {
|
||||
vector: crate::convert_unchecked(t),
|
||||
@ -149,7 +151,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimName, R> From<Isometry<N, D, R>> for MatrixN<N, DimNameSum<D, U1>>
|
||||
impl<N: SimdRealField, D: DimName, R> From<Isometry<N, D, R>> for MatrixN<N, DimNameSum<D, U1>>
|
||||
where
|
||||
D: DimNameAdd<U1>,
|
||||
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
|
||||
@ -160,3 +162,141 @@ where
|
||||
iso.to_homogeneous()
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + PrimitiveSimdValue, D: DimName, R> From<[Isometry<N::Element, D, R::Element>; 2]>
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
N: From<[<N as SimdValue>::Element; 2]>,
|
||||
R: SimdValue + AbstractRotation<N, D> + From<[<R as SimdValue>::Element; 2]>,
|
||||
R::Element: AbstractRotation<N::Element, D>,
|
||||
N::Element: Scalar + Copy,
|
||||
R::Element: Scalar + Copy,
|
||||
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn from(arr: [Isometry<N::Element, D, R::Element>; 2]) -> Self {
|
||||
let tra = Translation::from([arr[0].translation.clone(), arr[1].translation.clone()]);
|
||||
let rot = R::from([arr[0].rotation.clone(), arr[0].rotation.clone()]);
|
||||
|
||||
Self::from_parts(tra, rot)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + PrimitiveSimdValue, D: DimName, R> From<[Isometry<N::Element, D, R::Element>; 4]>
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
N: From<[<N as SimdValue>::Element; 4]>,
|
||||
R: SimdValue + AbstractRotation<N, D> + From<[<R as SimdValue>::Element; 4]>,
|
||||
R::Element: AbstractRotation<N::Element, D>,
|
||||
N::Element: Scalar + Copy,
|
||||
R::Element: Scalar + Copy,
|
||||
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn from(arr: [Isometry<N::Element, D, R::Element>; 4]) -> Self {
|
||||
let tra = Translation::from([
|
||||
arr[0].translation.clone(),
|
||||
arr[1].translation.clone(),
|
||||
arr[2].translation.clone(),
|
||||
arr[3].translation.clone(),
|
||||
]);
|
||||
let rot = R::from([
|
||||
arr[0].rotation.clone(),
|
||||
arr[1].rotation.clone(),
|
||||
arr[2].rotation.clone(),
|
||||
arr[3].rotation.clone(),
|
||||
]);
|
||||
|
||||
Self::from_parts(tra, rot)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + PrimitiveSimdValue, D: DimName, R> From<[Isometry<N::Element, D, R::Element>; 8]>
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
N: From<[<N as SimdValue>::Element; 8]>,
|
||||
R: SimdValue + AbstractRotation<N, D> + From<[<R as SimdValue>::Element; 8]>,
|
||||
R::Element: AbstractRotation<N::Element, D>,
|
||||
N::Element: Scalar + Copy,
|
||||
R::Element: Scalar + Copy,
|
||||
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn from(arr: [Isometry<N::Element, D, R::Element>; 8]) -> Self {
|
||||
let tra = Translation::from([
|
||||
arr[0].translation.clone(),
|
||||
arr[1].translation.clone(),
|
||||
arr[2].translation.clone(),
|
||||
arr[3].translation.clone(),
|
||||
arr[4].translation.clone(),
|
||||
arr[5].translation.clone(),
|
||||
arr[6].translation.clone(),
|
||||
arr[7].translation.clone(),
|
||||
]);
|
||||
let rot = R::from([
|
||||
arr[0].rotation.clone(),
|
||||
arr[1].rotation.clone(),
|
||||
arr[2].rotation.clone(),
|
||||
arr[3].rotation.clone(),
|
||||
arr[4].rotation.clone(),
|
||||
arr[5].rotation.clone(),
|
||||
arr[6].rotation.clone(),
|
||||
arr[7].rotation.clone(),
|
||||
]);
|
||||
|
||||
Self::from_parts(tra, rot)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar + PrimitiveSimdValue, D: DimName, R> From<[Isometry<N::Element, D, R::Element>; 16]>
|
||||
for Isometry<N, D, R>
|
||||
where
|
||||
N: From<[<N as SimdValue>::Element; 16]>,
|
||||
R: SimdValue + AbstractRotation<N, D> + From<[<R as SimdValue>::Element; 16]>,
|
||||
R::Element: AbstractRotation<N::Element, D>,
|
||||
N::Element: Scalar + Copy,
|
||||
R::Element: Scalar + Copy,
|
||||
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn from(arr: [Isometry<N::Element, D, R::Element>; 16]) -> Self {
|
||||
let tra = Translation::from([
|
||||
arr[0].translation.clone(),
|
||||
arr[1].translation.clone(),
|
||||
arr[2].translation.clone(),
|
||||
arr[3].translation.clone(),
|
||||
arr[4].translation.clone(),
|
||||
arr[5].translation.clone(),
|
||||
arr[6].translation.clone(),
|
||||
arr[7].translation.clone(),
|
||||
arr[8].translation.clone(),
|
||||
arr[9].translation.clone(),
|
||||
arr[10].translation.clone(),
|
||||
arr[11].translation.clone(),
|
||||
arr[12].translation.clone(),
|
||||
arr[13].translation.clone(),
|
||||
arr[14].translation.clone(),
|
||||
arr[15].translation.clone(),
|
||||
]);
|
||||
let rot = R::from([
|
||||
arr[0].rotation.clone(),
|
||||
arr[1].rotation.clone(),
|
||||
arr[2].rotation.clone(),
|
||||
arr[3].rotation.clone(),
|
||||
arr[4].rotation.clone(),
|
||||
arr[5].rotation.clone(),
|
||||
arr[6].rotation.clone(),
|
||||
arr[7].rotation.clone(),
|
||||
arr[8].rotation.clone(),
|
||||
arr[9].rotation.clone(),
|
||||
arr[10].rotation.clone(),
|
||||
arr[11].rotation.clone(),
|
||||
arr[12].rotation.clone(),
|
||||
arr[13].rotation.clone(),
|
||||
arr[14].rotation.clone(),
|
||||
arr[15].rotation.clone(),
|
||||
]);
|
||||
|
||||
Self::from_parts(tra, rot)
|
||||
}
|
||||
}
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user